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Abstract: Let A, X,Y be Banach spaces and A x X — Y, (a,x) — ax be a continuous bilinear
function, called a Banach action. We say that this action preserves unconditional convergence if for
every bounded sequence (4,)new in A and unconditionally convergent series Y ¢, X, in X, the
series )¢, AnXy is unconditionally convergent in Y. We prove that a Banach action A x X — Y
preserves unconditional convergence if and only if for any linear functional y* € Y* the operator
Dy : X = A*, Dy-(x)(a) = y*(ax) is absolutely summing. Combining this characterization with the
famous Grothendieck theorem on the absolute summability of operators from ¢; to ¢, we prove that
a Banach action A x X — Y preserves unconditional convergence if A is a Hilbert space possessing
an orthonormal basis (e, )new such that for every x € X, the series ¥, <., enx is weakly absolutely
convergent. Applying known results of Garling on the absolute summability of diagonal operators
between sequence spaces, we prove that for (finite or infinite) numbers p, g, € [1, 00| with % < % + %,
the coordinatewise multiplication £, x £; — £, preserves unconditional convergence if and only if
one of the following conditions holds: (i) p <2and g <r, ()2 <p<qg <7, (i) 2<p=g <7, ({iv)
r:oo,(v)2§q<pgr,(vi)q<2<pand%+% 2%—#%.

Keywords: Banach action; unconditional convergence; absolutely summing operator

MSC: 46B15; 46B45

1. Introduction

By a Banach action, we understand any continuous bilinear function A x X — Y,
(a,x) — ax, defined on the product A x X of Banach spaces A, X with values in a Banach
space Y. The Banach space A is called the acting space of the action A x X — Y.

We say that a Banach action A x X — Y preserves unconditional convergence if for any
unconditionally convergent series ), c., X, in X and any bounded sequence (4, )ncq in
A, the series ), ¢, an Xy converges unconditionally in the Banach space Y. Let us recall
([1], 1.c.1) that a series }_,c., X» in a Banach space X converges unconditionally if for any
permutation ¢ of w = {0,1,2,... }, the series }_,c, X,(,) converges in X.

Observe that the operation of multiplication X x X — X, (x,y) — xy in a Banach
algebra X is a Banach action. The problem of recognition of Banach algebras whose
multiplication preserves unconditional convergence has been considered in the paper [2],
which motivated us to explore the following general question.

Problem 1. Given a Banach action, recognize whether it preserves unconditional convergence.

This problem is not trivial even for the Banach action ¢, x ¢; — /, assigning to every
pair (x,y) € £, x 4 their coordinatewise product xy € /. The classical Holder inequality
implies that the coordinatewise multiplication £, x £; — ¢, is well-defined and continuous
for any (finite or infinite) numbers p, g, € [1, co] satisfying the inequality % < % + %.
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Let us recall that £, is the Banach space of all sequences x : w — IF with values in the
field F of real or complex numbers such that [|x[|;, < co where

1
IMM={Q%N“@””<wiw6uwy

Sup, e,y [X(n)| if p = oo,

One of the main results of this paper is the following theorem answering Problem 1
for the Banach actions £, x {43 — /;.
Theorem 1. For numbers p,q,r € [1,00] with 1 < % + %, the coordinatewise multiplication
Ly x Ly — L, preserves unconditional convergence if and only if one of the following conditions is
satisfied:
(i) p<L2andq<r;
(i) 2<p<q<r;
(i) 2<p=gq<r;
(iv) p=gq=r=c0;
(v) 2=q<p=r
(VD) g<2<pand+;>;+3

Theorem 1 implies the following characterization whose “only if” part is due to Daniel
Pellegrino (private communication), who proved it using the results of Bennett [3].

Corollary 1. For a number p € [1, 0], the coordinatewise multiplication £, x £, — £, preserves
unconditional convergence if and only if p € [1,2] U {oo}.

The other principal result of the paper is the following partial answer to Problem 1.

Theorem 2. A Banach action A x X — Y preserves unconditional convergence if A is a Hilbert
space possessing an orthonormal basis (e,)neqw such that for every x € X the series Y ¢, enX is
unconditionally convergent in'Y.

Theorems 1 and 2 will be proved in Sections 4 and 5, respectively. In Section 3, we shall
prove two characterizations of Banach actions that preserve unconditional convergence.
One of these characterizations (Theorem 5) reduces the problem of recognizing Banach
actions preserving unconditional convergence to the problem of recognizing absolutely
summing operators, which is well-studied in Functional Analysis, see [4,5].

Remark 1. It should be mentioned that problems similar to Problem 1 have been considered in the
mathematical literature. In particular, Boyko [6] considered a problem of recognizing subsets G of
the Banach space L(X,Y') of continuous linear operators from a Banach space X to a Banach space
Y such that for any unconditionally convergent series Y ;c, x; in X and any sequence of operators
{Tu}new C G, the series Y., Tn(x) converges (unconditionally or absolutely) in Y.

2. Preliminaries

Banach spaces considered in this paper are over the field F of real or complex numbers.
For a Banach space X, its norm is denoted by || - ||x or || - || (if X is clear from the context).
The dual Banach space to a Banach space X is denoted by X*.

By w, we denote the set of all non-negative integer numbers. Each number n € w is
identified with the set {0,...,n — 1} of smaller numbers. Let N = w \ {0} be the set of
positive integer numbers. For a set A, let [A]<% denote the family of all finite subsets of A.

We start with two known elementary lemmas, giving their proofs just for the reader’s
convenience.
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Lemma 1. For any finite sequence of real numbers (xy) e, we have

|| < 2max X!
= B

Proof. Let F = {k€n:x; >0}and F- = {k € n: x; < 0}. Then

Yo bl =1 1wl +| L x| <2max| )z
=" ken

ken keFy keF-

O

Lemma 2. For any finite sequence of complex numbers (zy e, we have

|zx] < 4max Zk|.
= e

Proof. For a complex number z, let %(z) and (z) be its real and complex parts, respec-
tively. Applying Lemma 1, we conclude that

Y 1zl < Y (IR +[S(z)) = 3 Rzl + ) 1Sz <

ken ken ken ken
2max | kEZF%(zkH +2max| keZF%(zkH =

Zr}nga;(m(k;zkﬂ —1—21%13(‘%(1(;2;()] < 41}155]10;2@.

O

Remark 2. It is clear that the constant 2 in Lemma 1 is the best possible. On the other hand, the
constant 4 in Lemma 2 can be improved to the constant 7t, which is the best possible according to [7].

The following inequality between £, and £; norms is well-known and follows from
the Holder inequality.

Lemma 3. Forany 1 < p < g < oo and any sequence (zy) ey, of complex numbers we have
1 1 1 1
(L ll)" < (T lalr)” <o (X Jl7) "
ken ken ken

By Proposition 1.c.1 in [1], a series } ¢, Xk in a Banach space X converges uncondi-
tionally to an element x € X if and only if for any £ > 0 there exists a finite set F C w such
that Hx — Y keE ka < ¢ for any finite set E C w containing F. By Proposition 1.c.1 [1], a
series ) rc., Xk in a Banach space X converges unconditionally to some element of X if and
only if it is unconditionally Cauchy in the sense that for every & > 0 there exists a finite set
F C w such that supp(,, p<w | Tk x| <&

By the Bounded Multiplier Test ([4], 1.6), a series ) xc., Xk in a Banach space X con-
verges unconditionally if and only if for every bounded sequence of scalars (,)nc the
series ) ;" | tyx, converges in X. This characterization suggests the possibility of replacing
scalars t, by Banach action multipliers, which is the subject of our paper.

A series ) ¢, X; in a Banach space X is called weakly absolutely convergent if for every
linear continuous functional x* on X we have Y, ., |x*(x,)| < oo. It is easy to see that each
unconditionally convergent series in a Banach space is weakly absolutely convergent. By
Bessaga—Pelczriski Theorem ([8], 6.4.3), the converse is true if and only if the Banach space
X contains no subspaces isomorphic to cg.
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For a Banach space X, let £[X] be the Banach space of all functions x : w — X such
that the series ), ¢, x(1) is unconditionally Cauchy. The space X[X] is endowed with
the norm

Ixll = sup || 3 x(m)]l-
Felw]<w neF

The space X[X] is called the Banach space of unconditionally convergent series in the
Banach space X.

More information on unconditional convergence in Banach spaces can be found in the
monographs [1,4,5,8,9].

Lemma 4. Let X,Y be Banach spaces and (T, )new be a sequence of bounded operators from X to
Y such that for every x € X the series Y., Tn(x) converges unconditionally in Y. Then there
exists a real constant C such that

sup || Y. Tu(x)| < Clx|.

Felw]<¥ neF
Proof. The sequence (T} ) e determines a linear operator T : X — X[Y] whose graph

ﬂ {(x,y) € XxZ[Y] : y(n) = Tu(x)}

new

is closed in the Banach space X x L[Y]. By the Closed Graph Theorem, the operator T is
bounded and hence

sup || Y Tu(x)|| = [IT(0)llzpyy < NI - [1x])-

Felw|<¥ neF
O

We shall often use the following Closed Graph Theorem for multilinear operators
proved by Fernandez in [10].

Theorem 3. A multilinear operator T : X1 X - -+ X X, — Y between Banach spaces is continuous
if and only if it has closed graph if and only if it has bounded norm

ITI = sup{ITCxr, - xn) | s max |l o flxn [} < 13

3. Characterizing Banach Actions That Preserve Unconditional Convergence

In this section, we present two characterizations of Banach actions that preserve
unconditional convergence.

Definition 1. A Banach action A x X — Y is called unconditional if there exists a positive real
number C such that for every n € N and sequences {ay e, C A and {xy}ren C X we have

| E aexly < Comaxtisls - ax) T xl

Theorem 4. A Banach action A x X — Y preserves unconditional convergence if and only if it is
unconditional.

Proof. To prove the “if” part, assume that the action A x X — Y is unconditional and hence
satisfies Definition 1 for some constant C. To prove that the action preserves unconditional
convergence, fix any unconditionally convergent series ), <., X, in X, a bounded sequence
(an)newin Aand e > 0. Leta = sup,,., [|an||a < oo. By the unconditional convergence of
the series ), <., Xn, there exists a finite set F C w such that
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S
su X < =
Ee[w\I;]<WHn;E ollx C(1+a)

Then, for any finite set E C w \ F we have

&
I HEZEWnHY < C-max a4 - max | n&XnHX <Coegra <°

which means that the series ), ., 44X is unconditionally Cauchy and hence uncondition-
ally convergent in the Banach space Y.

To prove the “only if” part, assume that a Banach multiplication A X X — Y preserves
unconditional convergence. Let £[X] and X[Y] be the Banach spaces of unconditionally
convergent series in the Banach spaces X and Y, respectively. Let £ [A] be the Banach space
of all bounded functions a : w — A endowed with the norm |[[al|; ] = sup,,c,, [la(n)| -
For every a € (w[A] and x € X[X], consider the function ax : w — Y assigning to
each n € w the element a(n)x(n) € Y, which is the image of the pair (a(n), x(n)) under
the Banach action A x X — Y. Since the action A x X — Y preserves unconditional
convergence, the function ax belongs to the Banach space X[Y] of all unconditionally
convergent series on Y. Therefore, the Banach action

T:lo[A]l x Z(X) = Z[Y], T:(a,x)+— ax,
is well-defined. This action has closed graph

(N {((a,x),y) € (ea[A] x Z[X]) x Z[Y] : y(n) = a(n)x(n)}

new

and hence is continuous, by Theorem 3.

Now take any n € w and sequences (ay )k, € A" and (xg)ke,, € X". Consider the
function a : w — A defined by a(k) = a; for k € nand a(k) = 0 for k € w \ n. Moreover,
let x : w — X be the function such that x(k) = x4 for k € nand x(k) = 0 fork € w \ n.
Since a € l«[A] and x € L[X], we have

erznakkay < llaxflzpy < ITI - llallegpay - Ixllzgx) = ITI - max [lag] ’?S;‘erszk’ X

which means that the Banach action A x X — Y is unconditional. [

An essential ingredient of the proof of Theorems 1 and 2 is the following character-
ization of unconditional Banach actions in terms of absolutely summing operators. An
operator T : X — Y between Banach spaces X, Y is absolutely summing if for every uncon-
ditionally convergent series ), ., X» in X the series }_,c, T(x,) is absolutely convergent,
ie, Y cwl|T(xn)|| < co. For more information on absolutely summing operators, see ([4,5],
Section IILF).

Let A, X, Y be Banach spaces over the field F of real or complex numbers. Given a
Banach action A x X — Y, consider the trilinear operator

Y*xAxX—=TF, (y,a,x)—y (ax),
which induces the bilinear operator
D:Y*xX— A", D:(y",x) > Dy, where Dy, :aw— y*(ax).

For a Banach space Y, a subspace E C Y* is called norming if there exists a real constant
c such that

[yl < c sup |y*(y)l,

y*ESE

where Sg = {e € E : ||e|| = 1} is the unit sphere of the space E.
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Theorem 5. Let Y be a Banach space and E be a norming closed linear subspace in Y*. A Banach
action A x X — Y is unconditional if and only if for every y* € E, the operator Dy» : X — A,
Dy : x = Dy, is absolutely summing.

Proof. Assuming that the action A x X — Y is unconditional, find a real constant C
satisfying the inequality in Definition 1.

Fix any y* € E, n € N and a sequence (X )k, of elements of the Banach space X. In
the following formula by S, we shall denote the unit sphere of the Banach space A. For a
sequence a € S" and k € n by a;, we denote the k-th coordinate of a. Applying Lemma 2
and the inequality from Definition 1, we obtain that

Y. Dyl = - sup ly* (axe)| < sup Y |y* (axxi)| <

ken ken acs a€S" ken
<4supmax| ) y*(ax)| < 4sup max||y 1) axx|| <
aesn FEn 4 cF keF
< 4su5p max||y - CmaxHakH max H Z x| < 4Clly* ||max|| Z x||-
acsh t=

This inequality implies that for every y* € E and every unconditionally convergent
series Y, Xn in X wehave Y, || Dysx, || < oo, which means that the operator Dy« : X —
A*, Dy« : x > Dy 4, is absolutely summing.

Now, assume conversely that for every y* € E the operator Dy« : X — A" is absolutely
summing. Since the space E is norming, there is a real constant ¢ such that

Iyl <c- sup [y*(y)]

y*eSe

for every y € Y. Let L[X] be the Banach space of unconditionally convergent series in

X and
GAY] = {(a3)new € (A")Y 2 ) lay || < oo}

new

be the Banach space of all absolutely summing sequences in A*. The Banach space ¢1[A*]
is endowed with the norm ||(a};)ncw|| = Licw [|5]]. Our assumption ensures that the
bilinear operator

Dyy : E X E[X] — 0 [A*]; Dy : (y*/ (xn)new) — (Dy*,xn)new/

is well-defined. It is easy to see that this operator has closed graph and hence it is continuous.
Then, for every n € N and sequences {a; }xc, C A and {x; }xe, C X we have

|2 axxil| < e sup | )y (apxi)| < e sup 3 ly"(axe)| = ¢ sup ) [Dyey (ar)| <

ken Y*€SE ken Y*€ESg ken Y*E€SE ken
<csup Y Dyl - llagll < c sup max || Y Dy |l <
Y*ESE ken y*E€SE jen ken

< ¢ sup max ||aj]| - [ D[ - Iy | - maXH Zka <
yresg JE" cF

< ¢||Dyx]| ai| -
< ellDll- maxlel- x| 1

which means that the Banach action A x X — Y is unconditional. [

For any p,q,r € [1,00] with % < % + % and every a € lyletd, : lg — £, dy - x > ax,
be the (diagonal) operator of coordinatewise multiplication by a.

For a number p € [1,0], let p* be the unique number in [1, co] such that % + pl—* =11t
is well-known that for any p € [1, o) the dual Banach space ¢ can be identified with /-
and for p = co a weaker condition holds true: /; is not equal to £, but can be viewed as a
norming subspace of /3, (with norming constant ¢ = 1).
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Theorems 4 and 5 imply the following characterization that will be essentially used in
the proof of Theorem 1.

Corollary 2. For numbers p,q,r € [1, 00| with % < % + %, the following conditions are equivalent:

1. The coordinatewise multiplication £, X £y, — £ preserves unconditional convergence;
2. Forevery a € {;+ the operator of coordinatewise multiplication d, : £y — €+, dg : X — ax,
is absolutely summing.

Corollary 2 motivates the problem of recognizing absolute summing operators among
diagonal operators d, : £y« — {5. This problem has been considered and resolved by Gar-
ling who proved the following characterization in ([11], Theorem 9). In this characterization,
¢, denotes the linear subspace of £, consisting of all sequences x € £, such that

P
e,

new 1+ 1Inlay,

Theorem 6 (Garling). For numbers r,p,q € [1,00] with % + % > % and a sequence a € {,, the
operator dy : Ly« — £y is absolutely summing if and only if the following conditions are satisfied:
(i) If1<p<2andp <gq, thena € ly;

(i) Ifl<p=q<2thenacl,;

(iii) Ifp=q€{1,2}, thenac ly;

(iv) If1<q<p<2thenacly

() If1<g<2<p<oothenac€ lsfors=
(vi) If2<q<p<oo thenacly

(vii) If2 <p <q < oo, thena € £y,

(ii)) If2 < g < p = oo, then a € {.

1411y,
p+‘7 2) !

4. Proof of Theorem 1

By Corollary 2 and Theorem 6, for any numbers p, q,r € [1, 00|, the coordinatewise
multiplication £, x £; — /, preserves unconditional convergence if and only if for every
a € { the diagonal operator d, : {3 — {,+ is absolutely summing if and only if the
following conditions are satisfied:

(@ Ifg* <2andg* < p*, then (;x C ly;

(b) If1<g*=p* <2 thenlp C ly;

() Ifg*=p*e{1,2}, thent, C {y;

(d) Ifp*<g* <2 thent C Ep*;

(e) Ifp* <2< g* thenlp C fsfors = (L + pl** -
() If2<p® <g" <oo thenlps C Ly

(g) If2<g* <p* thenly C Lly;

(h) If2 <p* <g" =oo, then {;x C le.

Now, observe that the conditions (a)-(h) are equivalent to the following conditions

(@")-(h"), respectively:
(@) If2<gandp < g, thenr > g;
(b) If2<p=g<oo, thenr>gy;
() Ifp=gqe€{20}, thenr>g;
(d) If2<g < p, thenr > p;
(e) Ifg<2<p, thenr* < (q% + % — %)71,‘
(f) fl1<g<p<2thenr>g;
(g Ifp<qg<2thenr>gy;
W) f1=g<p<2thenr>y.
The conditions (a’), (), (¢'), (f'), (g'), (') imply the condition

-
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(i) Ifp<2thenr>g.

In addition, the conditions (a’)—(e’) imply the conditions

(ii") If2<p<g,thenr>g;

(iii") If2 < p = g < oo, thenr > g;

(iv) If p = g = oo, then r = oo;

(V) If2<g<p, thenr>p;

(vi') If § < 2 < p, then qi* + % - % < rl*,whichisequivalentto % —I—% < % + %.

On the other hand, the conditions (i')—(vi’) imply the conditions (a’)—(h’).
It is easy to see that the conjunction of the conditions (i')-(vi’) is equivalent to the
disjunction of the conditions (i)-(vi) in Theorem 1, which completes the proof of Theorem 1.

5. Proof of Theorem 2

Theorem 2 follows immediately from Theorem 4 and the next theorem, which is the
main result of this section.

Theorem 7. A Banach action A x X — Y is unconditional if A is a Hilbert space possessing an
orthonormal basis (en)neq such that for every x € X the series Y, ¢, enx is weakly absolutely
convergent.

Proof. Assume that A is a Hilbert space and (e;, ) e is an orthonormal basis in A such that
for every x € X the series }_, -, e, x is weakly absolutely convergent Y. For any y* € Y*,
consider the following two operators:

Ty:X— 40, Ti:x— (y(enXx))new, and
Tr: 41— A, Ta:(Sn)new Z $1€5.

new

Both of them are bounded linear operators (for the boundedness of Tj, see, for exam-
ple ([8], Lemma 6.4.1). A fundamental theorem of Grothendieck from his famous paper [12]
(see, for example, ([8], Theorem 4.3.2) for the standard proof and ([5] , Section IILE, for a
different approach) says that every bounded linear operator from ¢; to a Hilbert space is
absolutely summing; so, in particular, T, is absolutely summing. Then, the composition
T,T; is absolutely summing as well. Let us demonstrate that T,T; is equal to the operator
Dy : X — A from Theorem 5 (for the Hilbert space A we identify in the standard way
A* with A). This will imply that that D+ is absolutely summing and thus will complete
the proof.

Denote by (-, -) the inner product in the Hilbert space A. By the definition, (D,+x,a) =
y*(ax) foralla € Aand x € X. Now, the expansion of D, x with respect to the orthonormal
basis (en)ncw gives us the desired formula

Dyx =Y (Dyxen)en =Y y*(enx)e, = To(Thx).

necw new
O
Remark 3. The Banach action, { x R = R, (a,x) — Y ,c0 ”n(i)lx , preserves the unconditional
convergence but for every nonzero x € R the series } e, enX = Yyew 77 diverges. This example
shows that the weak absolute convergence of the series Y, ., enx in Theorem 7 is not necessary for
the preservation of unconditional convergence by a Banach action { x X — Y.
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