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Abstract: We consider the problem of finding a (non-negative) measure µ on B(Cn) such that∫
Cn zkdµ(z) = sk, ∀k ∈ K. Here, K is an arbitrary finite subset of Zn

+, which contains (0, ..., 0), and
sk are prescribed complex numbers (we use the usual notations for multi-indices). There are two
possible interpretations of this problem. Firstly, one may consider this problem as an extension of the
truncated multidimensional moment problem on Rn, where the support of the measure µ is allowed
to lie in Cn. Secondly, the moment problem is a particular case of the truncated moment problem
in Cn, with special truncations. We give simple conditions for the solvability of the above moment
problem. As a corollary, we have an integral representation with a non-negative measure for linear
functionals on some linear subspaces of polynomials.
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1. Introduction

Throughout the whole paper, n means a fixed positive integer. Let us introduce
some notations. As usual, we denote by R,C,N,Z,Z+ the sets of real numbers, complex
numbers, positive integers, integers and non-negative integers, respectively. By Zn

+ we
mean Z+ × . . . × Z+, and Rn = R × . . . × R, Cn = C × . . . × C, where the Cartesian
products are taken with n copies. Let k = (k1, . . . , kn) ∈ Zn

+, z = (z1, . . . , zn) ∈ Cn. Then,
zk means the monomial zk1

1 . . . zkn
n , and |k| = k1 + . . . + kn. By B(M), we denote the set of

all Borel subsets of a set M ⊆ Cn.
Let K be an arbitrary finite subset of Zn

+, which contains 0 := (0, ..., 0). Let S =
(sk)k∈K be an arbitrary set of complex numbers. We shall consider the problem of finding
a (non-negative) measure µ on B(Cn) such that∫

Cn
zkdµ(z) = sk, ∀k ∈ K. (1)

There are two possible interpretations of this problem. Firstly, one may consider this
problem as an extension of the truncated multidimensional moment problem on Rn, where
the support of the measure µ is allowed to lie in Cn. A similar situation is known in the
cases of the classical Stieltjes and Hamburger moment problems, where the support of the
measure lies in [0,+∞) and in R, respectively. Secondly, and more directly, the moment
problem (1) is a particular case of the truncated moment problem in Cn (see ([1], Chapter
7), [2,3]), with special truncations. These truncations do not include conjugate terms.

It is well-known that the multidimensional moment problems are much more compli-
cated than their one-dimensional prototypes [1,4–8]. An operator-theoretical interpretation
of the full multidimensional moment problem was given by Fuglede in [9]. Important ideas
in the operator approach to moment problems go back to the works of Naimark in 1940–
1943, and then, they were developed by many authors, see historical notes in [10]. In [11],
we presented the operator approach to the truncated multidimensional moment problem in
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Rn. Other approaches to truncated moment problems can be found in [1–3,6,12,13]. A de-
tailed exposition of the theory of (full and truncated) multidimensional moment problems
is given in a recent Schmüdgen’s book [8]. Recent results can be also found in [14,15].

In the case of the moment problem (1), we shall need a modification of the operator
approach, since we have no positive definite kernels here. However, this problem can
be passed and we shall come to some commuting bounded operators. At first, we shall
provide an auxiliary commuting extension for this tuple inside the original space. After
this, we shall not use extensions of operators, but dilations. We shall apply the dilation
theory for commuting contractions to obtain the required measure. Consequently and
surprisingly, we have very simple conditions for the solvability of the moment problem (1)
(Theorem 1). As a corollary, we have an integral representation with a non-negative measure
for linear functionals L on some linear subspaces of polynomials (Corollary 1).

Notations. Besides the given notations above, we shall use the following conventions.
If H is a Hilbert space, then (·, ·)H and ‖ · ‖H mean the scalar product and the norm in H,
respectively. Indices may be omitted in obvious cases. For a linear operator A in H, we
denote by D(A) its domain, by R(A) its range, and A∗ means the adjoint operator if it
exists. If A is invertible, then A−1 means its inverse. A means the closure of the operator, if
the operator is closable. If A is bounded, then ‖A‖ denotes its norm. For a set M ⊆ H, we
denote by M the closure of M in the norm of H. By Lin M, we mean the set of all linear
combinations of elements from M, and span M := Lin M. By EH , we denote the identity
operator in H, i.e., EHx = x, x ∈ H. In obvious cases, we may omit the index H. If H1 is a
subspace of H, then PH1 = PH

H1
denotes the orthogonal projection of H onto H1.

2. Truncated Moment Problems on Cn

A solution to the moment problem (1) is given by the following theorem.

Theorem 1. Let the moment problem (1) with some prescribed S = (sk)k∈K be given. The
moment problem (1) has a solution if and only if one of the following conditions holds:

(a) s(0,...,0) > 0;
(b) sk = 0, ∀k ∈ K.

If one of conditions (a), (b) is satisfied, then there exists a solution µ with a compact support.

Proof. The necessity part of the theorem is obvious. Let moment problem (1) be given
and one of conditions (a),(b) holds. If (b) holds, then µ ≡ 0 is a solution of the moment
problem. Suppose in what follows that s(0,...,0) > 0. Observe that we can include the set K
into the following set:

Kd := {k = (k1, . . . , kn) ∈ Zn
+ : k j ≤ d, j = 1, 2, ..., n},

for some large d ≥ 1. Namely, d may be chosen greater than the maximum value of all
possible indices k j in K. We now set sk := 0, for k ∈ Kd\K. Consider another moment
problem of type (1), having a new set of indices K̃ = Kd. We are going to construct a solution
to this moment problem, which, of course, will be a solution to the original problem.

Consider the usual Hilbert space l2 of square summable complex sequences ~c =
(c0, c1, c2, ...), ‖~c‖2

l2 = ∑∞
j=0 |cj|2. We intend to construct a sequence {xk}k∈K̃ of elements of

l2, such that
(xk, x0)l2 = sk, k ∈ K̃. (2)

The elements of the finite set K̃ can be indexed by a single index, i.e., we assume

K̃ =
{

k0, k1, . . . , kρ

}
, (3)
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with ρ + 1 = |K̃|, and k0 = (0, ..., 0). Denote a := √s(0,...,0)(> 0). Set

x0 := a~e0, xkj := ~ej +
skj

a
~e0, j = 1, 2, ..., ρ. (4)

Here, ~ej means the vector ~c = (c0, c1, c2, ...) from l2, with cj = 1, and 0’s in other
places. Observe that for this choice of elements xk, conditions (2) hold true. Moreover, it is
important for our future purposes that these elements xk are linearly independent.

Consider a finite-dimensional Hilbert space H := Lin{xk}k∈K̃. Set

Kd;l := {k = (k1, . . . , kn) ∈ Kd : kl ≤ d− 1}, l = 1, 2, ..., n.

Consider the following operator Wj on Zn
+:

Wj(k1, . . . , k j−1, k j, k j+1, . . . , kn) = (k1, . . . , k j−1, k j + 1, k j+1, . . . , kn), (5)

for j = 1, . . . , n. Thus, the operator Wj increases the j-th coordinate. We introduce the
following operators Mj, j = 1, ..., n, in H:

Mj ∑
k∈Kd;j

αkxk = ∑
k∈Kd;j

αkxWjk, αk ∈ C, (6)

with D(Mj) = Lin{xk}k∈Kd;j
. Since elements xk are linearly independent, we conclude

that Mj are well-defined operators. Operators Mj can be extended to a commuting tuple of
bounded operators on H. In fact, consider the following operators Aj ⊇ Mj, j = 1, ..., n:

Aj ∑
k∈Kd

αkxk = ∑
k∈Kd;j

αkxWjk, αk ∈ C. (7)

Operators Aj are well-defined linear operators on the whole H. It can be directly
verified that they commute pairwisely. Notice that

Ak1
1 Ak2

2 ...Akn
n x0 = x(k1,k2,...,kn), k = (k1, ..., kn) ∈ Kd. (8)

Relation (8) can be verified using the induction argument. Since H is finite-dimensional,
then

‖Aj‖ ≤ R, j = 1, 2, ..., n;

for some R > 0. Set
Bj :=

1
C

Aj, j = 1, ..., n, (9)

where C is an arbitrary number greater than
√

nR. Then,

n

∑
j=1
‖Bj‖2 < 1. (10)

In this case, there exists a commuting unitary dilation U = (U1, ..., Un) of (B1, ..., Bn),
in a Hilbert space H̃ ⊇ H, see Proposition 9.2 in [16] (p. 37). Namely, we have:(

PH̃
H Uk1

1 Uk2
2 ...Ukn

n

)∣∣∣
H
= Bk1

1 Bk2
2 ...Bkn

n , k1, ..., kn ∈ Z+. (11)

Moreover, we can choose U to be minimal, that is, the subspaces Uk1
1 ...Ukn

n H will span
the space H̃ (see Theorem 9.1 in [16] (p. 36)):

H̃ = span
{

Uk1
1 ...Ukn

n H, k1, ..., kn ∈ Z
}

.
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Then, the Hilbert space H̃ will be separable. By (2), (8), (9) and (11), we may write for
an arbitrary k = (k1, ..., kn) ∈ K̃:

sk = (xk, x0)l2 = (Ak1
1 Ak2

2 ...Akn
n x0, x0)l2 = C|k|(Bk1

1 Bk2
2 ...Bkn

n x0, x0)l2 =

= C|k|(Uk1
1 Uk2

2 ...Ukn
n x0, x0)l2 = ((CU1)

k1(CU2)
k2 ...(CUn)

kn x0, x0)l2 =

= (Nk1
1 Nk2

2 ...Nkn
n x0, x0)l2 , (12)

where Nj := CUj, j = 1, ..., n. Applying the spectral theorem for commuting bounded
normal operators Nj (or, equivalently, to their commuting real and imaginary parts), we
obtain that

Nj =
∫
Cn

zjdF(z1, ..., zn), j = 1, ..., n,

where F(z1, ..., zn) is some spectral measure on B(Cn). Then,

sk =
∫
Cn

zk1
1 ...zkn

n d(F(z1, ..., zn)x0, x0)l2 , k = (k1, ..., kn) ∈ K̃.

This means that µ = (F(z1, ..., zn)x0, x0)l2 is a solution of the moment problem. Since
Nj were bounded, µ has compact support.

Corollary 1. LetK be an arbitrary finite subset of Zn
+, which contains 0. Let L be a complex-valued

linear functional on
M = M(K) := Lin{zk1

1 ...zkn
n }k=(k1,...,kn)∈K,

such that L(1) > 0. Then, L has the following integral representation:

L(p) =
∫
Cn

p(z1, ..., zn)dµ, ∀p ∈ M, (13)

where µ is a (non-negative) measure µ on B(Cn), having compact support.

Proof. It follows directly from Theorem 1.

3. Conclusions

Let K be an arbitrary finite subset of Zn
+, and S = (sk)k∈K an arbitrary set of real

numbers. Recall that the truncated multidimensional moment problem consists of finding
a (non-negative) measure µ on B(Rn) such that [17]∫

tkdµ(t) = sk, ∀k ∈ K. (14)

Assume additionally thatK contains 0 := (0, ..., 0). Theorem 1 shows that if we extend
the admissible support for the sought-for measure to lie in Cn, then this helps essentially.
Such a “complexification” of the problem leads to simple conditions of the solvability.

Corollary 1 can be compared with a well-known theorem of Boas, which gives a
representation for functionals (see [18] (p. 74)). In our case, we have a non-negative
measure in the representation. This provides a Hilbert space structure and corresponding
tools for further investigations.

It is of interest to consider similar problems with infinite truncations and full moment
problems. This will be studied elsewhere.
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