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Abstract: In this paper, we consider generalized Laplacian problems with nonlocal boundary condi-
tions and a singular weight, which may not be integrable. The existence of two positive solutions to
the given problem for parameter λ belonging to some open interval is shown. Our approach is based
on the fixed point index theory.

Keywords: generalized Laplacian problems; multiplicity of positive solutions; singular weight
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1. Introduction

Consider the following singular ϕ-Laplacian problem:

(q(t)ϕ(u′(t)))′ + λh(t) f (u(t)) = 0, t ∈ (0, 1), (1)

u(0) =
∫ 1

0
u(r)dα1(r), u(1) =

∫ 1

0
u(r)dα2(r), (2)

where ϕ : R → R is an odd increasing homeomorphism, q ∈ C([0, 1], (0, ∞)),
λ ∈ R+ := [0, ∞) is a parameter, f ∈ C(R+,R+), h ∈ C((0, 1),R+), and the integra-
tor functions αi (i = 1, 2) are nondecreasing on [0, 1].

All integrals in (2) are meant in the sense of Riemann–Stieltjes. Throughout this paper,
we assume the following hypotheses:

(F1) There exist increasing homeomorphisms ψ1, ψ2 : [0, ∞)→ [0, ∞) such that:

ϕ(x)ψ1(y) ≤ ϕ(yx) ≤ ϕ(x)ψ2(y) for all x, y ∈ [0, ∞). (3)

(F2) For i = 1, 2, α̂i := αi(1)− αi(0) ∈ [0, 1).

Let ξ : [0, ∞) → [0, ∞) be an increasing homeomorphism. Then, we denote by Hξ

the set: {
g ∈ C((0, 1),R+) :

∫ 1

0
ξ−1

(∣∣∣∣∣
∫ 1

2

s
g(τ)dτ

∣∣∣∣∣
)

ds < ∞

}
.

It is well known that if (F1) is assumed, then:

ϕ−1(x)ψ−1
2 (y) ≤ ϕ−1(xy) ≤ ϕ−1(x)ψ−1

1 (y) for all x, y ∈ R+ (4)

and
L1(0, 1) ∩ C(0, 1) ( Hψ1 ⊆ Hϕ ⊆ Hψ2

(see, e.g., ([1], Remark 1)).
It is not hard to see that any function of the form

ϕ(s) =
n

∑
k=1
|s|pk−2s
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satisfies the assumption (F1)with ψ1(s) = min{spn−1, sp1−1} and ψ2(s) = max{spn−1, sp1−1}
for s ∈ R+ (see, e.g., [1,2]). Here, n ∈ N, pk ∈ (1, ∞) for 1 ≤ k ≤ n and pi ≤ pj for
1 ≤ i ≤ j ≤ n. If n = 1, it follows that ϕ(s) = |s|p−2s for some p ∈ (1, ∞), that is,
Equation (1) becomes the classical p-Laplacian one.

The study of problems with nonlocal boundary conditions is motivated by a variety of
applications such as beam deflection [3], chemical reactor theory [4], and thermostatics [5].
For this reason, the existence of positive solutions for nonlocal boundary value problems
has been extensively studied. For example, Liu [6] studied the multi-point boundary value
problem, which is a special case of problem (1)–(2) with λ = 1. Under various assumptions
of the nonlinearity f , the existence of positive solutions was shown. Bachouche, Djebali
and Moussaoui [7] proved, under suitable assumptions of the nonlinearity f = f (t, u, u′)
satisfying the L1-Carathéodory condition, several existence results for positive solutions to
ϕ-Laplacian boundary value problems involving linear bounded operators in the boundary
conditions. Yang [8], by using the Avery– Peterson fixed point theorem, obtained the exis-
tence of at least three positive solutions to the p-Laplacian equation with integral boundary
conditions. Goodrich [9] studied perturbed Volterra integral operator equations and, as an
application, established the existence of at least one positive solution to the p-Laplacian
differential equation with nonlocal boundary conditions. Jeong and Kim [10] obtained
sufficient conditions on the nonlinearity f for the existence of multiple positive solutions to
problem (1)–(2) with λ = 1. For the nonlinearity f = f (t, s) satisfying f (t, 0) 6≡ 0, Kim [11]
showed the existence, nonexistence and multiplicity of positive solutions to problem (1)–(2)
by investigating the shape of the unbounded solution continuum. For the historical de-
velopment of the theory of the problems with nonlocal boundary conditions, we refer the
reader to the survey papers [12–15].

In this paper, we show the existence of two positive solutions to nonlocal boundary
value problems (1)–(2) for λ belonging to some open interval in the case when either
f0 = f∞ = ∞ or f0 = f∞ = 0. Here,

f0 := lim
s→0

f (s)
ϕ(s)

and f∞ := lim
s→∞

f (s)
ϕ(s)

.

For problems with zero Dirichlet boundary conditions, that is, α̂1 = α̂2 = 0, there
have been several works for problems with such assumptions on the nonlinearity f . For
example, when ϕ(s) = |s|p−2s for some p ∈ (1, ∞), q ≡ 1 and h ∈ Hϕ, Agarwal, Lü and
O’Regan [16] investigated the existence of two positive solutions to problem (1)–(2). After
that, Wang [17] obtained the same multiplicity results in [16] for generalized ϕ-Laplacian
problems with the assumptions that ϕ satisfies (F1) and h ∈ C[0, 1]. Recently, Lee and
Xu [18] extended the result of [17] to the singularly weighed ϕ-Laplacian problem under
the assumptions that q ≡ 1 and h ∈ Hψ1 , that is, h may be singular at t = 0 and/or t = 1.

The aim of this paper is to generalize the results for the previous papers [16–18]. The
main result is stated as follows:

Theorem 1. Assume that (F1), (F2) and h ∈ Hψ1 \ {0} hold.

(1) If f0 = f∞ = ∞, then there exist λ∗ ∈ (0, ∞) and m∗ ∈ (0, ∞) such that problem (1) has
two positive solutions u1(λ) and u2(λ) for any λ ∈ (0, λ∗). Moreover, u1(λ) and u2(λ) can
be chosen with the property that:

0 < ‖u1(λ)‖∞ < m∗ < ‖u2(λ)‖∞, lim
λ→0
‖u1(λ)‖∞ = 0 and lim

λ→0
‖u2(λ)‖∞ = ∞.

(2) If f0 = f∞ = 0, then there exist λ∗ ∈ (0, ∞) and m∗ ∈ (0, ∞) such that (1) has two positive
solutions u1(λ) and u2(λ) for any λ ∈ (λ∗, ∞). Moreover, u1(λ) and u2(λ) can be chosen
with the property that:

0 < ‖u1(λ)‖∞ < m∗ < ‖u2(λ)‖∞, lim
λ→∞

‖u1(λ)‖∞ = 0 and lim
λ→∞

‖u2(λ)‖∞ = ∞.
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The rest of this paper is organized as follows. In Section 2, preliminary results which
are essential for proving Theorem 1 are provided. In Section 3, the proof of Theorem 1 is
given. Finally, the summary of this paper is provided in Section 4.

2. Preliminaries

Throughout this section, we assume that (F1), (F2) and h ∈ Hϕ \ {0} hold. For
convenience, we use some notations which were used by Jeong and Kim ([10]).

The usual maximum norm in a Banach space C[0, 1] is denoted by:

‖u‖∞ := max
t∈[0,1]

|u(t)| for u ∈ C[0, 1],

and let

αh := inf{x ∈ (0, 1) : h(x) > 0}, βh := sup{x ∈ (0, 1) : h(x) > 0},

ᾱh := sup{x ∈ (0, 1) : h(y) > 0 for all y ∈ (αh, x)},

β̄h := inf{x ∈ (0, 1) : h(y) > 0 for all y ∈ (x, βh)},

γ1
h :=

1
4
(3αh + ᾱh) and γ2

h :=
1
4
(β̄h + 3βh).

Then, since h ∈ C((0, 1),R+) \ {0}, we have two cases, either:

(i) 0 ≤ αh < ᾱh ≤ β̄h < βh ≤ 1

or

(ii) 0 ≤ αh = β̄h < βh ≤ 1 and 0 ≤ αh < ᾱh = βh ≤ 1.

Consequently,

h(t) > 0 for t ∈ (αh, ᾱh) ∪ (β̄h, βh), and 0 ≤ αh < γ1
h < γ2

h < βh ≤ 1. (5)

Let ρh := ρ1 min{γ1
h, 1− γ2

h} ∈ (0, 1), where

q0 := min
t∈[0,1]

q(t) > 0 and ρ1 := ψ−1
2

(
1
‖q‖∞

)[
ψ−1

1

(
1
q0

)]−1
∈ (0, 1].

Then
K := {u ∈ C([0, 1],R+) : u(t) ≥ ρh‖u‖∞ for t ∈ [γ1

h, γ2
h]}

is a cone in C[0, 1]. For r > 0, let:

Kr := {u ∈ K : ‖u‖∞ < r}, ∂Kr := {u ∈ K : ‖u‖∞ = r}

and Kr := Kr ∪ ∂Kr. Let

C1 := ψ−1
2

(
1
‖q‖∞

)
min

{∫ γh

γ1
h

ψ−1
2

(∫ γh

s
h(τ)dτ

)
ds,
∫ γ2

h

γh

ψ−1
2

(∫ s

γh

h(τ)dτ

)
ds

}
;

C2 := ψ−1
1

(
1
q0

)
max

{
A1

∫ γh

0
ψ−1

1

(∫ γh

s
h(τ)dτ

)
ds, A2

∫ 1

γh

ψ−1
1

(∫ s

γh

h(τ)dτ

)
ds
}

.

Here, γh :=
γ1

h + γ2
h

2
and Ai := (1− α̂i)

−1 ≥ 1 for i = 1, 2. Clearly, by (5),

C1 > 0 and C2 > 0.

Define continuous functions f∗, f ∗ : R+ → R+ by, for m ∈ R+,

f∗(m) := min{ f (y) : ρhm ≤ y ≤ m} and f ∗(m) := max{ f (y) : 0 ≤ y ≤ m}.
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Define R1, R2 : (0, ∞)→ (0, ∞) by:

R1(m) :=
1

f∗(m)
ϕ

(
m
C1

)
and R2(m) :=

1
f ∗(m)

ϕ

(
m
C2

)
for m ∈ (0, ∞).

By (4) and (F2), ψ−1
2 (y) ≤ ψ−1

1 (y) for all y ∈ R+ and Ai = (1− α̂i)
−1 ≥ 1 for i = 1, 2.

Consequently, 0 < C1 < C2 and

0 < R2(m) < R1(m) for all m ∈ (0, ∞). (6)

Remark 2. (1) For any L ∈ C(R+,R+), let Lc := lim
m→c

L(m)

ϕ(m)
for c ∈ {0, ∞}. Then it is easy to

prove that:
( f∗)c = ( f ∗)c = 0 if fc = 0 , and ( f∗)c = ( f ∗)c = ∞ if fc = ∞. (7)

For the reader’s convenience, we give the proof for the case ( f∗)∞ = ( f ∗)∞ = 0 if f∞ = 0.
The proofs for other cases are similar. Indeed, let ε > 0 be given and let f∞ = 0 be assumed. Then,
there exists M > 0 such that:

f (s)
ϕ(s)

< ε for all s ≥ M, (8)

and

f ∗(s) ≤ f ∗(M) + f (xM,s) for s ≥ M.

Here xM,s is the point in [M, s] satisfying

f (xM,s) = max{ f (x) : M ≤ x ≤ s}.

By (8), for s ≥ M,

0 ≤ f∗(s)
ϕ(s)

≤ f ∗(s)
ϕ(s)

≤ f ∗(M)

ϕ(s)
+

f (xM,s)

ϕ(xM,s)
≤ f ∗(M)

ϕ(s)
+ ε,

which implies

0 ≤ lim sup
s→∞

f∗(s)
ϕ(s)

≤ lim sup
s→∞

f ∗(s)
ϕ(s)

≤ ε. (9)

Consequently, ( f∗)∞ = ( f ∗)∞ = 0, since (9) is true for all ε > 0.
(2) By (3) and (7), for i ∈ {1, 2},

lim
m→0+

Ri(m) = 0 if f0 = ∞, and lim
m→∞

Ri(m) = 0 if f∞ = ∞; (10)

lim
m→0+

Ri(m) = ∞ if f0 = 0, and lim
m→∞

Ri(m) = ∞ if f∞ = 0. (11)

For g ∈ Hϕ, consider the following problem:{
(q(t)ϕ(u′(t)))′ + g(t) = 0, t ∈ (0, 1),
u(0) =

∫ 1
0 u(r)dα1(r), u(1) =

∫ 1
0 u(r)dα2(r).

(12)

Define a function T : Hϕ → C[0, 1] by T(0) = 0 and, for g ∈ Hϕ \ {0},

T(g)(t) =

{
A1
∫ 1

0

∫ r
0 Ig(s, σ)dsdα1(r) +

∫ t
0 Ig(s, σ)ds, if 0 ≤ t ≤ σ,

−A2
∫ 1

0

∫ 1
r Ig(s, σ)dsdα2(r)−

∫ 1
t Ig(s, σ)ds, if σ ≤ t ≤ 1,

(13)

where

Ig(s, x) := ϕ−1
(

1
q(s)

∫ x

s
g(τ)dτ

)
for s, x ∈ (0, 1)

and σ = σ(g) is a constant satisfying:
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A1

∫ 1

0

∫ r

0
Ig(s, σ)dsdα1(r) +

∫ σ

0
Ig(s, σ)ds = −A2

∫ 1

0

∫ 1

r
Ig(s, σ)dsdα2(r)−

∫ 1

σ
Ig(s, σ)ds. (14)

For any g ∈ Hϕ and any σ satisfying (14), T(g) is monotone increasing on [0, σ) and
monotone decreasing on (σ, 1]. We notice that σ = σ(g) is not necessarily unique, but T(g)
is independent of the choice of σ satisfying (14) (see [10], [Remark 2]).

Lemma 3. ([10], [Lemma 2]) Assume that (F1), (F2) and g ∈ Hϕ hold. Then T(g) is a unique
solution to problem (12), satisfying the following properties:

(i) T(g)(t) ≥ min{T(g)(0), T(g)(1)} ≥ 0 for t ∈ [0, 1];
(ii) for any g 6≡ 0, max{T(g)(0), T(g)(1)} < ‖T(g)‖∞;
(iii) σ is a constant satisfying (14) if and only if T(g)(σ) = ‖T(g)‖∞;
(iv) T(g)(t) ≥ ρ1 min{t, 1− t}‖T(g)‖∞ for t ∈ [0, 1] and T(g) ∈ K.

Define a function F : R+ ×K → C(0, 1) by

F(λ, u)(t) := λh(t) f (u(t)) for (λ, u) ∈ R+ ×K and t ∈ (0, 1).

Clearly, F(λ, u) ∈ Hϕ for any (λ, u) ∈ R+×K, since h ∈ Hϕ. Let us define an operator
H : R+ ×K → K by

H(λ, u) := T(F(λ, u)) for (λ, u) ∈ R+ ×K.

By Lemma 3 (iv), H(R+ ×K) ⊆ K, and consequently H is well defined. Moreover, u
is a solution to BVP (1)–(2) if and only if H(λ, u) = u for some (λ, u) ∈ R+ ×K.

Lemma 4. ([11], [Lemma 4]) Assume that (F1), (F2) and h ∈ Hϕ \ {0} hold. Then, the operator
H : R+ ×K → K is completely continuous.

Finally, we recall a well-known theorem of the fixed point index theory.

Theorem 5. ([19,20]) Assume that, for some m > 0, H : Km → K is completely continuous.
Then the following assertions are true:

(i) i(H,Km,K) = 1 if ‖H(u)‖∞ < ‖u‖∞ for u ∈ ∂Km;

(ii) i(H,Km,K) = 0 if ‖H(u)‖∞ > ‖u‖∞ for u ∈ ∂Km.

3. Proof of Theorem 1

In this section, we give the proof of Theorem 1.
Proof of Theorem 1. (1) Since f0 = f∞ = ∞, from (10), it follows that, for i = 1, 2,

lim
m→0

Ri(m) = lim
m→∞

Ri(m) = 0. (15)

We can choose λ∗ > 0 and m∗ > 0 satisfying:

λ∗ = max{R2(m) : m ∈ R+} and R2(m∗) = λ∗.

Let λ ∈ (0, λ∗) be fixed. By (6), there exist m1 = m1(λ), m2 = m2(λ),
M1 = M1(λ), M2 = M2(λ) such that:

m1 < m2 < m∗ < M2 < M1

and

max{R1(m1), R1(M1)} < λ < min{R2(m2), R2(M2)}.
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Since λ < R2(m2),

0 ≤ λ f (v(t)) ≤ λ f ∗(m2) =
λ

R2(m2)
ϕ

(
m2

C2

)
< ϕ

(
m2

C2

)
for t ∈ [0, 1]. (16)

Let u ∈ ∂Km2 be given and let σ be a number satisfying H(λ, u)(σ) = ‖H(λ, u)‖∞. We
have two cases: either (i) σ ∈ (0, γh) or (ii) σ ∈ [γh, 1). We only give the proof for the case
(i), since the case (ii) can be proved in a similar manner. First, we show that:

‖H(λ, u)‖∞ ≤ A1

∫ σ

0
IF(λ,u)(s, σ) for s ∈ [0, σ]. (17)

Since IF(λ,u)(s, x) ≥ 0 for x ≥ s and IF(λ,u)(s, x) ≤ 0 for x ≤ s,

∫ 1

0

∫ r

σ
IF(λ,u)(s, σ)dsdα1(r)

= −
∫ σ

0

∫ σ

r
IF(λ,u)(s, σ)dsdα1(r) +

∫ 1

σ

∫ r

σ
IF(λ,u)(s, σ)dsdα1(r) ≤ 0.

Consequently,

H(λ, u)(σ) = A1

∫ 1

0

∫ r

0
IF(λ,u)(s, σ)dsdα1(r) +

∫ σ

0
IF(λ,u)(s, σ)ds

= A1

[∫ 1

0

∫ r

0
IF(λ,u)(s, σ)dsdα1(r) +

(
1−

∫ 1

0
dα1(r)

) ∫ σ

0
IF(λ,u)(s, σ)ds

]
= A1

[∫ 1

0

∫ r

σ
IF(λ,u)(s, σ)dsdα1(r) +

∫ σ

0
IF(λ,u)(s, σ)ds

]
≤ A1

∫ σ

0
IF(λ,u)(s, σ)ds.

From (4), (16), (17) and the definition of C2, it follows that:

‖H(λ, u)‖∞ ≤ A1

∫ σ

0
ϕ−1

(
1

q(s)

∫ σ

s
λh(τ) f (u(τ))dτ

)
ds

< A1

∫ γh

0
ϕ−1

(∫ γh

s
h(τ)dτ

1
q0

ϕ

(
m2

C2

))
ds

≤ A1

∫ γh

0
ψ−1

1

(∫ γh

s
h(τ)dτ

)
dsϕ−1

(
1
q0

ϕ

(
m2

C2

))
≤ A1

∫ γh

0
ψ−1

1

(∫ γh

s
h(τ)dτ

)
dsψ−1

1

(
1
q0

)
m2

C2
≤ m2 = ‖u‖∞.

By Theorem 5 (i),
i(H(λ, ·),Km2 ,K) = 1. (18)

Let v ∈ ∂Km1 be given. Since λ > R1(m1) and ρhm1 ≤ v(t) ≤ m1 for t ∈ [γ1
h, γ2

h], and

λ f (v(t)) ≥ λ f∗(m1) =
λ

R1(m1)
ϕ

(
m1

C1

)
> ϕ

(
m1

C1

)
for t ∈ [γ1

h, γ2
h]. (19)

Let σ be a constant satisfying H(λ, v)(σ) = ‖H(λ, v)‖∞. Then we have two cases:
either (i) σ ∈ [γh, 1) or (ii) σ ∈ (0, γh). We only give the proof for the case (i), since the case
(ii) can be proved in a similar manner. By Lemma 3 (i), H(λ, v)(0) ≥ 0, and it follows from
(4), (19) and the definition of C1 that:
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‖H(λ, v)‖∞ = H(λ, v)(0) +
∫ σ

0
ϕ−1

(
1

q(s)

∫ σ

s
λh(τ) f (v(τ))dτ

)
ds

>
∫ γh

γ1
h

ϕ−1
(∫ γh

s
h(τ)dτ

1
‖q‖∞

ϕ

(
m1

C1

))
ds

≥
∫ γh

γ1
h

ψ−1
2

(∫ γh

s
h(τ)dτ

)
dsϕ−1

(
1
‖q‖∞

ϕ

(
m1

C1

))
≥

∫ γh

γ1
h

ψ−1
2

(∫ γh

s
h(τ)dτ

)
dsψ−1

2

(
1
‖q‖∞

)
m1

C1
≥ m1 = ‖v‖∞.

By Theorem 5 (ii),
i(H(λ, ·),Km1 ,K) = 0. (20)

From (18), (20) and the additivity property,

i(H(λ, ·),Km2 \ Km1 ,K) = −1.

Then there exists u1
λ ∈ Km2 \ Km1 such that H(λ, u1

λ) = u1
λ by the solution property.

Consequently, problem (1)–(2) has a positive solution u1
λ satisfying ‖u1

λ‖∞ ∈ (m1, m2).
By the similar argument above, one can show the existence of another positive solu-

tion u2
λ to problem (1) satisfying ‖u2

λ‖∞ ∈ (M2, M1). Moreover, by (15), we may choose
m2(λ), M2(λ) satisfying m2(λ) → 0 and M2(λ) → ∞ as λ → 0+, and thus (1) has two
positive solutions u1

λ, u2
λ for any λ ∈ (0, λ∗) satisfying ‖u1

λ‖∞ → 0 and ‖u2
λ‖∞ → ∞ as

λ→ 0+.
(2) Since f0 = f∞ = 0, from (11), it follows that, for i = 1, 2,

lim
m→0

Ri(m) = lim
m→∞

Ri(m) = ∞. (21)

We can choose λ∗ > 0 and m∗ > 0 satisfying

λ∗ = min{R1(m) : m ∈ R+} and R1(m∗) = λ∗.

Let λ ∈ (λ∗, ∞) be fixed. By (6), there exist m1 = m1(λ), m2 = m2(λ),
M1 = M1(λ), M2 = M2(λ) such that

m2 < m1 < m∗ < M1 < M2

and

max{R1(m1), R1(M1)} < λ < min{R2(m2), R2(M2)}.

By the argument similar to those in the proof of (1),

i(H(λ, ·),Km1 \ Km2 ,K) = i(H(λ, ·),KM2 \ KM1 ,K) = −1.

Thus, problem (1)–(2) has two positive solutions u1
λ, u2

λ for any λ ∈ (λ∗, ∞) satis-
fying ‖u1

λ‖∞ ∈ (m2, m1) and ‖u2
λ‖∞ ∈ (M1, M2). Moreover, by (21), we may choose

m1(λ), M1(λ) satisfying m1(λ)→ 0 and M1(λ)→ ∞ as λ→ ∞, and thus (1)–(2) has two
positive solutions u1

λ, u2
λ for any λ ∈ (λ∗, ∞) satisfying ‖u1

λ‖∞ → 0 and ‖u2
λ‖∞ → ∞ as

λ→ ∞.

4. Conclusions

In this paper, we establish the existence of two positive solutions to nonlocal boundary
value problems (1)–(2) for λ belonging to some open interval in the case when either
f0 = f∞ = ∞ or f0 = f∞ = 0.

Let ϕ be an odd function satisfying ϕ(x) = x + x2 for x ∈ R+. Then, ϕ satisfies (F1)
with ψ1(y) = min{y, y2} and ψ2(y) = max{y, y2}. Define h : (0, 1)→ R+ by:

h(t) = 0 for t ∈ [0, 1
4 ] and h(t) = (t− 1

4 )(1− t)−c for t ∈ ( 1
4 , 1).
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Then, since ψ−1
1 (s) = s for all s ≥ 1, h ∈ Hψ1 \ L1(0, 1) for any c ∈ [1, 2). We give

some examples for nonlinearity f to illustrate the main result (Theorem 1).
Let

f1(s) =

{
s

1
2 , for s ∈ [0, 1];

s3, for s ∈ (1, ∞)
and f2(s) = s

3
2 for s ∈ R+.

Then,

( f1)0 = ( f1)∞ = ∞ and ( f2)0 = ( f2)∞ = 0.

Consequently, by Theorem 1, problem (1)–(2) with f = f1 has two positive solutions
for all small λ > 0, and problem (1)–(2) with f = f2 has two positive solutions for all large
λ > 0.

As shown in the examples of nonlinearity f = f (s) above, f (0) may be 0. What this
means is that nonnegative solutions may be trivial ones. The existence of an unbounded
solution component to problem (1)–(2) can be obtained as in the paper [11], where the
nonlinearity f = f (t, s) satisfies f (t, 0) 6≡ 0, but we cannot get any information about
positive solutions from the solution component. Thus, the fixed point index theory was
used in order to show the existence of two positive solutions to problem (1)–(2).
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