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Abstract: The objective of the research article is two-fold. Firstly, we present a fixed point result in
the context of triple controlled metric type spaces with a distinctive contractive condition involving
the controlled functions. Secondly, we consider an initial value problem associated with a nonlinear
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via fixed point theorem in the setting of complete triple controlled metric type spaces. Furthermore,
the theorem is applied to illustrate the existence of a unique solution to an integro-dynamic equation.
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1. Introduction

In science and technology, the solution of integral and integro-differential equations
plays a significant role. A differential equation, an integral equation, or an integro-differential
equation is obtained whenever a physical system is modeled in the differential context. On the
other hand, Hilger [1] first introduced a time scale (or a measure chain) in 1988. Several
researchers have built on different perspectives of the theory as Hilger developed the concepts
of a derivative and integral on a time scale [2–6]. It has been demonstrated that time scales
can be applied to any area that can be represented using discrete or continuous models.

Fixed point theory provides a basis in solving existence and uniqueness problems
involving all types of differential and integral equations. Many researchers have examined the
question of the existence and uniqueness of integrodifferential equations (see [7–16]). Recently,
the authors in [17] discussed a particular kind of integro-dynamic equation.

Fixed point theory, on the other hand, is a significant idea with multiple applications
in diverse fields of mathematics. The existence of fixed points has broad implications
in a variety of disciplines of analysis and topology. It has its own implications and has
progressed immensely over the last one and half centuries.

Banach’s contraction principle, however, in the case of a metric space setting, is the
basis of metric fixed point theory. Banach’s contraction principle is a very useful tool in
nonlinear analysis since it is an easy and flexible tool for defining existence and uniqueness
theorems for operator equations. This fact prompted researchers to seek to expand and
extrapolate it in order to broaden its scope of application as far as possible.

In recent times, we have seen a number of generalized metric spaces, such as extended
b-metric spaces [18], controlled metric type spaces [19], double-controlled metric type
spaces [20], controlled b-Branciari metric type spaces [21], triple controlled metric type
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spaces [22], and extended hexagonal b-metric spaces [23]; several authors concentrated
their attention in order to acquire fixed point theorems in these kinds of spaces.

Although only a few investigations have been carried out on the existence and unique-
ness of solutions of integro-dynamic equations, the main purpose of this research is to
discuss the existence and uniqueness of Volterra–Fredholm integro-dynamic equations on
time scales. We analyze the problem in the framework of complete triple controlled metric
type spaces and apply a fixed point theorem with a contractive condition involving the
controlled functions.

2. Preliminaries

We begin with a brief overview of the fundamental concepts of time scales.

Definition 1 ([4,7]). 1. A time scale is an arbitrary non-empty closed subset of the real numbers.
A time scale is usually denoted by the symbol T.
2. For t ∈ T, the forward jump operator σ : T→ T is defined as

σ(t) = inf{s ∈ T : s > t}.

3. For t ∈ T, the backward jump operator ρ : T→ T is defined as

ρ(t) = sup{s ∈ T : s < t}.

4. We set
inf ∅ = supT, sup ∅ = infT.

Remark 1 ([17]). It is easy to see that, for any t ∈ T, we have σ(t) ≥ t and ρ(t) ≤ t.

Definition 2 ([4,7]). We define the set TK as

TK =

{
T\(ρ(supT), supT], if supT < ∞
T, otherwise

Definition 3 ([4,7]). Let g : T → R be a function and let t ∈ TK. We define g∆(t) to be the
number, provided that it exists, as follows: for any ε > 0, there is a neighborhood U of t, U = (t− δ,
t + δ) ∩T for some δ > 0, such that∣∣g(σ(t))− g(s)− g∆(t)(σ(t)− s)

∣∣ ≤ ε|σ(t)− s| for all s ∈ U, s 6= σ(t)− s.

g∆(t) is called the delta or Hilger derivative of g at t.
g is the delta or Hilger differentiable or, in brielf, differentiable in TK if g∆(t) exists for all t ∈ TK.

The function g∆ : T → R is said to be the delta derivative or Hilger derivative or, in brief,
the derivative, of g in TK.

Remark 2 ([17]). If T = R, then the delta derivative coincides with the classical derivative. Note
that the delta derivative is well-defined.

It is worth noting that the nabla derivative, which is given in [7], is another form of
derivative defined on time scales. We suggest some recent research upon these two types
of fractional-order derivatives in [4,7,24].
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Definition 4 ([4,7]). A function G : T→ R is called a delta antiderivative of g : T→ R provided
that G∆(t) = g(t) holds for all t ∈ TK. Then, the delta integral of g is defined by

b∫
a

g(t)∆t = G(b)− G(a).

Eventually, we define the monomials on time scales and consider a few of its proper-
ties.

Definition 5 ([4,5]). The following is a recursive definition of monomials on time scales.

h0(t, α) = 1,

h1(t, α) =

t∫
α

h0(t, α)∆(t) = t− α,

hk(t, α) =

t∫
α

hk−1(t, α)∆(t),

(1)

for k ≥ 2.

Theorem 1 ([5]). For each k ∈ N0, the inequality

hk(t, α) ≤ (t− α)k

k!
(2)

holds for each t, α ∈ T, t ≥ α.

On the other hand, M. Frechet [25] developed the well-known conception of metric
space as an outgrowth of conventional distance. In the literature, the notion of metric
space is enlarged in a number of different ways (for instance, see [26–28]). The definition
of triple controlled metric type space is described below, which is used extensively in our
main results.

Definition 6 ([22]). Let X be a non-empty set and R, S, T : X × X → [1, ∞). A function
dT : X× X → [0, ∞) is called a triple controlled metric type if it satisfies:

(1) dT(w, v) = 0 if and only if w = v for all w, v ∈ X;

(2) dT(w, v) = dT(v, w) for all w, v ∈ X;

(3) dT(w, v) ≤ R(w, e)dT(w, e) + S(e, f )dT(e, f ) + T( f , v)dT( f , v)

for all w, v ∈ X and for all distinct points e, f ∈ X, each distinct from w and v, respectively. The
pair (X, dT) is called a triple controlled metric type space (in short, TCMTS).

The extension of the rectangular inequality is the most important feature of triple
controlled metric type spaces. The recent research pertaining to TCMTS can be found
at [22,29–31].

Example 1 ([22]). Let X = P ∪ Q where P = { 1
n : n ∈ N} and Q is the set of all positive

integers. Define dT : X× X → [0, ∞) such that ‘dT’ is symmetric and, for all w, v ∈ X

dT(w, v) =


0, if w = v
w + 8, if w ∈ P, v ∈ {6, 7} or w ∈ {6, 7}, v ∈ P
2, otherwise
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Let R, S, T : X× X → [1, ∞) be defined as

R(w, v) =

{
1
w , if w ∈ P, v ∈ Q
1, otherwise

S(w, v) =

{
w + v, if w ∈ P, v ∈ Q
2, otherwise

and

T(w, v) =

{
w + 1, if both w, v ∈ P or w, v ∈ Q
3
2 , otherwise

Therefore, (X, dT) is a TCMTS.

Remark 3. By employing the same function(s), a triple controlled metric type becomes a controlled
b-Branciari metric type space. In fact, the converse is not true (see Example 3.2 in [22]).

Contractive mappings have aroused renewed interest, known for their ability to
reduce the number of iterations required when working with numerical calculations of
fixed point type problems. In the next section, we establish a fixed point theorem in the
context of TCMTS under a new contractive condition employing the controlled functions.

3. Fixed Point Theorem

Theorem 2. Let (X, dT) be a complete triple controlled metric type space and A : X → X be a
self mapping on X. Assume that R(w, v)S(w, v) > T(w, v) for any w, v ∈ X and there exists
β ∈ [0, 1) such that

dT(Aw, Av) ≤ β
R(w, v)S(w, v)

T(w, v)
dT(w, v), for all w, v ∈ X. (3)

For each w0 ∈ X and wn = Anw0, n ∈ N, we have

sup
m

lim
n

T(wn, wm)
R(wn, wn+1)S(wn−1, wn)

T(wn−1, wn)
<

1
β2 (4)

and

sup
m

lim
n

T(wn, wm)
R(wn, wn+1)S(wn+1, wn+2)

T(wn, wn+1)
<

1
β2 , (5)

then, wn → w as n→ ∞. Moreover, if

lim
n→+∞

R(w, wn)S(w, wn)

T(w, wn)
and lim

n→+∞

R(wn, w)S(wn, w)

T(wn, w)
(6)

exist and are finite, then A has a fixed point in X. Furthermore, A has a unique fixed point if

R(Aw, Av)S(Aw, Av)
T(Aw, Av)

<
1
β

, (7)

for any two fixed points w, v ∈ X of A.

Proof. Let w0 ∈ X and define an iterative sequence {wn} by

w0, Aw0 = w1, Aw1 = w2 ⇒ w2 = A2w0, . . . , wn+1 = An+1w0.
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Consider

dT(wn, wn+1) = dT(Awn−1, Awn)

≤ β
R(wn−1, wn)S(wn−1, wn)

T(wn−1, wn)
dT(wn−1, wn)

...

≤ βn
n

∏
l=1

R(wl−1, wl)S(wl−1, wl)

T(wl−1, wl)
dT(w0, w1).

(8)

By using a similar method, we obtain

dT(wn, wn+2) ≤ βn
n

∏
l=1

R(wl−1, wl+1)S(wl−1, wl+1)

T(wl−1, wl+1)
dT(w0, w2). (9)

It is indeed significant to note that if we take the limit of each of the inequalities above
as n→ ∞, we obtain

lim
n→∞

dT(wn, wn+1) = lim
n→∞

dT(wn, wn+2) = 0. (10)

If wn = wm for some n 6= m, i.e., for m > n, we have Am−n(wn) = wn. Choose v = wn
and q = m− n, and then we obtain Aqv = v, i.e., v is a periodic point of A. Thus,

dT(v, Av) = dT(Aqv, Aq+1v) ≤ βq
q

∏
l=1

R(Al−1w, Alw)S(Al−1w, Alw)

T(Al−1w, Alw)
dT(w, Aw).

As β ∈ (0, 1), we obtain dT(v, Av) = 0. Hence, v is a fixed point of A.
Assume that wn 6= wm for some n 6= m. To verify that {wn} is a Cauchy sequence,

we need to show lim
n,m→∞

dT(wn, wm) = 0. Consider dT(wn, wm) with odd m; we obtain the

desired result by continuously applying the controlled rectangular inequality.

dT(wn, wm) ≤ R(wn, wn+1)dT(wn, wn+1) + S(wn+1, wn+2)dT(wn+1, wn+2)

+ T(wn+2, wm)dT(wn+2, wm)

...

≤ R(wn, wn+1)dT(wn, wn+1) + S(wn+1, wn+2)dT(wn+1, wn+2) +

m−1
2

∑
i= n

2 +1
R(w2i, w2i+1)dT(w2i, w2i+1)

i

∏
j= n

2 +1
T(w2j, wm) +

m−3
2

∑
i= n

2 +1
S(w2i+1, w2i+2)dT(w2i+1, w2i+2)

i

∏
j= n

2 +1
T(w2j, wm)

≤
m−1

2

∑
i= n

2

R(w2i, w2i+1)dT(w2i, w2i+1)
i

∏
j= n

2

T(w2j, wm) +

m−3
2

∑
i= n

2

S(w2i+1, w2i+2)dT(w2i+1, w2i+2)
i

∏
j= n

2

T(w2j, wm)

≤
m−1

2

∑
i= n

2

R(w2i, w2i+1)
i

∏
j= n

2

T(w2j, wm)β2i
2i

∏
l=1

R(wl−1, wl)S(wl−1, wl)

T(wl−1, wl)
dT(w0, w1) +

m−3
2

∑
i= n

2

S(w2i+1, w2i+2)
i

∏
j= n

2

T(w2j, wm)β2i+1
2i+1

∏
l=1

R(wl−1, wl)S(wl−1, wl)

T(wl−1, wl)
dT(w0, w1).

(11)
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Let

ai =
i

∏
j= n

2

T(w2j, wm)β2i
2i+1

∏
l=1

R(wl−1, wl)
2i

∏
l=1

S(wl−1, wl)

T(wl−1, wl)
dT(w0, w1)

and

bi =
i

∏
j= n

2

T(w2j, wm)β2i+1
2i+1

∏
l=1

R(wl−1, wl)

T(wl−1, wl)

2i+2

∏
l=1

S(wl−1, wl)dT(w0, w1).

Through using Equation (4) and Equation (5), we obtain

sup
m≥1

lim
i

ai+1

ai
= sup

m≥1
lim

i
β2T(w2i+2, wm)

R(w2i+2, w2i+3)S(w2i+1, w2i+2)

T(w2i+1, w2i+2)
< 1

and

sup
m≥1

lim
i

bi+1

bi
= sup

m≥1
lim

i
β2T(w2i+2, wm)

R(w2i+2, w2i+3)S(w2i+3, w2i+4)

T(w2i+2, w2i+3)
< 1.

Thereby, we infer

+∞

∑
i= n

2

β2i
i

∏
j= n

2

T(w2j, wm)
2i+1

∏
l=1

R(wl−1, wl)
2i

∏
l=1

S(wl−1, wl)

T(wl−1, wl)
dT(w0, w1) < +∞

and

+∞

∑
i= n

2

β2i+1
i

∏
j= n

2

T(w2j, wm)
2i+1

∏
l=1

R(wl−1, wl)

T(wl−1, wl)

2i+2

∏
l=1

S(wl−1, wl)dT(w0, w1) < +∞.

Consequently,(m−1
2

∑
i= n

2

β2i
i

∏
j= n

2

T(w2j, wm)
2i+1

∏
l=1

R(wl−1, wl)
2i

∏
l=1

S(wl−1, wl)

T(wl−1, wl)
dT(w0, w1)

)

and (m−3
2

∑
i= n

2

β2i+1
i

∏
j= n

2

T(w2j, wm)
2i+1

∏
l=1

R(wl−1, wl)

T(wl−1, wl)

2i+2

∏
l=1

S(wl−1, wl)dT(w0, w1)

)

are Cauchy sequences in R. Hence, lim
n,m→∞

dT(wn, wm) = 0, for odd m.

From the other end, if we consider dT(wn, wm) with even m, and applying controlled
rectangular inequality continuously, we obtain

dT(wn, wm) ≤
m−4

2

∑
i= n

2

[
R(w2i, w2i+1)dT(w2i, w2i+1) + S(w2i+1, w2i+2)dT(w2i+1, w2i+2)

]

×
i

∏
j= n

2

T(w2j, wm) +

m−2
2

∏
i= n

2 +1
R(w2i, wm)dT(wm−2, wm)

≤
m−4

2

∑
i= n

2

R(w2i, w2i+1)
i

∏
j= n

2

T(w2j, wm)β2i
2i

∏
l=1

R(wl−1, wl)S(wl−1, wl)

T(wl−1, wl)
dT(w0, w1)
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+

m−4
2

∑
i= n

2

S(w2i+1, w2i+2)
i

∏
j= n

2

T(w2j, wm)β2i+1
2i+1

∏
l=1

R(wl−1, wl)S(wl−1, wl)

T(wl−1, wl)
dT(w0, w1)

+

m−2
2

∏
i= n

2 +1
R(w2i, wm)βm−2

m−2

∏
l=1

R(wl−1, wl+1)S(wl−1, wl+1)

T(wl−1, wl+1)
dT(w0, w2).

By following the procedure above, we can deduce that(m−4
2

∑
i= n

2

β2i
i

∏
j= n

2

T(w2j, wm)
2i+1

∏
l=1

R(wl−1, wl)
2i

∏
l=1

S(wl−1, wl)

T(wl−1, wl)
dT(w0, w1)

)

and (m−4
2

∑
i= n

2

β2i+1
i

∏
j= n

2

T(w2j, wm)
2i+1

∏
l=1

R(wl−1, wl)

T(wl−1, wl)

2i+2

∏
l=1

S(wl−1, wl)dT(w0, w1)

)

are Cauchy sequences in R. Therefore, we conclude that lim
n,m→∞

dT(wn, wm) = 0, for even m.

Hence, in all the cases, we obtain

dT(wn, wm)→ 0 as n, m→ ∞ (12)

i.e., {wn} is a Cauchy sequence in X. Therefore, by the above equation, as well as the
completeness property of (X, dT), we obtain lim

n→+∞
wn = w for w ∈ X. We will now

illustrate that w is a fixed point of A. From inequalities (6) and (12), it is simple to prove

lim
n→+∞

dT(wn+2, w) = 0. (13)

Consider

dT(Aw, w) ≤ R(Aw, wn+1)dT(Aw, wn+1) + S(wn+1, wn+2)dT(wn+1, wn+2) + T(wn+2, w)dT(wn+2, w)

= R(Aw, Awn)dT(Aw, Awn) + S(wn+1, wn+2)dT(wn+1, wn+2) + T(wn+2, w)dT(wn+2, w)

≤ R(Aw, Awn)β
R(w, wn)S(w, wn)

T(w, wn)
dT(w, wn) + S(wn+1, wn+2)dT(wn+1, wn+2)

+ T(wn+2, w)dT(wn+2, w).

By Equation (13) and the assumption of the theorem, we obtain dT(Aw, w) ≤ 0 as n→
∞. Therefore, dT(Aw, w) = 0, i.e., Aw = w. Hence, w is a fixed point of A.

Finally, we show the uniqueness of the fixed point. Let w, v be two distinct fixed points
of A; then, Aw = w and Av = v. By employing the inequality (7), one can obtain

dT(w, v) = dT(Aw, Av) ≤ β
R(w, v)S(w, v)

T(w, v)
dT(w, v) < dT(w, v),

which is a contradiction. Thereby, w is a unique fixed point of A.

One of the most significant applications of our result is to prove the existence and
uniqueness of the Volterra–Fredholm integro-dynamic equation of the second kind, which
is defined below.

4. Volterra–Fredholm Integro-Dynamic Equation of Second Kind

Let T be a time scale with delta differential operator ∆ and forward jump operator σ,
respectively.

Definition 7. A Volterra–Fredholm integro-dynamic equation of the second kind is given as
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u∆n
(w) = h(w) +

∫ w

w0

C(s, w,σ(s),σ(w), u(s)) ∆s +
∫ v0

w0

D(s, w,σ(s),σ(w), u(s)) ∆s, w ∈ [w0, v0]T (14)

where h : [w0, v0]T → R and C, D : ([w0, v0]T)
4 × R → R are given functions, and u is the

unknown function.

In this work, we deal with the case where Equation (14) has a first-order ∆-derivative,
i.e., an equation of the type

u∆(w) = h(w) +
∫ w

w0

C(s, w,σ(s),σ(w), u(s)) ∆s +
∫ v0

w0

D(s, w,σ(s),σ(w), u(s)) ∆s, w ∈ [w0, v0]T. (15)

Existence and Uniqueness Theorem

In this segment, we focus on an initial value problem concerned with the nonlinear
Volterra–Fredholm integro-dynamic equations and examine whether its solution exists and
is unique in the TCMTS setting.

Let T be a time scale with delta differential operator ∆ and forward jump operator σ,
respectively. Consider the initial value problem

u∆(w) = h(w) +
∫ w

w0

K1(s, w,σ(s),σ(w))F(u(s)) ∆s

+
∫ v0

w0

K2(s, w,σ(s),σ(w))G(u(s)) ∆s, w ∈ [w0, v0]T

u(w0) = a,

(16)

where h : [w0, v0]T → R, K1, K2 : ([w0, v0]T)
4 → R, F, G : R → R are given functions.

Let C[w0, v0]T be the space of continuous functions on [w0, v0]T and dT : C[w0, v0]T ×
C[w0, v0]T → [0, ∞) be defined as

dT(w, v) = sup
t∈[w0,v0]T

|w(t)− v(t)|2. (17)

Consequently, (C[w0, v0]T, dT) is a complete triple controlled metric space with the
below given controlled functions:

R(w, v) =

66 + 23 sup
t∈[w0,v0]T

|w(t)− v(t)|2, if w(t) 6= v(t)

1, if w(t) = v(t)

S(w, v) =


sup

t∈[w0,v0]T

(
(1 + |w(t)|2)(1 + |v(t)|2)

)
, if w(t) 6= v(t)

1, if w(t) = v(t)

T(w, v) =

1 + sup
t∈[w0,v0]T

|w(t)− v(t)|2, if w(t) 6= v(t)

1, if w(t) = v(t)

Firstly, we reveal that the initial value problem specified in Equation (16) can be
rewritten as

u(t) = a +
∫ t

w0

h(w)∆w +
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))F(u(s)) ∆s∆w

+
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G(u(s)) ∆s∆w, t ∈ [w0, v0]T

(18)
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when both sides of [w0, t] have their delta integrals taken, where t ∈ [w0, v0]T. It is evident
that if the functions h, K1, K2, F and G are delta integrable, then the right-hand side of
Equation (18) is a continuous function on [w0, v0]T. Define the mapping A : C[w0, v0]T →
C[w0, v0]T as

Au(t) = a +
∫ t

w0

h(w)∆w +
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))F(u(s)) ∆s∆w

+
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G(u(s)) ∆s∆w, t ∈ [w0, v0]T.
(19)

A solution to the problem mentioned in Equation (16) (equivalently Equation (18))
is, evidently, a fixed point of A. The existence uniqueness theorem for the solution of
Equation (16) is presented in the following section.

Theorem 3. Let T be a time scale and [w0, v0]T be a finite interval for some w0, v0 ∈ T. Assume
that the following conditions are satisfied:
1. The functions h, K1 and K2 are delta integrable on [w0, v0]T.

2. The functions F and G are delta integrable on [w0, v0]T and satisfy

(i) |F(u(s))− F(z(s))| ≤
√

66β |u(s)− z(s)| |u(s)| |z(s)|√
1 + |u(s)− z(s)|2

,

(ii) |G(u(s))− G(z(s))| ≤
√

23β
|u(s)− z(s)| 52√

1 + |u(s)− z(s)|2

(20)

for some β ∈
[

0, 1

178
(

1+
[

a+sup
t
|h(t)|+sup

t,s
|K1(s,t,σ(s),σ(t))| |F(u(s))|+sup

t,s
|K2(s,t,σ(s),σ(t))| |G(u(s))|

]2
)6

)
.

3.

(i)
∫ t

w0

∫ w

w0

[
K1(s, w,σ(s),σ(w))

]2
∆s∆w ≤ F1,

(ii)
∫ t

w0

∫ v0

w0

[
K2(s, w,σ(s),σ(w))

]2
∆s∆w ≤ F2, w, t ∈ [w0, v0]T

(21)

for some F1 < 1
(t−w0)2 , F2 < 1

2(v0−w0)2 .

4.

(i) F

(
a +

∫ t

w0

h(w)∆w +
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))F(u(s)) ∆s∆w

+
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G(u(s)) ∆s∆w

)
< F(u(s)),

(ii) G

(
a +

∫ t

w0

h(w)∆w +
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))F(u(s)) ∆s∆w

+
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G(u(s)) ∆s∆w

)
< G(u(s)).

Hence, the map A specified in Equation (19) has a unique fixed point, implying that the
integral equation in Equation (18) has a unique solution in C[w0, v0]T.

Proof. According to the definition of the map A defined in Equation (19) and the Cauchy–
Schwarz inequality for integrals on time scales [2], we have
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∣∣Au(t)− Az(t)
∣∣2 =

(
Au(t)− Az(t)

)2

=

[ ∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))
[
F(u(s))− F(z(s))

]
∆s∆w

+
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))
[
G(u(s))− G(z(s))

]
∆s∆w

]2

≤ 2

[∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))
[
F(u(s))− F(z(s))

]
∆s∆w

]2

+ 2

[∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))
[
G(u(s))− G(z(s))

]
∆s∆w

]2

≤ 2

(∫ t

w0

∫ w

w0

[
K1(s, w,σ(s),σ(w))

]2
∆s∆w

)(∫ t

w0

∫ w

w0

∣∣F(u(s))− F(z(s))
∣∣2 ∆s∆w

)

+ 2

(∫ t

w0

∫ v0

w0

[
K2(s, w,σ(s),σ(w))

]2
∆s∆w

)(∫ t

w0

∫ v0

w0

∣∣G(u(s))− G(z(s))
∣∣2 ∆s∆w

)

≤ 2 F1

∫ t

w0

∫ w

w0

66β
|u(s)− z(s)|2 |u(s)|2 |z(s)|2

1 + |u(s)− z(s)|2 ∆s∆w

+ 2 F2

∫ t

w0

∫ v0

w0

23β
|u(s)− z(s)|5

1 + |u(s)− z(s)|2∆s∆w

≤ 2 F1

∫ t

w0

∫ w

w0

66β
|u(s)− z(s)|2 (1 + |u(s)|2) (1 + |z(s)|2)

1 + |u(s)− z(s)|2 ∆s∆w

+ 2 F2

∫ t

w0

∫ v0

w0

23β
|u(s)− z(s)|4(1 + |u(s)|2) (1 + |z(s)|2)

1 + |u(s)− z(s)|2 ∆s∆w.

Taking the supremum over [w0, v0]T and in accordance with the metric’s definition
given in Equation (17), we obtain

dT(Au, Az) ≤ βdT(u, z)
sup

t

{(
1 +

∣∣u(t)∣∣2) (1 +
∣∣z(t)∣∣2)}

1 + sup
t

∣∣u(t)− z(t)
∣∣2

[
132 F1

∫ t

w0

∫ w

w0

∆s∆w + 46F2 sup
t

∣∣u(t)− z(t)
∣∣2 ∫ t

w0

∫ v0

w0

∆s∆w

]
. (22)

Notice that

F1

∫ t

w0

∫ w

w0

∆s∆w = F1

∫ t

w0

(w− w0)∆w = F1

∫ t

w0

h1(w, w0)∆w = F1 h2(t, w0)

≤ F1
(t− w0)

2

2
<

1
2

and

F2

∫ t

w0

∫ v0

w0

∆s∆w = F2

∫ t

w0

(v0 − w0)∆w = F2(v0 − w0)(t− w0)

< F2(v0 − w0)
2 <

1
2

,
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at which h1 and h2 are the time scale monomials described in Equation (1). Hence,
Equation (22) can be modified as

dT(Au, Az) ≤ βdT(u, z)
sup

t

{(
1 +

∣∣u(t)∣∣2) (1 +
∣∣z(t)∣∣2)}

1 + sup
t

∣∣u(t)− z(t)
∣∣2 [

66 + 23 sup
t

∣∣u(t)− z(t)
∣∣2]

= β
R(u, z)S(u, z)

T(u, z)
dT(u, z),

where R(u, z) = 66 + 23 sup
t∈[w0,v0]T

|u(t)− z(t)|2, S(u, z) = sup
t∈[w0,v0]T

{(
1 + |u(t)|2

) (
1 + |z(t)|2

)}
and

T(u, z) = 1+ sup
t∈[w0,v0]T

|u(t)− z(t)|2, respectively. It is obvious that R(u, z)S(u, z) > T(u, z),

for all u, z ∈ C[w0, v0]T. Consider

(Anu)(t) = A(An−1u(t))

= a +
∫ t

w0

h(w)∆w +
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))F(An−1u(t)) ∆s∆ w

+
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G(An−1u(t)) ∆s∆w

= a +
∫ t

w0

h(w)∆w +
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))F(A(An−2u(t))) ∆s∆ w

+
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G(A(An−2u(t))) ∆s∆w

= a +
∫ t

w0

h(w)∆w

+
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))F

(
a +

∫ t

w0

h(w)∆w +
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))

F(An−2u(t)) ∆s∆w +
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G(An−2u(t)) ∆s∆w

)
∆s∆w

+
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G

(
a +

∫ t

w0

h(w)∆w +
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))

F(An−2u(t)) ∆s∆w +
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G(An−2u(t)) ∆s∆w

)
∆s∆w

< a +
∫ t

w0

h(w)∆w +
∫ t

w0

∫ w

w0

K1(s, w,σ(s),σ(w))F(An−2u(t)) ∆s∆ w

+
∫ t

w0

∫ v0

w0

K2(s, w,σ(s),σ(w))G(An−2u(t)) ∆s∆w

= An−1u(t).

As a result, we observe that (Anu(t))n is strictly decreasing for all t ∈ [w0, v0] and a
sequence bounded below; hence, it converges to some L. As (An)n is a monotone sequence,
it is known from Dini theorem that sup

t
|Anu(t)| converges to some L ≤ a + sup

t
|h(t)|+

sup
t,s
|K1(s, t,σ(s),σ(t))| |F(u(s))|+ sup

t,s
|K2(s, t,σ(s),σ(t))| |G(u(s))|. Observe that



Axioms 2022, 11, 19 12 of 17

T(un, um)
R(un, un+1)S(un−1, un)

T(un−1, un)
= T(Anu, Amu)

R(Anu, An+1u)S(An−1u, Anu)
T(An−1u, Anu)

=
(

1 + sup
t
|Anu(t)− Amu(t)|2

)
×

(
66 + 23 sup

t
|An−1u(t)− Anu(t)|2

)
sup

t

{(
1 + |Anu(t)|2

) (
1 + |An+1u(t)|2

)}
1 + sup

t
|An−1u(t)− Anu(t)|2

≤
(

1 + sup
t

{(
1 + |Anu(t)|2

) (
1 + |An+1u(t)|2

)})
×

(
66 + 23 sup

t

{(
1 + |Anu(t)|2

) (
1 + |An+1u(t)|2

)})
sup

t

{(
1 + |Anu(t)|2

) (
1 + |An+1u(t)|2

)}
1 + sup

t
|An−1u(t)− Anu(t)|2

≤ 178(1 + L2)6.

Therefore,

sup
m

lim
n

T(un, um)
R(un, un+1)S(un−1, un)

T(un−1, un)
≤ 178(1 + L2)6

≤ 178

(
1 +

[
a + sup

t
|h(t)|+ sup

t,s
|K1(s, t,σ(s),σ(t))| |F(u(s))|

+ sup
t,s
|K2(s, t,σ(s),σ(t))| |G(u(s))|

]2
)6

<
1
β2 .

In a similar manner, we can verify the inequalities (5), (6) and (7), respectively. Thereby,
A fulfils all the hypotheses of the Theorem 2, the map A described in Equation (19) has a
unique fixed point, and the integral Equation (16) has a unique solution in C[w0, v0]T.

5. Application

Theorem 3 is applied to an illustration of Volterra–Fredholm integro-dynamic equa-
tions of the second kind in this section.

Example 2. Let T = 3N0 . Take into consideration the following nonlinear Volterra–Fredholm
integro-dynamic equation:

u∆(t) = − 1
3t2 − t4

4000 −
5597

12000 +
t∫

1

(1+s3)
100

1
1+|u(s)|3 ∆s +

9∫
1

(2s2+1)
600

1
2+|u(s)|2 ∆s, t ∈ [1, 9]T, (23)

along with the initial condition u(1) = 3. Take note of the fact that

σ(t) = inf{s ∈ T = 3N0 : s > t} = inf{3t, 9t, . . .} = 3t, t ∈ T.

In actuality, u(t) = 1
t is an immediate solution to the specified nonlinear Volterra integro-

dynamic Equation (23). Indeed,

u∆(t) =
1

σ(t) −
1
t

σ(t)− t
=
−1

tσ(t)
=
−1
3t2 , t ∈ [1, 9]T.
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Let f (t) = t4

10 −
1

10 and g(t) = t3

5 + 1
5 , t ∈ [1, 9]T. The delta derivatives of f (t) and g(t)

can then be determined as follows:

f∆(t) =
1

10

[
[σ(t)]4 − t4

σ(t)− t

]
=

1
10

(σ(t) + t)
(
[σ(t)]2 + t2) = 4t3,

and

g∆(t) =
1
5

[
[σ(t)]3 − t3

σ(t)− t

]
=

1
5
(
σ(t))2 + tσ(t) + t2) = 13t2

5
, t ∈ [1, 9]T.

Henceforth, the right-hand side of the nonlinear Volterra–Fredholm integro-dynamic
Equation (23) is therefore

− 1
3t2 −

t4

4000
− 5597

12000
+

t∫
1

(1 + s3)

100
1

1 + |u(s)|3∆s +
9∫

1

(2s2 + 1)
600

1
2 + |u(s)|2∆ s

= − 1
3t2 −

t4

4000
− 5597

12000
+

t∫
1

(1 + s3)

100
s3

1 + s3∆s +
9∫

1

(2s2 + 1)
600

s2

2s2 + 1
∆ s

= − 1
3t2 −

t4

4000
− 5597

12000
+

1
400

t∫
1

4s3∆s +
1

1560

9∫
1

13s2

5
∆ s

= − 1
3t2 −

t4

4000
− 5597

12000
+

1
400

t∫
1

f∆(s)∆s +
1

1560

9∫
1

g∆(s)∆ s

= − 1
3t2 −

t4

4000
− 5597

12000
+

1
400

f (s)
∣∣∣t
s=1

+
1

1560
g(s)

∣∣∣9
s=1

= − 1
3t2 −

t4

4000
− 5597

12000
+

t4

4000
− 1

4000
+

91
195

= u∆(t), t ∈ [1, 9]T.

The map A given in Equation (19) is defined by

Au(t) = 3 +
t∫

1

(
− 1

3t2 −
t4

4000
− 5597

12000

)
∆w +

t∫
1

w∫
1

(1 + s3)

100
1

1 + |u(s)|3∆s∆w

+

t∫
1

9∫
1

(2s2 + 1)
600

1
2 + |u(s)|2∆s∆w t ∈ [1, 9]T,

(24)

so that K1(s, w,σ(s),σ(w)) = 1+s3

100 , K2(s, w,σ(s),σ(w)) = 2s2+1
600 , F(u(s)) = 1

1+|u(s)|3 and

G(u(s)) = 1
2+|u(s)|2 . The Cauchy–Schwarz inequality and the definition of the map A in

Equation (24) lead to the conclusion that

∣∣∣Au(t)− Az(t)
∣∣∣2 =

(
Au(t)− Az(t)

)2

=

[ t∫
1

w∫
1

(1 + s3)

100

[
1

1 + |u(s)|3 −
1

1 + |z(s)|3

]
∆s∆w +

t∫
1

9∫
1

(2s2 + 1)
600

[
1

2 + |u(s)|2 −
1

2 + |z(s)|2

]
∆s∆w

]2

≤ 2

( t∫
1

w∫
1

(1 + s3)2

(100)2 ∆s∆w

) ( t∫
1

w∫
1

∣∣∣∣∣ 1
1 + |u(s)|3 −

1
1 + |z(s)|3

∣∣∣∣∣
2

∆s∆w

)
+

2

( t∫
1

9∫
1

(2s2 + 1)2

(600)2 ∆s∆w

) ( t∫
1

9∫
1

∣∣∣∣∣ 1
2 + |u(s)|2 −

1
2 + |z(s)|2

∣∣∣∣∣
2

∆s∆w

)
.

(25)
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Observe that

∣∣∣∣∣ 1
1 + |u(s)|3 −

1
1 + |z(s)|3

∣∣∣∣∣
2

=

∣∣∣∣∣ |u(s)|3 − |z(s)|3(
1 + |u(s)|3

)(
1 + |z(s)|3

) ∣∣∣∣∣
2

≤
∣∣|u(s)| − |z(s)|∣∣2 [ |u(s)|2 + 2|u(s)||z(s)|+ |z(s)|2

1 + |u(s)|3 + |z(s)|3 + |u(s)|3|z(s)|3

]2

≤
∣∣|u(s)| − |z(s)|∣∣2 [

(
|u(s)|+ |z(s)|

)2

1 + |u(s)|3 + |z(s)|3

]2

=
∣∣|u(s)| − |z(s)|∣∣2 [4|u(s)||z(s)|+

(
|u(s)| − |z(s)|

)2

1 + |u(s)|3 + |z(s)|3

]2

=
∣∣|u(s)− z(s)|

∣∣2
[
16|u(s)|2|z(s)|2 +

∣∣|u(s)| − |z(s)|∣∣4 + 8
∣∣|u(s)| − |z(s)|∣∣2 |u(s)||z(s)|][

1 + |u(s)|3 + |z(s)|3
]2 ,

∣∣∣∣∣ 1
2 + |u(s)|2 −

1
2 + |z(s)|2

∣∣∣∣∣
2

=
∣∣ |u(s)| − |z(s)|∣∣2 [ |u(s)|+ |z(s)|(

2 + |u(s)|2
)(

2 + |z(s)|2
)]2

=
∣∣|u(s)| − |z(s)|∣∣2

[
4|u(s)||z(s)|+

(
|u(s)| − |z(s)|

)2]
[
4 + 2|u(s)|2 + 2|z(s)|2 + |u(s)|2|z(s)|2

]2

≤
∣∣|u(s)| − |z(s)|∣∣2

[
4|u(s)||z(s)|+

∣∣|u(s)| − |z(s)|∣∣2][
4 + 2|u(s)|2 + 2|z(s)|2

]2 .

Consequently, Equation (25) becomes

∣∣∣Au(t)− Az(t)
∣∣∣2 ≤ ( t∫

1

w∫
1

(1 + s3)2

5000
∆s∆w

) ( t∫
1

w∫
1

∣∣u(s)− z(s)
∣∣2

×

[
16|u(s)|2|z(s)|2 +

∣∣u(s)− z(s)
∣∣4 + 8

∣∣u(s)− z(s)
∣∣2 |u(s)||z(s)|][

1 + |u(s)|3 + |z(s)|3
]2 ∆s∆w

)

+

( t∫
1

9∫
1

(2s2 + 1)2

180000
∆s∆w

) ( t∫
1

9∫
1

∣∣u(s)− z(s)
∣∣2
[
4|u(s)||z(s)|+

∣∣u(s)− z(s)
∣∣2][

4 + 2|u(s)|2 + 2|z(s)|2
]2 ∆s∆w

)
.

Thereafter, by evaluating the delta integral and utilizing the fact that |t| ≤ 9, we acquire
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∣∣∣Au(t)− Az(t)
∣∣∣2 ≤ 1

5000

(
t8

3585040
+

t5

2420
+

t2

4
− 22973t

21860
− 108606989

433789840

) ( t∫
1

w∫
1

∣∣u(s)− z(s)
∣∣2

×
[

16|u(s)|2|z(s)|2 +
∣∣u(s)− z(s)

∣∣4 + 8
∣∣u(s)− z(s)

∣∣2 |u(s)||z(s)|[
1 + |u(s)|3 + |z(s)|3

]2

]
∆s∆w

)

+
17472

180000

( t∫
1

9∫
1

∣∣u(s)− z(s)
∣∣2 [4|u(s)||z(s)|+

∣∣u(s)− z(s)
∣∣2[

4 + 2|u(s)|2 + 2|z(s)|2
]2

]
∆s∆w

)

≤ 46.949
5000

t∫
1

w∫
1

∣∣u(s)− z(s)
∣∣2 [16|u(s)|2|z(s)|2 +

∣∣u(s)− z(s)
∣∣4 + 8

∣∣u(s)− z(s)
∣∣2 |u(s)||z(s)|[

1 + |u(s)|3 + |z(s)|3
]2

]
∆s∆w

+
17472

180000

( t∫
1

9∫
1

∣∣u(s)− z(s)
∣∣2 [4|u(s)||z(s)|+

∣∣u(s)− z(s)
∣∣2[

4 + 2|u(s)|2 + 2|z(s)|2
]2

]
∆s∆w

≤ F1

t∫
1

w∫
1

∣∣u(s)− z(s)
∣∣2

[
16 (1 + |u(s)|2)(1 + |z(s)|2) + |u(s)− z(s)|2(1 + |u(s)|2) (1 + |z(s)|2) + 8|u(s)− z(s)|2 (1 + |u(s)|2)(1 + |z(s)|2)

1 + |u(s)− z(s)|2

]
∆s∆w

+ 2F2

( t∫
1

9∫
1

∣∣u(s)− z(s)
∣∣2 [4(1 + |u(s)|2)(1 + |z(s)|2) + |u(s)− z(s)|2

1 + |u(s)− z(s)|2

]
∆s∆w

where F1 = 46.949
5000 and F2 = 8736

180000 . When the supremum over t ∈ [1, 9]T is combined with the
metric’s definition given in Equation (17), one obtains

dT(Au, Az) ≤
sup

t∈[1,9]T

{
(1 + |u(t)|2)(1 + |z(t)|2)

}
1 + sup

t∈[1,9]T

|u(t)− z(t)|2

[
F1

(
16 + 9 sup

t∈[1,9]T

|u(t)− z(t)|2
) t∫

1

w∫
1

∆s∆w

+ 2F2

(
4 + sup

t∈[1,9]T

|u(t)− z(t)|2
) t∫

1

9∫
1

∆s∆w

]
dT(u, z).

By Theorem 3, we have

dT(Au, Az) ≤
sup

t∈[1,9]T

(
(1 + |u(t)|2)(1 + |z(t)|2)

)
1 + sup

t∈[1,9]T

|u(t)− z(t)|2

[
F1

(
16 + 9 sup

t∈[1,9]T

|u(t)− z(t)|2
) (t− 1)2

2

+ 128F2

(
4 + sup

t∈[1,9]T

|u(t)− z(t)|2
)]

dT(u, z),
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where F1 = 46.949
5000 and t, w ∈ [1, 9]T, i.e., |t| ≤ 9 and |w| ≤ 9, then F1

(t−1)2

2 ≤ 46.949
5000 . 64

2 < 1
2 and

128F2 = 128. 8736
180000 = 6.21. Hence, the equation is further transformed into

dT(Au, Az) ≤ 1
2

(
66 + 23 sup

t∈[1,9]T

|u(t)− z(t)|2
)

sup
t∈[1,9]T

(
(1 + |u(t)|2)(1 + |z(t)|2)

)
1 + sup

t∈[1,9]T

|u(t)− z(t)|2 dT(u, z)

= β
R(u, z)S(u, z)

T(u, z)
dT(u, z)

where β = 1
2 , R(u, z) = 66 + 23 sup

t∈[1,9]T

|u(t) − z(t)|2, S(u, z) = sup
t∈[1,9]T

(
(1 + |u(t)|2)(1 +

|z(t)|2)
)

and T(u, z) = 1 + sup
t∈[1,9]T

|u(t)− z(t)|2. Thereby, the map A specified in Equation (24)

has a unique fixed point by Theorem 3, i.e., the integral equation stated in Equation (23) has a
unique solution in C[1, 9]T.

6. Conclusions

This article explores the existence and uniqueness of solutions for a class of nonlinear
Volterra–Fredholm integro-dynamic equations of the second kind on time scales. We
approach the problem in the context of triple controlled metric type spaces, which adopts
a different perspective on its solution. Eventually, we demonstrate an example to ensure
the existence of a unique solution to an integro-dynamic problem. In future studies, we
can extend this technique to higher-order delta derivatives with fixed point theorems of
different types to acquire further general conditions for the existence and uniqueness of
IVPs correlated with Volterra–Fredholm integro-dynamic equations on time scales.
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