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Abstract: In this paper, we develop some Hermite-Hadamard-Fejér type inequalities for n-times
differentiable functions whose absolute values of n-th derivatives are (a, m)-convex function. The
results obtained in this paper are extensions and generalizations of the existing ones. As a special
case, the generalization of the remainder term of the midpoint and trapezoidal quadrature formulas
are obtained.
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1. Introduction

The main objects of our interest are integral inequalities involving weight functions of
ﬁ:e‘fgtfgsr Hermite-Hadamard-Fejér type for various classes of convex functions.

Citation: Kovat, S. A Note on Let us start by bringing out the well-known definition of convex functions:

Hermite-Hadamard-Fejer Type o . . . .
Inequalities for Functions Whose r-th Definition 1. A function f : [0,b] — R is said to be convex on [0, b] if

Derivatives Are m-Convex or

(&, m)-Convex Functions. Axioms f(tx + (1 - t)x) < tf(x) + (1 - t)f(y) (1)
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Definition 2. A function f : [0, b] — R is said to be an m-convex function (for m € (0,1]) if
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Fejér [4] has obtained the weighted version of famous Hermite-Hadamard inequality:

Theorem 1. If f : [a,b] — Ris convex, and w : [a,b] — [0, +o0) integrable and symmetric about
atb
then
2

f(a+b)/ dx</ Flx dx<w/:w(x)dx. 4)

Many researchers have been interested in improving and refining Hermite-Hadamard
inequalities for various types of convex functions (see for instance [5-9]). In [10], authors
established a new integral inequalitites of Hermite-Hadamard type for («, m)-function.

Theorem 2. Let f : [0,00) — R be an n-time differentiable function for n € N and let 0 <

a<b<ocoandame (0,1. If f e L{a,%} and ‘f(”) qforq < 1is (a,m)-convex on

{Q%},then
1 b 1 n=l (b—t)k+l+(—l)k(t_a)k+l
|ba/£lf(x>dx_bakgo (k+1)| f()(t)
= m{(t—a)”“[as(n+z,a)‘f<n>(a)‘q

q]l/q

(e 0]+ am| )

+ m(1—aB(n +2""))‘f(n) <Til>

_p\nH1f -
+ - {n—kzx—i—l

")

where t € [a,b] and B(w, B) is the Beta function

B(a, B) = /t"‘1 Hf-lat, «,p>0.

Let us recall the weighted one-point integral formula of Mati¢, Pecari¢ and Ujevi¢ [11]
which is introduced from the general m-point integral identity in [12] and states:

b n
[ o = Y A / Ww(t, ) fO (D, )

j=1

where f : [a,b] — Ris such that f("~1) is absolutely continuous function, w : [a, b] — [0, o)
is weight function, x € [a, b]

Ay j(x) = ((]_1)]1)‘1 /ab(x — sV Yw(s)ds, forj=1,...,n (6)
and
o) = Gy fy (= )" Mw(s)ds  fort € [a,x],
W) = { W2 (1) = Gy Jy (= 8)"Mw(s)ds  fort € (x,b]. 7

In [12] is also given the following L,-inequality:
If f(”) € Ly for some 1 < p < oo, then we have

b n .
[ w5 ®dt = Y A @) < Calon ) 1
]:
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1,1 _
for P + p 1, where

Ci(n,p,x,w) = (n—ll)' [/ﬂx /ﬂt(t — )" Lw(s)ds ! bt(t — )" Lw(s)ds th] E, 8)

for1 < p < o0, and

Ci(n,1,x,w) = /t(t — )" Lep(s)ds /t(t — )" Lep(s)ds

}- ©)

1 max{ sup
(n—1)! te(ax]
The inequality is the best possible for p = 1 and sharp for 1 < p < co.
In this paper we establish weighted version of Theorem 2, i.e., Hermite-Hadamard-
Fejér type inequalities for n-times differentiable functions which are m-convex and (&, m)-
convex. In addition, some special cases for different choices of weight functions are given.

, sup
telx,b]

2. Main Results

We shall start by technical lemma which will be useful in proving the main theorems.

Lemmal. For0 <a < x <b < +ooand a,m € (0,1] we have

(a)
/ux win(t) - (x — t>adt _ Bla+1,n) [7(x —s)" w(s)ds

x—a (n—1)!(x—a)

(b)

b t—x\* (=1)"B(a+1,7n) [, (s — x)"w(s)ds
/xwzn(t).<b_x> it — Tl s .

Proof. (a) Apply the definition of the function wy, to obtain

/ﬂx w1 () (i:;)adt = (71—11)' : /ax </ﬂt(t — s)n_lw(s)ds> (z:;)adt

t—s dt
= substitution: u = du = }

7
X —S5 X—S

— m /ax (1/(;1(1 - u)“u”_ldu> (x —s)*™Mw(s)ds

B(a+1,n) [ (x —s)" w(s)ds
(n—1!(x—a)“ ’

(b) Apply the definition of the function w», to obtain

= S (I (=

= o _(xa(zn_ 0 /xb (/Xs(t —x)%(s — t)”%lt)w(s)ds =

—t —dt
= substitution: u = du = }

7
s—X s§—X

- (b—a(c)“l(L—l) /xb (/01(1 - u)"‘u”_ldu> (s — x)*w(s)ds

(=1)"B(a+1,1) [2(s — x)"*w(s)ds
(n—1)1(b—x)~
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which finishes the proof.
O

Now, we can introduce and prove the following new Hermite-Hadamard-Fejér type
inequality for the class of (a, m)-convex functions.

Theorem 3. Let f : [0,00) — R be an n-times differentiable function forn € Nand 0 < a < x <
b< 4oo,a,me (0,1 If f) € L, [a, %} and ‘f(”) qforq > 1is (a, m)-convex on [O, %}, then

S w(E) f(O)dt = Ty Ao () £ ()|

1/
< wy g (x)VT {Kw(x,a,a,n) . ’f(”)(a)‘q +m-(1—Ky(x,a,amn))- ‘f(”)(%) q} ! (10)
1/q

T+ w1V (Mo, a,m) - [f0 )| 4 (1= M (o, m) - [FO ()]

where

B(a+1,n) [ (x—s)" w(s)ds
Ky(a,x,a,n) := e 1)!(xﬂ_ AT x>a, Ky(aauan):=0
and
—1)"B 1, X(o _ y\n+u d
My (b, x,a,n) := (Z1)"Bla + n)fb (s — x)"*w(s) S, x<b, My(bban):=0.

(n = 1H(b = x)%ws 11 (%)
Proof. For a < x < b we apply triangle inequality and Holder’s inequality to identity

[ 0Ot~ 3 A (V) = (1" [ Wt 2) 0 ().

j=1

Therefore, for p > 1 such that % + % = 1 we obtain

~ 20" [ Watt )7 10

IO WIS
L

< [T [fO0]ar+ [ ) [f00)a

(/ﬂxwm(t)dt)l/ﬂ Uax ). ’f(n)(t)‘th]l/q
+ (/xb w:Zn(t)dt)l/p' {/xb Won (t) - ’f(n)(t)‘th]l/q

IN

x x—t x—t\ x |7, 1Y
= w1 @7 | [0 [ e (1 220) 2

b t—x t—x\ b |7 1"
+ wz,n+1(x)1/p’[/x wzn(t)"f(n)(b—x'Xij'(lb—x>'m) dt]

Then, by using (&, m)—convexity and Lemma 1 we have
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IN

wl’n+1(x)l/p|:/IZX(ZU1,1(1')(;:Z)lx‘f(n)(a)’q+m<1 _ (;C:;)“> £ x)“?)dt}

G
+ w0 [ (w0 (522) @[+ (1= (22) ) (2) qu
= Wy (0)VP- [Kw(x,a,tx,n) : 'f(”)(a)‘q +m-(1—Ky(x,a,an))- ‘f(”)(% ml/q
b (0 (Mol |00 (0 MGy - [0 2]

For x = a, we have by definition w; ,4+1(a) = 0 and Ky(a,a,a,n) = 0, so the in-
equality follows easily. Similarly, for x = b, we have by definition w;,11(b) = 0 and
My (b,b,a,n) = 0, so the inequality also follows easily. [I

In the following corollary, we include the endpoints of the interval [a, b] to the inequal-
ity (10) in order to get the related inequality for weight trapezoidal quadrature formula.

Corollary 1. Under the conditions of Theorem 3
(i) for x = a we have

/ "B f(t)dr —:21 Apula)f 90| .
<m0 Pt o 0w [
(ii) for x = b we have
/ubw(t)f(t)dt —Ji A]T‘Zlf(ffl)(b)‘ )
< a0 Kol m) [0 (1 Kalbaa,m)- ’ fod) q] v

Remark 2. If we combine inequalities (11) and (12), then we get the weight generalization of the
trapezoid formula

/ab w(t)f(t)dt — % (i A]‘/w(a)f(ffl) (a) + i;Aj,w(b)f(jl) (b)) ‘
j= =

= %wl,n+1(b>1-1/q : [Kwaa, aa,m)- [FO@][ - (1= Ko(b,a,0n)) - ‘ f<n>(%) "} e
+ g0 (@) [Mw(b,a,tx,n) @] e (1 Mao(ba,0m)) ‘f(m(i) q]w.

Specially, for w(t) = blfa and « = m = n = 1 we get the result obtained in [13].

The following special case is a generalization of the weight midpoint formula.

Corollary 2. Under the conditions of the Theorem 3 and for x = # we have

b 1 a ; a
[ st = 3 Al erb)fofl)(%b) 13)

oddj=1
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< wyup ()Y [Kw(%, a,a,1) f<n>(,1)‘
+ (1 — Ko(%$, 0,0, n))
+ w2,n+1(#)1 V. [Mw(b, b a,n .‘f(n)(%b)
+ )

‘q (14)
m- (1 — My (b, ’lzib,oc,n

Remark 3. Specially, for uniform weight function w(t) = b—lu we get the result obtained in [14],
while for m = n = a = 1 and uniform weight we get result from [15].

Now, we shall give special inequalities of the weighted type for g = 1, « = 1 (m-convex
functions), m = 1 and finally g =« = m = 1.

Corollary 3. Under the conditions of Theorem 3
(i)  forq =1 we have

S wOf ()t = Ey Ay (x) 0 ()|

< wypg1(x) - |Ko(x,a,a,n)- ‘f a)‘—f—m (1—Ky(x,a,a,n)) ‘f %)] (15)
 wai (%) | M (b, x,,1) - ‘f" (x) ’—l—m (1 — Mu(b, x, 0, 1)) ‘f (2],
(i) for o =1, we have
S () F (Dt = Ty Aj () fU0 ()
1/
< Wi (0) [Ku,(x,a, L) [ @[ e (= Koo, 1,m) - [0 (3] (16)
1/
g ()1 Ml 1) [ ) (1= Ml 1,m) - [f0 )]
(iii) form =1,ie., |f" " is a-convex on [0, b], we have
S w(®) f (Ot = Ty A (2) £ ()|
1/
< Wi (@)Y [Ka(xa,am) - ’f(”)(a)‘q + (1= Ky(x,a,a,n)) - ’f(”)(x)‘q} ' (17)
1/q
+ w1 (1) My (b3 am) - | f<">(x)"7 + (1= My (b, x,0,m)) - | f(”)(b)m ,
(iv) form=wa=qg=1,ie., f(”> is convex on [0, b], we have
S WO f (8t — Ty Aj(x) 0 ()|
< wypp(x) - K(xaln ‘f a)’+ (1—Kyp(x,a,1,n)) ‘f x)H (18)
+ wypt1(x) - | Mw(b,x,1,n) - ‘f"(x‘—i—(l—Mw(bxln ‘f H
The following special case of Theorem 3 is the result obtained in [10].
Corollary 4. Under the conditions of Theorem 3 for w(t) = blTa we have
7 Jy £ (0t = g rpy S el 0 )|
x—a)" 91/q
< WM-[&-BW—%ZD{ -‘f(")(a’ +m-(1—a-B(n+2,a)) ‘f (19)

(xfb n+1

L
m
+ Wm.[a-B(n—FZ,D{)-‘f(n)(x’ +m-(1—a- Bn+2a) ‘f %‘
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Proof. We apply Theorem 2 with w(t) = ﬁ It is easy to compute that

(t—a) (t—b)"
win(t) = (b —a)n! (b —a)n!”

N

and wy, (t) =

[
~—

After some computation we have
Ky(a,x,a,n) = My(b,x,a,n) = a- B(n+2,x)

fora < x < band
Kw(a,b,a,n) = My(b,b,a,n) = 0.

O

3. Applications to Special Means
Let us consider the means for arbitrary real numbers:

(i) A(ab) =42, a,b € R arithmetic mean
(i) L(ab) = m, a #b,a,b > 0logarithmic mean

(iti) Ln(a,b) = %{’Hl) neZ\{-1,0},a,beR,a# Db generalized logarithmic men
(iv) H(a,b) = 112_%, a,b > 0 harmonic mean
a ifa="0

a,b > 0identric mean

at

(V) I(ﬂ,b): %(bb)ﬁ 1ft€a7é b ’

(vi) G(a,b)+ Vab,a,b >0 geometric mean

Now, using the results of Section 2, we give some applications to uniform weight

function w(t) = ;1

Proposition 1. Let 0 < a < b < oo, o,m € (0,1] and n € Z\ {—1,0}. Then forall g > 1
we have:

‘Lg(a, b) — A(dt, bk)) (20)

b—al_%
JEOR

If we choose & = 1, we obtain

1
b—a\'"7 (k=1)g 2. ptk=1q 71
‘L’,;(a,b)—A(ak,bk)‘g( 2”) "k [“ e T ] (22)

2. a(kil)q o - ([x + 3) . b(kil)q %

ESNCE A TS e

(21)

Proof. The assertion follows from Theorem 3 and Remark 2 applied to the («, m)-convex
mapping f(x) = x5,k € Z\ {-1,0}andn =1. O

Proposition 2. If0 <a < b < oo, then for all g > 1 we have:

b—a l_% a2 2.p2q %
‘L‘l(a,b)—H_l(a,b)‘<( > > -{3+ 3 } (23)

Proof. The assertion follows from Theorem 3 and Remark 2 applied to the mapping
fx)=tandm=a=n=1 0O
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Proposition 3. If0 < a < b < oo, then for all g > 1 we have:

b—a\"7 [1 271
|lnI(a,b)—lnG(a,b)|§< 5 > .{W—i_%‘?] . (24)

Proof. The assertion follows from Theorem 3 and Remark 2 applied to the mapping
f(x)=—Inxandm=a=n=1. 0O

4. Conclusions

In this work, we establish a generalization of the Hermite-Hadamard-Fejér type
inequalities for different classes of convex functions. As a special case, the famous midpoint
and trapezoidal error bounds were derived.
Funding: This research received no external funding.
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