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Abstract: This work aims to obtain new transformations and auto-Bäcklund transformations for
generalized Liouville equations with exponential nonlinearity having a factor depending on the first
derivatives. This paper discusses the construction of Bäcklund transformations for nonlinear partial
second-order derivatives of the soliton type with logarithmic nonlinearity and hyperbolic linear parts.
The construction of transformations is based on the method proposed by Clairin for second-order
equations of the Monge–Ampere type. For the equations studied in the article, using the Bäcklund
transformations, new equations are found, which make it possible to find solutions to the original
nonlinear equations and reveal the internal connections between various integrable equations.

Keywords: nonlinear equations in partial derivatives; hyperbolic equations; Bäcklund transforma-
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1. Introduction

The study of Bäcklund transformations is one of the current topics in the theory of
partial differential equations. Such transformations are used to find solutions to nonlinear
differential equations. Due to the complexity of various nonlinear equations, there is no
single method for solving them. For integrable systems, effective methods have been
developed, such as the inverse scattering method [1,2], the Hirota method [3–5], the
Painleve method [6,7], Bäcklund transformations [8–11] and the mapping and deformation
method [2].

Bäcklund transformations are an example of differential geometric structures gener-
ated by differential equations. They make it possible to obtain not only pairs of equations
but also a solution to one of them if the solution to the other is known. These transforma-
tions play an important role in integrable systems since they reveal internal connections
between various properties, such as the definition of symmetries [12,13] and the presence
of a Hamiltonian structure [14–16]. More recently, many studies have been carried out in
this area [11,17–19].

This article is a presentation of new results on transformations and auto-Bäcklund
transformations for equations of the Klein–Gordon type, using the method of constructing
transformations for the Liouville equation. The paper considers special cases of equations
with exponential–power nonlinearity having a factor depending on the first derivatives.
The construction of transformations is based on Clairin’s method [20].
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2. Methods

We consider the following nonlinear equation of the hyperbolic form:

vξη = f (v, vξ, vη). (1)

The method developed by Clairin to construct Bäcklund transformations of a general
form is applicable when the functions z and v satisfy different partial differential equations.
The technique of constructing Bäcklund transformations is general to any hyperbolic
equation and completely repeats the construction for the Liouville equation.

Differential equations of the second order of the form

f1(ξ,η, z, zξ, zη) zξξ + f2(ξ,η, z, zξ, zη) zξη + f3(ξ,η, z, zξ, zη) zηη + f4(ξ,η, z, zξ, zη) = 0.

are called Monge–Ampere equations [21]. The Bäcklund transformation linking two
such second-order equations for the v and z functions is given by a pair of first-order
differential equations:

∂z
∂ξ

= F1

(
z, v,

∂v
∂ξ

,
∂v
∂η

)
. (2)

∂z
∂η

= F2

(
z, v,

∂v
∂ξ

,
∂v
∂η

)
. (3)

To define an explicit transformation type, it is necessary to find the functions F1 and
F2. The integrability condition (the equality of the mixed second derivatives) requires that
the functions (2), (3) satisfy the relation

∂2z
∂η∂ξ

− ∂2z
∂ξ∂η

= 0.

Each of the variables z, zξ, zη and, respectively, v, vξ, vη, depends on ξ and η. Given
the equality (2), we obtain

∂2z
∂η∂ξ

=
∂F1

∂η
=

∂F1

∂z
zη +

∂F1

∂v
vη +

∂F1

∂vξ
vξη +

∂F1

∂vη
vηη (4)

∂2z
∂ξ∂η

=
∂F2

∂ξ
=

∂F2

∂z
zξ +

∂F2

∂v
vξ +

∂F2

∂vξ
vξξ +

∂F2

∂vη
vηξ (5)

Using Formulas (2), (3) to exclude zξ and zη, finally, we obtain the condition of
compatibility as(
− ∂F2

∂vξ

)
vξξ+

(
∂F1

∂vξ
− ∂F2

∂vη

)
vξη+

∂F1

∂vη
vηη−

∂F2

∂v
vξ+

∂F1

∂v
vη+ F2

∂F1

∂z
− F1

∂F2

∂z
= 0 (6)

We consider the function z as a solution to some simple equation, the form of which is
defined below. Then, while at least one of the coefficients,

∂F1

∂vη
,

∂F2

∂vξ
or
(

∂F1

∂vξ
− ∂F2

∂vη

)
,

is not zero, Equation (6) is a partial differential equation for the function v.
Since Equation (1) contains vξη, but not vξξ or vηη, from the condition of compatibility

(6), we expect that
∂F2

∂vξ
= 0,

∂F1

∂vη
= 0,

∂F1

∂vξ
− ∂F2

∂vη
6= 0

Then, we must assume
∂z
∂ξ

= F1

(
z, v,

∂v
∂ξ

)
, (7)
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∂z
∂η

= F2

(
z, v,

∂v
∂η

)
. (8)

Therefore, Equation (6) takes the form(
∂F1

∂vξ
− ∂F2

∂vη

)
vξη −

∂F2

∂v
vξ +

∂F1

∂v
vη + F2

∂F1

∂z
− F1

∂F2

∂z
= 0

The η-derivative of (7) is

∂2z
∂η∂ξ

=
∂F1

∂z
zη +

∂F1

∂z̃
vη +

∂F1

∂vξ
vξη. (9)

Further reasoning depends on the type of equation under consideration. Let us
consider the following equations:

vηξ = (a + bv)evvξ − vξvη, (10)

vηξ =
α32α21

8α11
ev(1 + 2v)vξ − vξvη, (11)

vηξ =
α21

8α2
11

ev(vη − vξ), (12)

vηξ = evvη − e−vvξ. (13)

These equations have a hyperbolic linear form on the left side and a nonlinear right
side depending on the function and the first derivatives to variables η and ξ, wherein the
derivatives vη, vξ are included in equations only in the first degree, so the general form of
these equations is rewritten as

vηξ = Ω(v, v1
ξ, v1

η),

Here, a one in the exponent indicates that these variables are included in this equality
only to the first degree.

We assume that the Bäcklund transformations make it possible to move to the simplest
hyperbolic equation zξη = 0.

Using Equations (8)–(10), we obtain

zξη =
∂F1

∂z
F2 +

∂F1

∂v
vη +

∂F1

∂vξ
Ω(v, v1

ξ, v1
η) = 0. (14)

Take from (14) the derivative to vη. Then,
∂Ω(v,v1

ξ,v1
η)

∂vη
does not depend on vη, since vη

comes into equality only in the first degree

∂2F1

∂z∂vη
F2 +

∂F1

∂z
∂F2

∂vη
+

∂2F1

∂v∂vη
vη +

∂F1

∂v
+

∂2F1

∂vξ∂vη
Ω(v, v1

ξ, v1
η) +

∂F1

∂vξ

∂Ω(v, v1
ξ, v1

η)

∂vη
= 0.

Taking into account equalities (7), (8), we have ∂F1
∂vη

= 0, ∂F2
∂vξ

= 0 and then ∂2F1
∂z∂vη

= 0,
and equality remains

∂F1

∂z
∂F2

∂vη
+

∂F1

∂v
+

∂F1

∂vξ

∂Ω(v, v1
ξ, v1

η)

∂vη
= 0.

Having performed re-differentiation to vη, we have

∂2Ω(v, v1
ξ, v1

η)

∂v2
η

= 0,
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∂2F1

∂z∂vη
∂F2

∂vη
+

∂F1

∂z
∂2F2

∂v2
η

+
∂2F1

∂v∂vη
+

∂2F1

∂vξ∂vη

∂Ω(v, v1
ξ, v1

η)

∂vη
= 0.

Considering ∂F1
∂vη

= 0, we obtain

∂F1

∂z
∂2F2

∂v2
η

= 0.

We conduct similar actions with equality (3). Differentiating to vξ twice, we obtain

∂F2

∂v
∂2F1

∂v2
ξ

= 0.

Therefore, the functions F1 and F2 have a linear form to vη and vξ, respectively. Then,
we have

∂z
∂ξ

= f1(z, v) + p1(z, v)
∂v
∂ξ

, (15)

∂z
∂η

= f2(z, v) + p2(z, v)
∂v
∂η

. (16)

We write the compatibility condition of Equation (6) with the new conditions (15)
and (16):

(p1 − p2)Ω(v, v1
ξ, v1

η)−
∂( f2+p2vη)

∂v vξ
+

∂( f1+p1vξ)
∂v vη + ( f2 + p2vη)

∂( f1+p1vξ)
∂z − ( f1 + p1vξ)

∂( f2+p2vη)
∂z = 0

(17)

After differentiating this expression to variable vη and vξ, we proceed to the analysis
of the equation

(p1 − p2)
∂2Ω(v, v1

ξ, v1
η)

∂vξ∂vη
− ∂p2

∂v
+

∂p1

∂v
+ p2

∂p1

∂z
− p1

∂p2

∂z
= 0. (18)

Further studies depend significantly on
∂2Ω(v,v1

ξ,v1
η)

∂vξ∂vη
, so let us move on to a detailed

analysis of equality (18) for each equation studied separately.

3. Results
3.1. Bäcklund Transformations for Nonlinear Equation

Let us perform the Bäcklund transformation for nonlinear Equation (10).

Equation (18) for (4), (5), considering that
∂2Ω(v,v1

ξ,v1
η)

∂vξ∂vη
= −1 takes the form

∂p1

∂v
+ p2

∂p1

∂z
− p1 = p1

∂p2

∂z
+

∂p2

∂v
− p2. (19)

It can be assumed that p1 6= p2, and we define the relationship between the functions
p1(z, v) and p2(z, v). We convert (19) to the following form:

∂(p1 − p2)

∂v
− (p1 − p2) = p2

1
∂

∂z
p2

p1
,

then, if we assume p1 − p2 = evϕ(z), then p1 = p2 + evϕ(z), and for the function p2, we
have the equation

[p2 + evϕ(z)]2
∂

∂z
p2

p2 + evϕ(z)
= 0.
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Obviously, if p2 + evϕ(z) = 0, then p1 = 0. This option could be considered but with
only one undefined function ϕ(z) remaining, which reduces the possibility of varying the
unknowns in further reasoning, so calculate p2 + evϕ(z) 6= 0, and then

∂

∂z
p2

p2 + evϕ(z)
= 0.

This leads to the dependence p2
p2+evϕ(z) = ψ(v) and the definition of functions p2 and

p1 in the form

p2 =
ψ(v)

1−ψ(v) evϕ(z), p1 =
1

1−ψ(v) evϕ(z).

Now, Equation (17) will take the form[
(a + bv)e2vϕ(z)− ∂ f2

∂v + 1
1−ψ(v) ev

(
f2

∂ϕ(z)
∂z −ϕ(z) ∂ f2

∂z

)]
vξ

+ f2
∂ f1
∂z − f1

∂ f2
∂z +

[
ψ(v)

1−ψ(v) ev
(
ϕ(z) ∂ f1

∂z − f1
∂ϕ(z)

∂z

)
+ ∂ f1

∂v

]
vη = 0.

We differentiate the last equation to the variable vη and the same expression to the
variable vξ; as a result, we obtain the system

(a + bv)e2vϕ(z)− ∂ f2

∂v
+

1
1−ψ(v) ev

(
f2

∂ϕ(z)
∂z

−ϕ(z)∂ f2

∂z

)
= 0, (20)

f2
∂ f1

∂z
− f1

∂ f2

∂z
= 0, (21)

ψ(v)
1−ψ(v) ev

(
ϕ(z)

∂ f1

∂z
− f1

∂ϕ(z)
∂z

)
+

∂ f1

∂v
= 0. (22)

We look for functions f1(z, v), f2(z, v) in the following form

f1(z, v) = ψ1(v)g1(z), f2(z, v) = ψ2(v)g2(z).

We substitute these equations in the system (20)–(22) and isolate the logarithmic
derivatives ln g2, ln g1, lnϕ:

(a + bv)e2vϕ(z)− g2(z)
∂ψ2(v)

∂v
+

ψ2(v)
1−ψ(v) evg2(z)ϕ(z)

∂

∂z

(
ln
ϕ(z)
g2(z)

)
= 0, (23)

ψ2(v)ψ1(v)g2(z)g1(z)
∂

∂z

(
ln

g1(z)
g2(z)

)
= 0, (24)

g1(z)
∂ψ1
∂v
− ψ(v)ψ1(v)

1−ψ(v) evϕ(z)g1(z)
∂

∂z

(
ln
ϕ(z)
g1(z)

)
= 0. (25)

One can choose a special form of functions gj(z), ϕ(z) so that the system takes a
simpler form; then, the differential equations can be explicitly integrated. We calculate

g1(z) = g2(z) = k1z, ϕ(z) = k2z, k1, k2 = const,

and the system (23)–(25) will take the form

k2(a + bv)e2vz− k1
∂ψ2(v)

∂v
= 0,

k1z
∂ψ1
∂v

= 0.
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As a result, simple differential equations are obtained for functions ψ2(v), ψ1(v). Let
us define them:

ψ2 =
k2

k1

∫
(a + bv)e2vdv =

k2

4k1
(2a− b + 2bv)e2v + C1, ψ1 = k = const.

Now, the transformations (2), (3) take the form

∂z
∂ξ

= kk1z +
k2

1−ψ(v) evz
∂v
∂ξ

, (26)

∂z
∂η

= z
[

k2

4
(2a− b + 2bv)e2v + C1

]
+ k2evz

ψ(v)
1−ψ(v)

∂v
∂η

. (27)

Thus, the Bäcklund transformation is obtained in the form (26), (27). The system
(26), (27) is combined with any functionψ(v). We consider the following option: ψ(v) = 2,
C1 = 0, k = k1 = 1, k2 = −2, and then the relations (26), (27) will take the form

∂z
∂ξ

= z + 2evz
∂v
∂ξ

,
∂z
∂η

= 4evz
∂v
∂η
−
(

a− 1
2

b + bv
)

ze2v. (28)

Let us check whether it is possible to obtain Equation (10) from the system (28).
If we differentiate the first equality of the system (28) to the variable η and the second

to the variable ξ, we obtain

zξη = zη + 2evzvηvξ + 2evzηvξ + 2evzvηξ,

zξη = 4evzvξvη + 4evzξvη + 4evzvξη − 2(a + bv)ze2vvξ −
(

a− 1
2

b + bv
)

zξe2v.

We subtract the upper equality from the lower one and collect similar terms:

(1 + 2evvξ)zη = 2evzvξη + 2evzvξvη − 2(a + bv)ze2vvξ +
[

4vη −
(

a− 1
2

b + bv
)

ev
]

evzξ.

We eliminate the derivatives zη, zξ, using the relations (28). Canceling by non-zero
functions, we obtain Equation (10).

Let us see which equation goes to the original Equation (10) using transformations (28).
To do this, we convert Equation (28) to the form

∂ ln z
∂ξ

= 1 + 2
∂ev

∂ξ
,

∂ ln z
∂η

= 2
∂ev

∂η
−
(

a− 1
2

b + bv
)

e2v. (29)

Let us try to identify how the functions z(ξ,η) and v(ξ,η) are related, taking into
account that the functions satisfy Equation (10). Let us differentiate the second equality (29)
to the variable ξ:

(ln z)ηξ = 4(ev)ηξ − 2(a + bv)e2vvξ

and replace the expression (a + bv)evvξ with the terms of Equation (10), then

(ln z)ηξ = 4(ev)ηξ − 2(vηξ + vξvη)ev = 2(ev)ηξ.

Taking into account the first differential constraint (29), the derivatives can be omitted
up to a constant

ln z = 2ev + ξ.

Then, the function v(ξ,η) is expressed through z(ξ,η)

v = ln
[

1
2
(ln z− ξ)

]
. (30)
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Denoting ln z = w(ξ,η) and substituting (30) in (10), we obtain

wηξ =
1
2

(
a + b ln

[
1
2
(w− ξ)

])
(w− ξ)(wξ − 1). (31)

Theorem 1. Bäcklund transformations

∂w
∂η

= 2ev ∂v
∂η
−
(

a− 1
2

b + bv
)

e2v,
∂w
∂ξ

= 1 + 2ev ∂v
∂ξ

, (32)

link Equations (10)–(31).

Equation (11) is a special case of (10), so the following conclusion can be formulated
for this equation.

Corollary 1. Bäcklund transformations

∂w
∂ξ

= 1 + 2ev ∂v
∂ξ

,
∂w
∂η

= 4ev ∂v
∂η
− α32α21

4α11
ve2v, (33)

link Equation (11) to the following equation:

α32α21

8α11
(wξ − 1)(w− ξ)

(
1
2
+ ln

[
1
2
(w− ξ)

])
− wξη = 0. (34)

Theorem 2. For Equation (11), there is a Bäcklund auto-transformation of the form

eg ∂g
∂ξ

= ev ∂v
∂ξ

, eg ∂g
∂η

= 2ev ∂v
∂η
− α32α21

8α11
ve2v. (35)

Proof of Theorem 2. Let us write the equality (35) in the following form:

∂eg

∂ξ
= ev ∂v

∂ξ
,

∂eg

∂η
= 2ev ∂v

∂η
− α32α21

8α11
ve2v,

and cross-differentiate. Equalizing the left parts gives

ev ∂v
∂ξ

∂v
∂η

+ ev ∂2v
∂ξ∂η

− α32α21

8α11

∂v
∂ξ

e2v − α32α21

4α11

∂v
∂ξ

ve2v = 0

or Equation (11). �

Now, we rewrite the second equality (35) in the form

∂eg

∂η
= 2

∂ev

∂η
− α32α21

8α11
ve2v,

and differentiate by ξ

∂2eg

∂η∂ξ
= 2

∂2ev

∂η∂ξ
− α32α21

8α11
e2v(1− 2v)

∂v
∂ξ

.

We replace the term α32α21
4α11

vξev(1 + 2v) in the last equality with the remaining terms
from (11), and then

∂2eg

∂η∂ξ
= 2

∂2ev

∂η∂ξ
− ev

(
∂2v

∂η∂ξ
+

∂v
∂ξ

∂v
∂η

)
,
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which leads to the equality
∂2eg

∂η∂ξ
=

∂2ev

∂η∂ξ
.

This means that the functions eg and ev can differ only by arbitrary terms of the form
ϕ(ξ) +ψ(η), so

eg +ϕ(ξ) +ψ(η) = ev. (36)

If ϕ(ξ) = ψ(η) = 0, then g = v, and from equalities (35), we obtain Equation (11).
Let us determine what happens ifϕ(ξ) 6= 0, ψ(η) 6= 0. Let us perform substitution (33)

in Equation (11); then, we obtain

eg
ηξ =

α32α21

8α11
([eg +ϕ(ξ) +ψ(η)]2 ln[eg +ϕ(ξ) +ψ(η)])ξ.

Let us perform differentiation

eg(gηξ + gξgη) = α32α21
8α11

2[eg +ϕ(ξ) +ψ(η)] ln[eg +ϕ(ξ) +ψ(η)](eggξ +ϕ′(ξ))
+α32α21

8α11
[eg +ϕ(ξ) +ψ(η)](eggξ +ϕ′(ξ))

and group the terms with a common derivative; we obtain

eg(gηξ + gξgη) =
α32α21

8α11
[eg +ϕ(ξ) +ψ(η)](2 ln[eg +ϕ(ξ) +ψ(η)] + 1)(eggξ +ϕ′(ξ)),

here, ϕ(ξ), ψ(η) are arbitrary functions.

Corollary 2. Bäcklund transformations

∂q
∂ξ

+ϕ′(ξ) = ev ∂v
∂ξ

,

∂q
∂η

+ψ′(η) = 2ev ∂v
∂η
− α32α21

8α11
ve2v,

associate Equation (11) with the equation

qηξ =
α32α21

8α11
[q +ϕ(ξ) +ψ(η)](2 ln[q +ϕ(ξ) +ψ(η)] + 1)(qξ +ϕ′(ξ)),

here, ϕ(ξ), ψ(η) are arbitrary functions.

Similarly, starting the transformation with a detailed analysis of equality (18), in each
case for the remaining studied Equations (12) and (13), the following theorems are proved:

Theorem 3. Bäcklund transformations of the form

wξξ = wξ
∂v
∂ξ
− α21

16α2
11

evwξ, (37)

wξη =
wξ
2

∂v
∂η
− α21

16α2
11

evwξ, (38)

connect Equation (12) with the equation

(w2)ξη = 4w2
ξ. (39)
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Theorem 4. Bäcklund transformations of the form

∂w
∂ξ

=
∂v
∂ξ
− ev,

∂w
∂η

= e−v

connect Equation (13) with the equation

wηξ + wξwη = −1.

3.2. Applying Differential Couplings to Obtain Exact Solutions

Theorem 5. If Equation (39) has a solution

w = 2η+ ξ, (40)

then Equation (12) has a solution:

v = − ln

[
C− α21

16α2
11
(ξ+ η)

]
, C = const. (41)

Proof of Theorem 5. We use the found transformations (37), (38) and substitute the known
solution (40) in them, and then system (37), (38) takes the form

∂v
∂ξ

=
α21

16α2
11

ev,
∂v
∂η

=
α21

16α2
11

ev,

from here, we find
e−v = C− α21

16α2
11
(ξ+ η),

here, C is an arbitrary constant. As a result, the solution (41) of Equation (12) was found. �

Let us perform some transformations in Equation (39), multiplying both sides by w2:

w2(w2)ξη − [(w2)ξ]
2
= 0,

and, using the Fourier method of separation of variables, we obtain a solution to Equation (39)
in the form

w = e
λ
2 (η+ξ), λ = const.

Theorem 6. If Equation (39) has a solution

w = e
λ
2 (η+ξ), λ = const (42)

then Equation (12) has a solution

v = ln λ+ λ
(
η+

1
2
ξ

)
− ln

∣∣∣∣∣1− α21

8α2
11

eλ[η+
1
2ξ]

∣∣∣∣∣. (43)
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Proof of Theorem 6. Using the found transformations (37), (38), we substitute the known
solution (42) into it, and then system (37), (38), after cancellation by λ

2 e
λ
2 (η+ξ), takes

the form
λ

2
=

∂v
∂ξ
− α21

16α2
11

ev, λ =
∂v
∂η
− α21

8α2
11

ev, (44)

from the first linear partial differential equation, we find

v− ln

[
λ

2
+

α21

16α2
11

ev

]
=
λ

2
ξ+ϕ(η),

where ϕ(η) is an arbitrary function, and from the second equation of system (44), we
determine the form of the function ϕ(η): ϕ(η) = 2eλη. �

Expressing the function v explicitly, we obtain the solution (43) of Equation (12).

Theorem 7. If Equation (12) has a solution

v = a(η+ ξ),

then Equation (39) has a solution

w = −
16α2

11
α21

exp

[
− α21

16αα2
11

eα(η+ξ) − α
2
η

]
. (45)

Proof of Theorem 7. Using the found transformations (37), (38), we substitute the known
solution v = a(η+ ξ) , and then we obtain the system of equations

(ln wξ)ξ = α− α21

16α2
11

eα(η+ξ),

(ln wξ)η =
α

2
− α21

16α2
11

eα(η+ξ),

which can be easily integrated over the corresponding variables

ln wξ = αξ− α21

16αα2
11

eα(η+ξ) +ϕ(η), (46)

ln wξ =
α

2
η− α21

16αα2
11

eα(η+ξ) +ψ(ξ), (47)

where ϕ(η), ψ(ξ) are the constants of integration (arbitrary functions). �

Let us extend the definition of the functionsϕ(η) and ψ(ξ) so that the obtained values
of the right-hand sides of the system (46), (47) coincide as follows:

ϕ(η) =
α

2
η, ψ(ξ) = αξ.

As a result, an expression for the function wξ is defined:

wξ = e
α(ξ+ 1

2η)−
α21

16αα2
11

eα(η+ξ)
.

We perform integration over ξ, and we obtain the unknown function w(ξ,η) (45). The
form of function (45) is shown from two angles in Figure 1 (for α = 1, α21

α2
11

= −32).
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Figure 1. A 3D graph of the function (45) shown from two angles (a) and (b). Here, F ≡ w(ξ,η).

Theorem 8. Equation (31) has a solution implicitly given in the form of a series

ln
∣∣∣∣ln[1

2
(w− ξ)

]∣∣∣∣+ ∞

∑
n=1

(−1)n

n · n!
lnn
[

1
2
(w− ξ)

]
=
α32α21

8α11
(γξ+ η) + C2,

where constants γ, C2 are arbitrary constants.

The proof is carried out by simple verification.

Theorem 9. If (10) has a solution v = a, then (31) has a solution

w = ξ− α32α21

4α11
ae2aη. (48)

Proof of Theorem 9. We substitute v = a into the found differential links (34) and integrate
each equality.

w = ξ+ϕ(η),

w = −α32α21

4α11
ae2aη+ψ(ξ).

We equate the obtained expressions for the function w and redefine arbitrary functions
ϕ(η), ψ(ξ). As a result, we obtain (48). �

Theorem 10. If Equation (11) has a solution v = η, then Equation (34) has a solution

w = 4eη − α32α21

16α11
(2η− 1)e2η + ξ. (49)
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Proof of Theorem 10. Substitute v = η into the found differential constraints (33) and
integrate each equality.

w = ξ+ϕ(η),

w = 4eη − α32α21

16α11
(2η− 1)e2η +ψ(ξ).

We equate the obtained expressions for the function w and redefine arbitrary functions
ϕ(η), ψ(ξ). As a result, we obtain (49) (Figure 2). �

Figure 2. The plot is according to Formula (49) at α32α21
16α11

= 1
3 . Here, F ≡ w(ξ,η).

Theorem 11. Equation (11) has a solution implicitly given in the form of a series

ln|v|+
∞

∑
n=1

(−v)n

n · n!
=
α32α21

8α11
(γξ+ η) + C2, (50)

where constants γ, C2 are arbitrary constants.

The proof is carried out by simple verification.
Solution (50) is a cylindrical surface with a guide shown in Figure 3.
Let us use the found auto-Bäcklund transformations (35) for Equation (11) and solution

(50). If we assume that g(ξ,η) = v(ξ,η), then using (35), we can find a new solution to
Equation (11). Substitute expression (50) into the left-hand side of (35):

α32α21

8α11
g =

1
γ

ev ∂v
∂ξ

,

α32α21

8α11
g = 2ev ∂v

∂η
− α32α21

8α11
ve2v.

Equating the left-hand sides, we obtain a linear first-order equation for the function
v(ξ,η)

2
∂v
∂η
− 1
γ

∂v
∂ξ

=
α32α21

8α11
vev, (51)
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Figure 3. Cylindrical surface guide (50), where n = 1, 2, . . . , 100.

To find the general solution of this equation, we find the first integrals of the system

2γξ+ η = C1,
8α11

γα32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

]
+ ξ = C2. (52)

The general solution to equation (51) has the form

F

(
2γξ+ η,

8α11

γα32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

]
+ ξ

)
= C,

Here, F is any function.
Equation (11) is nonlinear; therefore, it is necessary to clarify the form of the function

F. Let us substitute expression (52) into Equation (11)

16α11

α32α21

[
2

F1

F2
2

F12 −
F2

1
F3

2
F22 −

F11

F2

]
= −

(
1
γ
+

F1

F2

)(
2γ

F1

F2
+ 1
)

ev(1 + 2v). (53)

Here, F1 is the derivative of F by the first component, and F2 is the derivative of F by
the second component.

As one can see, equality (53) is not identically fulfilled; therefore, it is necessary to
require that one of the systems is fulfilled:

1
γ + F1

F2
= 0,

2 F1
F2

2
F12 −

F2
1

F3
2

F22 − F11
F2

= 0,
, or


F1
F2

= − 1
2γ ,

2 F1
F2

2
F12 −

F2
1

F3
2

F22 − F11
F2

= 0
. (54)

All the terms of the equalities are homogeneous, so we use the technique that allows
us to separate the arguments of the function. We represent F in the form

F = X(C1)Y(C2),

where X depends on the first component C1 of the function F, and Y on the second
component C2 (52), and then the first equality of system (54) takes the following form (due
to the similarity of the first equalities of the systems, the result of the substitution for the
second system is written in parentheses):

X′

X
= − 1

γ

Y′

Y
= λ,

(
X′

X
= − 1

2γ
Y′

Y
= λ

)
,
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Here, λ is an arbitrary parameter.
The functions take the form

ln|X| = λC1, ln|Y| = −γλC2, (ln|X| = λC1, ln|Y| = −2γλC2),

which leads to the following kind of function

F(C1, C2) = eλC1−γλC2 ,
(

F(C1, C2) = eλC1−2γλC2
)

, (55)

where

λ(C1 − γC2) = λ

(
γξ+ η− 8α11

α32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

])
,

(
λ(C1 − 2γC2) = λη− λ 8α11

α32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

])
.

The connection between the components C1, C2, satisfying the second system (expres-
sion in brackets), led to the absence of dependence on the variable ξ, so this case is not
considered further.

The second equality of system (54) is satisfied identically. The dependence on λ is
insignificant; therefore, we assume λ = 1.

The following theorem is proved:

Theorem 12. Equation (11) has a solution

exp

(
γξ+ η− 8α11

α32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

])
= C.

The result of the theorem can be generalized.

Corollary 3. Equation (11) has a solution

F

(
γξ+ η− 8α11

α32α21

[
ln|v|+

∞

∑
n=1

(−v)n

n · n!

])
= C, (56)

here, F is an arbitrary function.

The proof is carried out by simple verification.

4. Discussion

The considered equations refer to wave equations with a nonlinear right-hand side,
which has an exponential–power relationship. The exponential–power model is a multi-
plicative combination of exponential and power models. Finding exact solutions to such
equations is fraught with great difficulties since a change in variables does not bring the
equation to a linear form or simplification; therefore, it is necessary to use a modification
that differs from the mappings. Differential links are such a transformation. Bäcklund
transformations are a differential relationship of two equations. Recently, this approach
has made it possible to solve many interesting problems [8–11,14,17–19].

In addition, for a given solution of one equation, Bäcklund transformations make it
possible to determine, up to a finite number of constants, the solution of the second equa-
tion, and this connection works in two directions. Therefore, for Equations (12) and (39),
choosing a simple solution in the form w = 2η+ ξ, and for Equation (39), using the con-
structed Bäcklund transformations (37), (38), a solution of Equation (12) was found in the
form (41) (application of differential constraints (Statements 1 and 2)). Using the same differ-
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ential constraints (37), (38) from the solution of Equation (12), an exact solution to Equation
(39) was obtained (application of differential constraints (Statement 3)). Similar results
were obtained for pairs of equations: Equations (10) and (31) and Equations (11) and (34).

An especially interesting case is when the Bäcklund transformations translate the equa-
tion into itself—auto-transformations. This property is typical for nonlinear equations with
soliton solutions [13]. The present article discusses the construction of auto-transformations
for Equation (11) (Section 3 (Results), Theorem 2). Differential constraints (35) made it
possible to construct a general solution (56) from solution (50).

5. Conclusions

For the equations studied in the article, new equations were found using Bäcklund
transformations, which make it possible to find solutions to the original nonlinear equations
and to identify internal connections between various integrable equations.

The present paper proves theorems on Bäcklund transformations of nonlinear hyper-
bolic partial differential equations of the second order of the Klein–Gordon class, which are
special cases of the Liouville equation, with exponential nonlinearity having a multiplier
depending on the function and its first derivatives. The transformations were constructed
using Clairin’s method. The new equations obtained with the help of differential connec-
tions can be used for further studies of equations of this type, as well as for solving many
applied problems in various fields of natural science.
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