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Abstract: Taking impulsive effects into account, an impulsive stochastic predator–prey system with
the Beddington–DeAngelis functional response is proposed in this paper. First, the impulsive system
is transformed into an equivalent system without pulses. Then, by constructing suitable functionals
and applying the extreme-value theory of quadratic functions, sufficient conditions on the existence
of periodic Markovian processes are provided. The uniform continuity and global attractivity of
solutions are also investigated. Additionally, we investigate the extinction and permanence in the
mean of all species with the help of comparison methods and inequality techniques. Sufficient condi-
tions on the existence and ergodicity of the stationary distribution of solutions for the autonomous
and non-impulsive case are given. Finally, numerical simulations are performed to illustrate the
main results.

Keywords: impulsive stochastic system; Beddington–DeAngelis functional response; periodic Marko-
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1. Introduction

Predator–prey systems with the Beddington–DeAngelis functional response have
always attracted the attention of many researchers (to name a few, see [1–3] and the
references therein). As we know, white noises are very common in the real world. They
affect the growth rates of species to some extent. In order to understand the effects of white
noises on the dynamics of ecological systems, random disturbance is introduced [4–9]. For
example, Yagi and Ton [9] studied the following model:

dx1(t) = x1(t)
(

a11(t)− a12(t)x1(t)−
c1(t)x2(t)

m0(t) + m1(t)x1(t) + m2(t)x2(t)

)
dt

+σ1(t)x1(t)dω1(t),

dx2(t) = x2(t)
(
−a21(t)− a22(t)x2(t) +

c2(t)x1(t)
m0(t) + m1(t)x1(t) + m2(t)x2(t)

)
dt

+σ2(t)x2(t)dω2(t),

(1)

where x1(t) and x2(t) represent the quantities of prey and predator populations, re-
spectively; ω1(t) and ω2(t) are independent standard Brownian motions defined on the
complete probability space (Ω, F, {Ft}t≥0, P) with a filtration {Ft}t≥0 satisfying the usual
conditions—that is, it is increasing and right continuous and F0 contains all P-null set.
See [1,3] for the biological meanings of the parameter functions.

Moreover, the growths of species usually suffer rapid changes in relatively short
time periods due to activities such as stocking and harvesting. To describe such phenom-
ena, impulsive dynamical systems have been proposed and studied (e.g., [10–15] and
references therein).
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Furthermore, the life cycles of species and the variation of the environment play
important roles in many biological and ecological dynamical systems. In particular, the
effects of a periodically varying environment are important for evolutionary theory, as
the selective forces on systems in a fluctuating environment differ from those in a stable
environment. Therefore, the assumption of periodicity on parameters in the system (in a
way) incorporates the periodicity of the environment [16–18].

Motivated by the above discussion and based on (1), we propose the following periodic
impulsive stochastic predator–prey model with the Beddington–DeAngelis functional
response:

dx1(t) = x1(t)
(

a11(t)− a12(t)x1(t)−
c1(t)x2(t)

m0(t) + m1(t)x1(t) + m2(t)x2(t)

)
dt

+σ1(t)x1(t)dω1(t),

dx2(t) = x2(t)
(
−a21(t)− a22(t)x2(t) +

c2(t)x1(t)
m0(t) + m1(t)x1(t) + m2(t)x2(t)

)
dt

+σ2(t)x2(t)dω2(t),


t 6= tk,

x1(t+k ) = (1 + ξ1k)x1(tk),
x2(t+k ) = (1 + ξ2k)x2(tk),

}
t = tk.

(2)

In the sequel, we always assume that the following conditions are satisfied by the
constants and parameter functions of (2).

• All functions a11(·), a12(·), a21(·), a22(·), c1(·), c2(·), m0(·), m1(·), m2(·), σ1(·), and
σ2(·) are positive, bounded, continuous, and periodic with the same period T.

• The impulsive points satisfy 0 < t1 < t2 < · · · with limk→∞ tk = ∞ and there
exists a positive integer q such that tk+q = tk + T and ξi,k+q = ξi,k for i = 1, 2 and
k ∈ N = {1, 2, . . .}.

• By the biological meanings, we assume ξik > −1 for i = 1, 2 and k ∈ N = {1, 2, . . .}.
The motivations for investigating the dynamics of (2) are as follows. Firstly, for

deterministic systems, the existence and attractivity of equilibria/periodic solutions are
important topics for understanding the dynamics of ecological systems [19–23]. Similarly,
for stochastic systems, it is crucial to study the existence of periodic Markovian processes.
Secondly, extinction, permanence in mean for all species, and stochastic persistence are all
important properties to understand the dynamics of biological systems [24–27]. Lastly, for
the special case of (2) with parameter functions being constants, it is interesting to study
the existence of a stationary distribution as the functional response is non-monotonic.

The rest of this paper is organized as follows. Section 2 begins with definitions,
important lemmas, and some notations. Section 3 provides sufficient conditions on the
existence of periodic Markovian processes for (2). Section 4 focuses on the extinction and
permanence in the mean of all species of (2). Section 6 is devoted to the existence and
uniqueness of distribution. Some numerical simulations are given in Section 7. The paper
concludes with a brief discussion and conclusions.

2. Preliminaries

We start with the definition of a periodic Markovian process.

Definition 1 ([9,18]). A stochastic process ξ(t) = ξ(t, ω) (−∞ < t < ∞) is said to be periodic
with period T if for every finite sequence of numbers t1, t2, . . ., tn the joint distribution of the
random variables ξ(t1 + h), . . ., ξ(tn + h) is independent of h, where h = kT with k = ±1,±2, . . .

Definition 2 ([13,15]). For the following impulsive stochastic system of differential equations:{
dx(t) = f (t, x(t))dt + g(t, x(t))dω(t), t 6= tk,
x(t+k ) = (1 + λk)x(tk), k ∈ N,

(3)
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with the initial value x(0) = x0 ∈ Rn, a stochastic process x(t) = (x1(t), x2(t), . . . , xn(t))T ,
t ∈ R+ = [0, ∞) is said to be a solution if

(i) x(t) is ft-adapted and is continuous on (0, t1) and each interval (tk, tk+1) ⊂ R+, k ∈ N,
f (t, x(t)) ∈ L(R+, Rn), g(t, x(t)) ∈ L2(R+, Rn), where Lp(R+, Rn) is the set of all Rn-
valued measurable ft-adapted processes satisfying

∫ T
0 | f (t)|

pdt < ∞ almost surely for all
T > 0, p = 1, 2;

(ii) For every tk, k ∈ N, x(t+k ) = limt→t+k
x(t) and x(t−k ) = limt→t−k

x(t) exist, and

x(tk) = x(t−k ) with the probability one;
(iii) For all t ∈ [0, t1], x(t) obeys the integral equation

x(t) = x(0) +
∫ t

0
f (s, x(s))ds +

∫ t

0
g(s, x(s))dω(s)

and for all t ∈ [tk, tk+1], k ∈ N, x(t) obeys the following integral equation:

x(t) = x(t+k ) +
∫ t

tk

f (s, x(s))ds +
∫ t

tk

g(s, x(s))dω(s).

Definition 3 ([27]). System (2) is globally attractive if

lim
t→∞
|x1(t)− x̃1(t)| = lim

t→∞
|x2(t)− x̃2(t)| = 0

for any two positive solutions (x1(t), x2(t)) and (x̃1(t), x̃2(t)).

Lemma 1 ([15]). For the following Itô’s differential equation:

dx(t) = b(t, x(t))dt + σ(t, x(t))dω(t), (4)

if all the coefficients are T-periodic in t and satisfy the linear growing condition and the Lipschitz
condition in every cylinder Ul × R+ for l > 0, where Ul = {x : ||x|| ≤ l} and there exists a
function v = v(t, x) which is twice continuously differentiable with respect to x and continuously
differentiable with respect to t in Rn × R+, T-periodic in t and satisfies the following conditions:

inf
||x||>l

v(t, x)→ ∞ as l → ∞,

Lv(t, x) ≤ −1 outside some compact set,

then there exists a solution of (4) which is a T-periodic Markovian process, where L is the generator
of (4) defined by

Lv(t, x) =
[

∂v
∂t

+∇xv · b + 0.5tr(σσTvxx)

]
(t, x).

Lemma 2 ([13]). Suppose that Z ∈ C(R+, (0, ∞)) and lim
t→∞

F(t)/t = 0 a.s.

(a) If there exist two positive constants t0 > 0 and λ0 > 0 such that, for all t > t0,

ln Z(t) ≤ λt− λ0

∫ t

0
z(s)ds + F(t) a.s.,

then {
〈Z〉∗ ≤ λ/λ0 a.s. i f λ ≥ 0,

lim
t→∞

Z(t) = 0 a.s. i f λ < 0.

(b) If there exist some constants t0 > 0, λ0 > 0, and λ such that, for all t > t0,

ln Z(t) ≥ λt− λ0

∫ t

0
z(s)ds + F(t) a.s.,
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then
〈Z〉∗ ≥ λ/λ0 a.s.

Lemma 3 ([28]). Suppose that an n-dimensional stochastic process x(t) on t ≥ 0 satisfies

E|x(t)− x(s)|β1 ≤ c|t− s|1+β2 , 0 ≤ s, t < ∞,

for some positive constants β1, β2, and c. Then there exists a continuous modification x̃(t) of
x(t), which has the property that, for every ϑ ∈ (0, β2

β1
), there is a positive random variable h(ω)

such that

P

{
ω : sup

0<|t−s|<h(ω),0≤s,t<∞

|x̃(t, ω)− x(t, ω)|
|t− s|ϑ

≤ 2
1− 2−ϑ

}
= 1.

In other words, almost every sample path of x̃(t) is locally but uniformly Hölder continuous
with exponent ϑ.

Lemma 4 ([29]). Let f be a nonnegative function defined on R+ such that f is integrable on R+

and is uniformly continuous on R+, then lim
t→∞

f (t) = 0.

To investigate the dynamics of (2), we first consider the following non-impulsive
system:

dy1(t) = y1(t)
(

a11(t) +
1
T

q

∑
j=1

ln(1 + ξ1k)− a12(t)A1(t)y1(t)

− c1(t)A2(t)y2(t)
m0(t) + m1(t)A1(t)y1(t) + m2(t)A2(t)y2(t)

)
dt + σ1(t)y1(t)dω1(t),

dy2(t) = y2(t)
(
− a21(t) +

1
T

q

∑
j=1

ln(1 + ξ2k)− a22(t)A2(t)y2(t)

+
c2(t)A1(t)y1(t)

m0(t) + m1(t)A1(t)y1(t) + m2(t)A2(t)y2(t)

)
dt + σ2(t)y2(t)dω2(t),

(5)

where

Ai(t) =

[
q

∏
j=1

(1 + ξij)

]− t
T

∏
0≤tk<t

(1 + ξik), i = 1, 2,

with the convention that the product of an empty index set is 1. It is easy to show that both
A1(·) and A2(·) are T-periodic. We refer the readers to [22] for details.

Lemma 5. Let x1(t) = A1(t)y1(t) and x2(t) = A2(t)y2(t). Then the following two state-
ments hold.

(i) If y(t) = (y1(t), y2(t)) is a solution of (5), then x(t) = (x1(t), x2(t)) is a solution of (2);
(ii) If x(t) = (x1(t), x2(t)) is a solution of (2), then y(t) = (y1(t), y2(t)) is a solution of (5).

The assertions in Lemma 5, similar to Theorem 3.1 in [13], follow easily from Definition 2
and hence the proof is omitted here. Lemma 5 tells us that when the dynamics of (2) is
considered, it suffices to focus on that of (5).

With similar arguments as those in the proof of Theorem 2.1 in [26], we can obtain the
existence and non-negativeness of solutions to (5).

Theorem 1. For any given initial value (y1(0), y2(0)) ∈ R2
+, (5) has a unique solution (y1(t), y2(t))

on R+ with (y1(t), y2(t)) ∈ R2
+ for t ∈ R+ with probability one.
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Finally, for any positive, bounded, and continuous function f (·) on R+, we denote

f u = sup{ f (t), t ≥ 0}, f l = inf{ f (t), t ≥ 0}, f ∗ = lim sup
t→∞

f (t), f∗ = lim inf
t→∞

f (t).

If f (·) is further integrable, then

〈 f 〉 = lim
t→∞

1
t

∫ t

0
f (s)ds and 〈 f 〉T =

1
T

∫ T

0
f (s)ds.

3. Existence of Periodic Markovian Processes

In this section, we first study the existence of periodic Markovian processes of (5).

Theorem 2. Suppose the following condition (H1) holds,

(H1)

λT : =

〈
ml

2a11(t)− c1(t)− a21(t)−
ml

2σ2
1 (t) + σ2

2 (t)
2

〉
T

+
ml

2
T

q

∑
j=1

ln(1 + ξ1k) +
1
T

q

∑
j=1

ln(1 + ξ2k)

> max

{
(Au

2 au
22 − cl

1 Al
2al

21)
2

4cl
1(Al

2)
2al

22
,

(Au
1 (c

u
2 au

11 + ml
2au

12))
2

4cu
2 al

12 Au
1 Al

1

}
.

Then there exists at least one positive T-Markovian process for (5).

Proof. It suffices to find a C2-function V(t, y1, y2) and a closed set U ⊂ R2
+ such that all

conditions of Lemma 1 hold. Define

V1(t, y1) = cu
2 Au

1 y1 −ml
2 ln y1, V2(y2) = cl

1 Al
2y2 − ln y2,

and V(t, y1, y2) = V1(t, y1) + V2(t, y2) + W(t), where W(t) is a positive differentiable
function satisfying

W ′(t) = ml
2a11(t)− c1(t)− a21(t)−

ml
2σ2

1 (t) + σ2
2 (t)

2
−
〈

ml
2a11(t)− c1(t)− a21(t)−

ml
2σ2

1 (t) + σ2
2 (t)

2

〉
T

.

It is not difficult to verify that W(t) is a T-periodic function on R+ and

lim inf
(y1,y2)∈R2

+/Uk

V(t, y1, y2)→ ∞ as k→ ∞,

where Uk = {(y1, y2) : (y1, y2) ∈ ( 1
k , k) × ( 1

k , k)}. Hence V(t, y1, y2) is T-periodic and
satisfies the first condition of Lemma 1. Next we verify the second condition of Lemma 1.
Applying Itô’s formula to V1(t, y1) and V2(t, y2) gives

LV1(t, y1) =

(
cu

2 Au
1 −

ml
2

y1

)
y1

(
a11(t) +

1
T

q

∑
j=1

ln(1 + ξ1k)− a12(t)A1(t)y1

− c1(t)A2(t)y2

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

)
+

ml
2σ2

1 (t)
2

≤ −ml
2

(
a11(t) +

1
T

q

∑
j=1

ln(1 + ξ1k)−
σ2

1 (t)
2

)

+ml
2

c1(t)A2(t)y2

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

−cu
2 Au

1
cl

1 Al
2y1y2

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

+(ml
2a12(t)A1(t) + cu

2 Au
1 a11(t))y1 − cu

2 Au
1 a12(t)A1(t)y2

1,
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and

LV2(t, y2) =

(
cl

1 Al
2 −

1
y2

)
y2

(
− a21(t) +

1
T

q

∑
j=1

ln(1 + ξ2k)− a22(t)A2(t)y2

+
c2(t)A1(t)y1

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

)
+

σ2
2 (t)
2

≤
(

a21(t)−
1
T

q

∑
j=1

ln(1 + ξ2k) +
σ2

2 (t)
2

)

+cl
1 Al

2
cu

2 Au
1 y1y2

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

−c2(t)A1(t)
y1

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

+(a22(t)A2(t)− cl
1 Al

2a21(t))y2 − cl
1 Al

2a22(t)A2(t)y2
2,

respectively. Then

LV ≤ −ml
2

(
a11(t) +

1
T

q

∑
j=1

ln(1 + ξ1k)−
σ2

1 (t)
2

)
+

(
a21(t) +

σ2
2 (t)
2
− 1

T

q

∑
j=1

ln(1 + ξ2k)

)

+
ml

2c1(t)A2(t)y2

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2
+ W ′(t) + (cu

2 Au
1 a11(t) + ml

2a12(t)A1(t))y1

−cu
2 Au

1 a12(t)A1(t)y2
1 + (a22(t)A2(t)− cl

1 Al
2a21(t))y2 − cl

1 Al
2a22(t)A2(t)y2

2

≤ −λT − cu
2 Au

1 al
12 Al

1y2
1 + Au

1 (c
u
2 au

11 + ml
2au

12)y1

−cl
1 Al

2al
22 Al

2y2
2 + (Au

2 au
22 − cl

1 Al
2al

21)y2.

Choose ε ∈ (0, 1) such that

1
2

{
λT −

(Au
2 au

22 − cl
1 Al

2al
21)

2

4cl
1(Al

2)
2al

22

}
> Au

1 (c
u
2 au

11 + ml
2au

12)ε, (6)

1
2

{
λT −

(Au
1 (c

u
2 au

11 + ml
2au

12))
2

4cu
2 al

12 Au
1 Al

1

}
> (Au

2 au
22 − cl

1 Al
2al

21)ε,

−cu
2 Au

1 al
12 Al

1y2
1 + Au

1 (c
u
2 au

11 + ml
2au

12)y1 < −1
2

for y1 > 1
ε , (7)

−cl
1 Al

2al
22 Al

2y2
2 + (Au

2 au
22 − cl

1 Al
2al

21)y2 < −1
2

for y2 > 1
ε .

Denote
Dε =

{
(y1, y2) : (y1, y2) ∈ [ε, 1

ε ]× [ε, 1
ε ]
}

.

Then Dε is compact and its complement DC
ε = R2

+/Dε =
4⋃

i=1
Di

ε, where

D1
ε = {(y1, y2) ∈ R2

+|y1 < ε}, D2
ε = {(y1, y2) ∈ R2

+|y2 < ε},
D3

ε = {(y1, y2) ∈ R2
+|y1 > 1

ε }, D4
ε = {(y1, y2) ∈ R2

+|y2 > 1
ε }.

Accordingly, we distinguish four cases to finish the proof.
Case (i): (y1, y2) ∈ D1

ε . Note that

− cl
1(Al

2)
2al

22y2
2 + (Au

2 au
22 − cl

1 Al
2al

21)y2 ≤
(Au

2 au
22 − cl

1 Al
2al

21)
2

4cl
1(Al

2)
2al

22
. (8)
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By (6), we get

LV ≤ −1
2

{
λT −

(Au
2 au

22 − cl
1 Al

2al
21)

2

4cl
1(Al

2)
2al

22

}
< 0.

Case (ii): (y1, y2) ∈ D2
ε . Similar to Case (i), we can get

LV ≤ −1
2

{
λT −

(Au
1 (c

u
2 au

11 + ml
2au

12))
2

4cu
2 al

12 Au
1 Al

1

}
< 0.

Case (iii): (y1, y2) ∈ D3
ε . In this case, by (8) and the definition of λT and the choice of

ε, we have

LV ≤ −λT −
1
2
+

(Au
2 au

22 − cl
1 Al

2al
21)

2

4cl
1(Al

2)
2al

22
≤ −1

2
.

Case (iv): (y1, y2) ∈ D4
ε . Similar to case (iii), we can show that

LV ≤ −1
2

.

In summary, we have verified the second condition of Lemma 1. This completes
the proof.

Before proving the global attractivity of (5), we first study its boundedness and
uniform continuity.

Lemma 6. For any initial value y(0) = (y1(0), y2(0))T ∈ R2
+, the solution (y1(t), y2(t)) of (5)

satisfies
lim sup

t→∞
E(yp

i ) < Hi(p)

for any p > 0, i = 1, 2. Further

lim sup
t→∞

P{|yi(t)| > ηi} < ε, i = 1, 2,

that is, the solution of (5) is stochastically ultimately bounded, where Hi(p) and ηi are positive
constants and ε is a corresponding small positive constant.

Proof. Using Itô’s formula to yp
1 and yp

2 , we have

dyp
1 =

[
pyp

1

(
a11(t) +

1
T

q

∑
j=1

ln(1 + ξ1k)− a12(t)A1(t)y1 −
c1(t)A2(t)y2

m0(t) + m1(t)A1(t)(y1 + m2(t)A2(t)y2

)

+
σ2

1 (t)
2

p(p− 1)yp
1

]
dt + pyp−1

1 σ1(t)y1dω1(t)

≤ pyp
1

(
au

11 +
1
T

q

∑
j=1

ln(1 + ξ1k) +
p(σu

1 )
2

2
− al

12 Al
1y1

)
dt + pσ1(t)y

p
1 dω1(t),

and
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dyp
2 =

[
pyp

2

(
−a21(t) +

1
T

q

∑
j=1

ln(1 + ξ2k)− a22(t)A2(t)y2 +
c2(t)A1(t)y1

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

)

+
p(p− 1)σ2

2 (t)
2

yp
2

]
dt + pyp

2 σ2(t)dω2(t)

≤ pyp
2

(
−al

21 +
1
T

q

∑
j=1

ln(1 + ξ2k) +
p(σu

2 )
2

2
+

cu
2

ml
1
− al

22 Al
2y2

)
dt + pσ2(t)y

p
2 dω1(t),

respectively. By the properties of expectation, it follows that

dE(yp
1 )

dt
≤ p

(
au

11 +
1
T

q

∑
j=1

ln(1 + ξ1k) +
p(σu

1 )
2

2

)
E(yp

1 )− pal
12 Al

1[E(y
p
1 )]

1+ 1
p ,

and

dE(yp
2 )

dt
≤ p

(
−al

21 +
1
T

q

∑
j=1

ln(1 + ξ2k) +
p(σu

2 )
2

2
+

cu
2

ml
1

)
E(yp

2 )− pal
22 Al

2[E(y
p
2 )]

1+ 1
p .

Using the comparison theorem of differential equations, we obtain

lim sup
t→∞

E(yp
1 (t)) ≤


au

11 +
1
T

q

∑
j=1

ln(1 + ξ1k) +
p(σu

1 )
2

2

al
12 Al

1


p

:= H̆1(p),

and

lim sup
t→∞

E(yp
2 (t)) ≤


−al

21 +
1
T

q

∑
j=1

ln(1 + ξ2k) +
p(σu

2 )
2

2
+

cu
2

ml
1

al
22 Al

2


p

:= H̆2(p).

Therefore, there exists a t̃ > 0 such that E(yp
1 (t)) ≤

3
2 H̆1(p) and E(yp

2 (t)) ≤
3
2 H̆2(p)

for any t ≥ t̃. Moreover, by the continuity of E(yp
1 (t)) and E(yp

2 (t)), there exist H̃1(p) > 0
and H̃2(p) > 0 such that E(yp

1 (t)) ≤ H̃1(p) and E(yp
2 (t)) ≤ H̃2(p) for any t ∈ [0, t̃].

Then H1(p) = max{ 3
2 H̆1(p), H̃1(p)} and H2(p) = max{ 3

2 H̆2(p), H̃2(p)} are what we are
looking for.

Next, applying Chebyshev inequality, we can directly derive that

lim sup
t→∞

P{|yi(t)| > ηi} < ε, i = 1, 2,

which means that (5) is stochastically ultimately bounded. This completes the proof.

Lemma 7. Let (y1(t), y2(t)) be a solution of (5) on R+ with the initial value (y1(0), y2(0)) ∈ R2
+.

Then almost every sample path of (y1(t), y2(t)) is uniformly continuous on R+.
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Proof. By Lemma 6 and the properties of expectation, we get

E

∣∣∣∣∣y1

(
a11(t) +

1
T

q

∑
j=1

ln(1 + ξ1k)− a12(t)A1(t)y1 −
c1(t)A2(t)y2

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

)∣∣∣∣∣
p

≤ 1
2
E

∣∣∣∣∣a11(t) +
1
T

q

∑
j=1

ln(1 + ξ1k)− a12(t)A1(t)y1 −
c1(t)A2(t)y2

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

∣∣∣∣∣
2p

+
1
2
E|y1|2p

≤ 1
2

H1(2p) + 32p−1(au
11)

2p + au
12 Au

1 H1(2p) +

(
cu

1

ml
2

)2p
 := G1(p).

By using stochastic integral inequality, for 0 < t1 < t2 and p > 2, we have

E
∣∣∣∣∫ t2

t1

σ1(s)y1(s)dω1(s)
∣∣∣∣p ≤ (σu

1 )
p
[

p(p− 1)
2

] p
2 (t2 − t1)

p− 2
2

∫ t2

t1

E(|y1|p)ds

≤ (σu
1 )

p
[

p(p− 1)
2

] p
2 (t2 − t1)

p
2 H1(p).

Thus when 0 < t1 < t2 < ∞, t2 − t1 ≤ 1, and 1
p + 1

q = 1,

E|y1(t2)− y1(t1)|p = E

∣∣∣∣∣
∫ t2

t1

y1

(
a11(s) +

1
T

q

∑
j=1

ln(1 + ξ1k)− a12(s)A1(t)y1

− c1(s)A2(t)y2

m0(s) + m1(s)A1(t)y1 + m2(s)A2(t)y2

)
ds+

∫ t2

t1

σ1(s)y1(s)dω1(s)
∣∣∣∣p

≤ 2p−1E

∣∣∣∣∣
∫ t2

t1

y1

(
a11(s) +

1
T

q

∑
j=1

ln(1 + ξ2k)− a12(s)A1(t)y1

− c1(s)A2(t)y2

m0(s) + m1(s)A1(t)y1 + m2(s)A2(t)y2

)
ds
∣∣∣∣p

+2p−1E
∣∣∣∣∫ t2

t1

σ1(s)y1(s)dω1(s)
∣∣∣∣p

≤ 2p−1(t2 − t1)

p
q
∫ t2

t1

E
∣∣∣∣y1

(
a11(s) +

1
T

q

∑
j=1

ln(1 + ξ2k)− a12(s)A1(t)y1

− c1(s)A2(t)y2

m0(s) + m1(s)A1(t)y1 + m2(s)A2(t)y2

)∣∣∣∣pds

+2p−1(σu
1 )

p
[

p(p− 1)
2

] p
2 (t2 − t1)

p
2 H1(p)

≤ 2p−1(t2 − t1)

p
q
+ 1

G1(P) + 2p−1(σu
1 )

p
[

p(p− 1)
2

] p
2 (t2 − t1)

p
2 H1(p)

≤ 2p−1(t2 − t1)

p
2
[

1 +
p(p− 1)

2

] p
2 G2(p),

where G2(p) = max{G1(p), σu
1 H1(p)}. Then an application of Lemma 3 yields that almost

every sample path of y1 is locally but uniformly Hölder-continuous with exponent ϑ ∈
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(0, p−2
2p ) and hence almost every sample path of y1 is uniformly continuous on R+. The

conclusion on y2 is proved with similarity. This completes the proof.

Now, we are ready to state and prove the global attractivity of (5).

Theorem 3. Suppose the following condition holds,

(H2) ι1 = al
12 −

cu
1 mu

1
ml

0ml
2
− cu

2
ml

0
> 0 and ι2 = al

22 −
cu

1
ml

0
− cu

2 mu
2

ml
0ml

1
> 0.

Then all solutions of system (5) are globally attractive.

Proof. Let (y1, y2) and (ỹ1, ỹ2) be any two solutions of (5). Define V(t) = | ln y1 − ln ỹ1|+
| ln y2 − ln ỹ2|. Then V(·) is continuous and positive on R+. Using Itô’s formula, we get

d+V

= sgn (y1 − ỹ1){−a12(t)A1(t)(y1 − ỹ1)− [ c1(t)A2(t)y2
m0(t)+m1(t)A1(t)y1+m2(t)A2(t)y2

− c1(t)A2(t)ỹ2
m0(t)+m1(t)A1(t)ỹ1+m2(t)A2(t)ỹ2

]}dt + sgn (y2 − ỹ2){−a22(t)A2(t)(y2 − ỹ2)

+[ c2(t)A1(t)y1
m0(t)+m1(t)A1(t)y1+m2(t)A2(t)y2

− c2(t)A1(t)ỹ1
m0(t)+m1(t)A1(t)ỹ1+m2(t)A2(t)ỹ2

]}dt

≤ −a12(t)A1(t)|y1 − ỹ1|dt− a22(t)A2(t)|y2 − ỹ2|dt

+| c1(t)A2(t)y2
m0(t)+m1(t)A1(t)y1+m2(t)A2(t)y2

− c1(t)A2(t)ỹ2
m0(t)+m1(t)A1(t)ỹ1+m2(t)A2(t)ỹ2

|dt

+| c2(t)A1(t)y1
m0(t)+m1(t)A1(t)y1+m2(t)A2(t)y2

− c2(t)A1(t)ỹ1
m0(t)+m1(t)A1(t)ỹ1+m2(t)A2(t)ỹ2

|dt

= −a12(t)A1(t)|y1 − ỹ1|dt− a22(t)A2(t)|y2 − ỹ2|dt

+c1(t)A2(t)| (m0(t)+m1(t)A1(t)ỹ1)(y2−ỹ2)+m1(t)A1(t)ỹ2(y1−ỹ1)
[m0(t)+m1(t)A1(t)y1+m2(t)A2(t)y2][m0(t)+m1(t)A1(t)ỹ1+m2(t)A2(t)ỹ2]

|dt

+c2(t)A1(t)| m2(t)A2(t)y1(y2−ỹ2)+(m0(t)+m2(t)A2(t)y2)(y1−ỹ1)
[m0(t)+m1(t)A1(t)y1+m2(t)A2(t)y2][m0(t)+m1(t)A1(t)ỹ1+m2(t)A2(t)ỹ2]

|dt

≤ −a12(t)A1(t)|y1 − ỹ1|dt + cu
1 mu

1 A1(t)
ml

0ml
2
|y1 − ỹ1|dt + cu

1 A2(t)
ml

0
|y2 − ỹ2|dt

−a22(t)A2(t)|y2 − ỹ2|dt + cu
2 A1(t)

ml
0
|y1 − ỹ1|dt + cu

2 mu
2 A2(t)

ml
0ml

1
|y2 − ỹ2|dt

≤ −Al
1ι1|y1 − ỹ1|dt− Al

2ι2|y2 − ỹ2|dt.

Integrating both sides of the last inequality from 0 to t and using (H2), we get

V(t) ≤ V(0)−
∫ t

0
α1ι1|y1 − ỹ1|+ α2ι2|y2 − ỹ2|ds ≤ V(0) < ∞.

Thus |y1 − ỹ1| ∈ L1[0, ∞) and |y2 − ỹ2| ∈ L1[0, ∞). Now the result follows from
Definition 3 and Lemma 4. This completes the proof.

Remark 1. Theorem 3 implies that if the pulses are bounded then they have no influence on
the global attractivity of system (5), which agrees with ([27], Theorem 4) (stochastic but non-
impulsive case).



Axioms 2021, 10, 323 11 of 21

4. Extinction and Permanence in Mean

For convenience, we denote

λ1 : =

〈
a11(t)−

σ2
1 (t)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ1k),

λ2 : =

〈
−a21(t)−

σ2
2 (t)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ2k),

λ̃1 : =

〈
a11(t)−

σ2
1 (t)
2
− c1(t)

ml
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ1k),

λ̃2 : =

〈
−a21(t)−

σ2
2 (t)
2

+
c2(t)
ml

1

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ2k).

Obviously, they satisfy λ̃1 ≤ λ1 and λ2 ≤ λ̃2 by a direct verification.

Theorem 4. For system (5), the following results hold.

(i) If λ1 < 0 and λ̃2 < 0, then all species of (5) are extinct, i.e., lim
t→∞

yi(t) = 0, i = 1, 2.

(ii) If λ̃1 > 0 and λ̃2 < 0, then y1 is permanent in mean and y2 is extinct, i.e., ς̃1 ≤ 〈y1〉 ≤ ζ1
for some positive numbers ς̃1 and ζ1, lim

t→∞
y2(t) = 0.

(iii) If λ1 < 0 and λ2 > 0, then y1 is extinct and y2 is permanent in mean, i.e., lim
t→∞

y1(t) = 0

and ς2 ≤ 〈y2〉 ≤ ζ̃2 for some positive numbers ς2 and ζ̃2.
(iv) If λ̃1 > 0 and λ2 > 0, then yi is permanent in mean, i.e., ςi ≤ 〈yi〉 ≤ ζi for some positive

numbers ςi and ζi, i = 1, 2.

Proof. Applying Itô’s formula to ln y1 and ln y2 gives

d ln y1 =

(
a11(t) +

1
T

q

∑
j=1

ln(1 + ξ1k)−
σ2

1 (t)
2
− a12(t)A1(t)y1

− c1(t)A2(t)y2

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

)
+ σ1(t)dω1(t),

(9)

and

d ln y2 =

(
− a21(t) +

1
T

q

∑
j=1

ln(1 + ξ2k)−
σ2

2 (t)
2
− a22(t)A2(t)y2

+
c2(t)A1(t)y1

m0(t) + m1(t)A1(t)y1 + m2(t)A2(t)y2

)
+ σ2(t)dω2(t),

(10)

respectively. Integrating (9) from 0 to t produces

ln y1 − ln y1(0)
t

=
1
t

∫ t

0

(
a11(s)−

σ2
1 (s)
2

)
dt +

1
T

q

∑
j=1

ln(1 + ξ1k)−
1
t

∫ t

0
a12(s)A1(s)y1(s)ds

−1
t

∫ t

0

c1(s)A2(s)y2

m0(s) + m1(s)A1(s)y1 + m2(s)A2(s)y2
ds +

1
t

∫ t

0
σ1(s)dω1(s).

By virtue of the strong law of large numbers for martingales, lim sup
t→∞

1
t
∫ t

0 σ1(s)dω1(s) = 0.

Then let t→ ∞ in the previous equality to obtain

ln y1

t
≤
〈

a11(s)−
σ2

1 (s)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ1k)− al
12 Al

1〈y1〉. (11)
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(i) If λ1 < 0, applying Lemma 2, we obtain from (11) that lim
t→∞

y1(t) = 0. Then (10) reads

d ln y2 =

(
−a21(t) +

1
T

q

∑
j=1

ln(1 + ξ2k)−
σ2

2 (t)
2
− a22(t)A2(t)y2

)
dt + σ2(t)dω2(t).

Integrating both sides from 0 to t yields

ln y2 − ln y2(0)
t

≤ −1
t

∫ t

0

(
a21(s) +

σ2
2 (s)
2

)
ds +

1
T

q

∑
j=1

ln(1 + ξ2k)− al
22 Al

2〈y2〉+
1
t

∫ t

0
σ2(t)dω2(t).

With a similar argument as above, we can obtain lim
t→∞

y2(t) = 0. Therefore, all species

are extinct.
(ii) If λ̃1 > 0, then λ1 > 0. Lemma 2 and (11) imply

〈y1〉∗ ≤

〈
a11(t)−

σ2
1 (t)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ1k)

al
12 Al

1
:= ζ1.

By monotonicity, we can derive from (10) that

d ln y2 ≤
(
−a21(t) +

1
T

q

∑
j=1

ln(1 + ξ2k)−
σ2

2 (t)
2
− a22(t)A2(t)y2 +

c2(t)A1(t)y1

m1(t)A1(t)y1

)
dt + σ2(t)dω2(t).

Thus

ln y2 − ln y2(0)
t

≤ 1
t

∫ t

0

(
c2(s)
ml

1
− a21(s)−

σ2
2 (s)
2

)
ds +

1
T

q

∑
j=1

ln(1 + ξ2k)− al
22 Al

2〈y2〉+
1
t

∫ t

0
σ2(t)dω2(t). (12)

Since λ̃2 < 0, it follows from Lemma 2 that lim
t→∞

y2(t) = 0. Using (9) again, we have

ln y1 − ln y1(0)
t

≥ 1
t

∫ t

0

(
a11(s)−

σ2
1 (s)
2

)
ds +

1
T

q

∑
j=1

ln(1 + ξ1k)− au
12 Au

1 〈y1〉+
1
t

∫ t

0
σ1(s)ds.

Letting t→ ∞ and using Lemma 2, we arrive at

〈y1〉∗ ≥

〈
a11(t)−

σ2
1 (t)
2

〉
T
+

1
T

q

∑
j=1

ln(1 + ξ1k)

au
12 Au

1
:= ς̃1.

In summary,

ς̃1 =

〈
a11(t)−

σ2
1 (t)
2

〉
T
+

1
T

q

∑
j=1

ln(1 + ξ1k)

au
12 Au

1
≤ 〈y1〉 ≤

〈
a11(t)−

σ2
1 (t)
2

〉
T
+

1
T

q

∑
j=1

ln(1 + ξ1k)

al
12 Al

1
= ζ1,

which means y1 is permanent in mean.
(iii) If λ1 < 0, case (i) implies that lim

t→∞
y1(t) = 0. It follows from (10) that

d ln y2 ≤
(
−a21(t)−

σ2
2 (t)
2

)
dt +

1
T

q

∑
j=1

ln(1 + ξ2k)− al
22 Al

2y2dt + σ2(t)dω2(t)
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and

d ln y2 ≥
(
−a21(t)−

σ2
2 (t)
2

)
dt +

1
T

q

∑
j=1

ln(1 + ξ2k)− au
22 Au

2 y2dt + σ2(t)dω2(t).

Since λ2 > 0, using Lemma 2 gives

ς2 =

〈
−a21(t)−

σ2
2 (t)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ2k)

au
22 Au

2
≤ 〈y2〉 ≤

〈
−a21(t)−

σ2
2 (t)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ2k)

al
22 Al

2
= ζ̃2,

which means y2 is permanent in mean.
(iv) Obviously, λ̃1 > 0 and λ2 > 0 imply that λ1 > 0 and λ̃2 > 0, respectively. Therefore,

species y2 can not be extinct. It follows from (9) that

ln y1 − ln y1(0)
t

≥ 1
t

∫ t

0

(
a11(s)−

c1(s)
ml

2
−

σ2
1 (s)
2

)
ds +

1
T

q

∑
j=1

ln(1 + ξ1k)− au
12 Au

1 〈y1〉+
1
t

∫ t

0
σ1(s)ds.

Apply Lemma 2 to get

〈y1〉∗ ≥

〈
a11(t)−

c1(t)
ml

2
−

σ2
1 (t)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ1k)

au
12 Au

1
:= ς1.

This, combined with (ii), produces ς1 ≤ 〈y1〉 ≤ ζ1, i.e., y1 is permanent in mean.
Since λ̃2 > 0, applying Lemma 2 to (12) yields

〈y2〉∗ ≤

〈
c2(t)
ml

1
− a21(t)−

σ2
2 (t)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ2k)

al
22 Al

2
:= ζ2.

Moreover, we get from (10) that

ln y2 − ln y2(0)
t

=
1
t

∫ t

0

(
−a21(s)−

σ2
2 (s)
2

)
ds− 〈a22(t)A2(t)y2〉+

1
T

q

∑
j=1

ln(1 + ξ2k)

+
1
t

∫ t

0

c2(s)A1(s)y1

m0(s) + m1(s)A1(s)y1 + m2(s)A2(s)y2
ds +

1
t

∫ t

0
σ2(s)dω2(s)

≥
〈

c2(t)Al
1ε0

mu
0 + mu

1 Au
1 η1 + mu

2 Au
2 η2
− a21(t)−

σ2
2 (t)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ2k)

−au
22 Au

2 〈y2〉+
1
t

∫ t

0
σ2(t)dω2(t).

In view of λ2 > 0 and lim sup
t→∞

1
t
∫ t

0 σ2(s)dω2(s) = 0, applying Lemma 2 again yields

〈y2〉∗ ≥

〈
c2(t)Al

1ε0

mu
0 + mu

1 Au
1 η1 + mu

2 Au
2 η2
− a21(t)−

σ2
2 (t)
2

〉
T

+
1
T

q

∑
j=1

ln(1 + ξ2k)

au
22 Au

2
≥ ς2.

Thus ς2 ≤ 〈y2〉 ≤ ζ2, which means that y2 is permanent in mean. The proof is
completed.
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Remark 2. Theorem 4 provides sufficient conditions on the extinction of all species. Obviously,
for the autonomous case, they are in accordance with ([26], Theorem 4.1). Moreover, we have also
established sufficient conditions ensuring the permanence in mean of every species for the non-
autonomous case. Therefore, Theorem 4 not only improves but also generalizes the corresponding
results in [26].

5. Stationary Distribution

In this section, we consider the distribution of the autonomous and non-impulsive
case of (2). The model is as follows:

dx1(t) = x1(t)
(

a11 − a12x1(t)−
c1x2(t)

m0 + m1x1(t) + m2x2(t)

)
dt + σ1x1(t)dω1(t),

dx2(t) = x2(t)
(
−a21 − a22x2(t) +

c2x1(t)
m0 + m1x1(t) + m2x2(t)

)
dt + σ2x2(t)dω2(t).

(13)

First, we introduce an important lemma for the existence of a stationary distribution.
For the autonomous stochastic differential equation

dx(t) = b(x)dt +
r

∑
k=1

σk(x)dωk(t), (14)

where x(t) is a homogeneous Markovian process in n-dimensional Euclidean space Rn.

The diffusion matrix A(x) = (aij(x))n×n, aij(x) =
r
∑

k=1
σi

k(x)σj
k(x).

Lemma 8 ([16]). Assume there exists a bounded domain U ⊂ Rn with regular boundary Γ
satisfying the following two conditions:

(i) F is uniformly elliptical in the domain U and some neighborhood thereof, where Fu =

b(x)ux +
tr(A(x))uxx

2 .
(ii) There is a non-negative C2-function V(x) and a positive constant C such that LV(x) ≤ −C

for any x ∈ Rn/U.

Then the Markovian process x(t) of system (14) has a unique stationary distribution µ(·),
and for any integrable function f (·) with respect the measure µ, we have

P
(

lim
t→∞

1
t

∫ t

0
f (x(t))dt =

∫
Rn

f (x)µ(dx)
)
= 1.

Now we consider the stationary distribution of (13).

Theorem 5. Suppose the following condition holds:

(H3) λ0 := m2

(
a11 −

σ2
1
2

)
−
(

a21 + c1 +
σ2

2
2

)
> max

{
(a22−c1a21)

2

4c1a22
, (m2a12+c2a11)

2

4c2a12

}
,

then there exists a stationary distribution for system (13), which is ergodic.

Proof. Define

V1(t) = c2y1(t)−m2 ln y1(t) and V2(t) = c1y2(t)− ln y2(t).
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Applying Itô’s formula to V1(·) and V2(·), then

LV1 =

(
c2 −

m2

y1(t)

)
y1(t)

(
a11 − a12y1(t)−

c1y2(t)
m0 + m1y1(t) + m2y2(t)

)
+

m2σ2
1

2

= −m2

(
a11 −

σ2
1

2

)
+ c2a11y1(t)− c2a12y2

1(t)− c1c2
y1(t)y2(t)

m0 + m1y1(t) + m2y2(t)

+a12m2y1(t) + m2c1
y2(t)

m0 + m1y1(t) + m2y2(t)
,

and

LV2 =

(
c1 −

1
y2(t)

)
y2(t)

(
−a21 − a22y2(t) +

c2y1(t)
m0 + m1y1(t) + m2y2(t)

)
+

σ2
2

2

=

(
a21 +

σ2
2

2

)
− c1a21y2(t)− c1a22y2

2(t) + c1c2
y1(t)y2(t)

m0 + m1y1(t) + m2y2(t)

+a22y2(t)−
c2y1(t)

m0 + m1y1(t) + m2y2(t)
.

Let V(t) = V1(t) + V2(t), then

LV = −m2

(
a11 −

σ2
1

2

)
− c2a12y2

1(t)− c1c2
y1(t)y2(t)

m0 + m1y1(t) + m2y2(t)

+c2a11y1(t) + a12m2y1(t) + m2c1
y2(t)

m0 + m1y1(t) + m2y2(t)

+

(
a21 +

σ2
2

2

)
+ a22y2(t)− c1a21y2(t)− c1a22y2

2(t)

+c1c2
y1(t)y2(t)

m0 + m1y1(t) + m2y2(t)
− c2y1(t)

m0 + m1y1(t) + m2y2(t)

≤ −
[

m2

(
a11 −

σ2
1

2

)
− (a21 + c1 +

σ2
2

2
)

]
− c2a12y2

1(t)

+(a12m2 + c2a11)y1(t)− c1a22y2
2(t) + (a22 − c1a21)y2(t)

= −λ0 − c2a12y2
1(t) + (a12m2 + c2a11)y1(t)− c1a22y2

2(t) + (a22 − c1a21)y2(t).

It is not difficult to verify that

lim inf
(y1,y2)∈R2

+/Uk

V(t, y1, y2)→ ∞ as k→ ∞,

where Uk = {(y1, y2) : (y1, y2) ∈ ( 1
k , k)× ( 1

k , k)}. Hence the first condition of Lemma 8 is
satisfied. Next we verify the second condition of Lemma 8. Define a closed and compact
set Dε as before, where ε > 0 is small enough such that

1
2

{
λ0 −

(a22 − c1a21)
2

4c1a22

}
> (a12m2 + c2a11)ε, (15)

and
1
2

{
λ0 −

(a12m2 + c2a11)
2

4c2a12

}
> a22ε. (16)

Then the component DC
ε = R2

+/Dε =
4⋃

i=1
Di

ε is the same as in Theorem 2. We consider

the following cases.
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Case (i): (y1, y2) ∈ D1
ε . It is clear that

−c1a22y2
2(t) + (a22 − c1a21)y2(t) ≤

(a22 − c1a21)
2

4c1a22
.

By (15), then

LV ≤ −1
2

{
λ0 −

(a22 − c1a21)
2

4c1a22

}
< 0.

Case (ii): (y1, y2) ∈ D2
ε . Similarly, we have

−c2a12y2
1(t) + (a12m2 + c2a11)y1(t) ≤

(a12m2 + c2a11)
2

4c2a12
,

and hence,

LV ≤ −1
2

{
λ0 −

(a12m2 + c2a11)
2

4c2a12

}
< 0.

Obviously, if (y1, y2) ∈ Di
ε, i = 3, 4, then LV → −∞. Lemma 8 shows system (13) has

a unique stationary distribution, which is ergodic. This completes the proof.

Remark 3. For a stochastic but non-impulsive case, the stationary distribution is also studied
in [26], but their result (Theorem 3.1 in [26]) is based on the existence of equilibrium, which is not
necessary in Theorem 5, and the proof is also different.

6. Examples and Simulations

In this section, by applying the Milstein simulation method [30], we give some
examples and simulations to illustrate our theoretical results and reveal the effects of
random disturbance and impulsive factors.

Example 1. In order to numerically examine the existence of a T-periodic solution of system (2),
we choose the following parameters:

a11(t) = 5 + 0.2 sin 2t, a12(t) = 2 + 0.1 cos 2t, c1(t) = 1 + 0.3 cos 2t,
m0(t) = 1 + 0.3 sin 2t, m1(t) = 0.2 + 0.1 sin 2t, m2(t) = 1 + 0.5 sin 2t,
a21(t) = 1 + 0.2 sin 2t, a22(t) = 2 + 0.1 sin 2t, c2(t) = 0.8 + 0.3 cos 2t,
σ1(t) = 0.02 + 0.02 sin 2t, σ2(t) = 0.01 + 0.01 sin 2t, ξ1 = 0.03 + 0.01 sin 2t,
ξ2 = 0.02 + 0.01 sin 2t, tk = kπ, k ∈ N,

such that (H1) holds. That is to say, the conditions of Theorem 2 are satisfied. By Theorem 2, we can
see that system (2) has a unique π-periodic solution, illustrated in Figure 1a–c.

Furthermore, if there are no impulsive or stochastic effects, i.e., σi(t) = 0 or ξik = 0,
other parameters remain unchanged, then by verification, (H1) holds and system (2) still
has a π-periodic solution. The deterministic case (σi(t) = ξik = 0), the impulsive case
(σi(t) = 0) and the stochastic case (ξik = 0) are shown in Figure 1d–f, respectively.

By comparing (c) with (d–f), we can observe that small impulse or stochastic noise has
little influence on the existence of the π-periodic solution.
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Figure 1. The periodic Markovian process for (2) with initial data x1(0) = x2(0) = 0.02. (a) The
time series graph of x1(t) for Example 1; (b) the time series graph of x2(t) for Example 1; (c) the
phase graph of Example 1 with σi(t) 6= 0, ξik 6= 0; (d) the phase graph of deterministic system
(ξik = σi(t) = 0); (e) the phase graph of impulsive system (σi(t) = 0, ξik 6= 0); (f) the phase graph of
stochastic system (σi(t) 6= 0, ξik = 0)i = 1, 2, k ∈ N.

Similarly, we can verify that all parameters meet (H2) and Theorem 3 shows that the
solution of (2) is globally attractive. Figure 2 confirms this.
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Figure 2. The attractivity of (2). The red lines are the time series of x1(t) and x2(t) with initial
data x1(0) = x2(0) = 0.02, and the blue lines are the time series of x1(t) and x2(t) with initial data
x1(0) = x2(0) = 2. (a) The attractivity of x1(t); (b) The attractivity of x2(t).
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Example 2. We choose a set of parameters as follows in order to investigate the permanence and
extinction of system (2). Let

a11(t) = 2 + 0.2 sin 2t, a12(t) = 0.8 + 0.1 cos 2t, c1(t) = 0.5 + 0.3 cos 2t,
m0(t) = 0.5 + 0.3 sin 2t, m1(t) = 0.2 + 0.1 sin 2t, m2(t) = 0.8 + 0.5 sin 2t,
a21(t) = 0.6 + 0.2 sin 2t, a22(t) = 0.4 + 0.1 sin 2t, c2(t) = 1 + 0.3 cos 2t,
σ1(t) = 0.02 + 0.02 sin 2t, σ2(t) = 0.01 + 0.01 sin 2t, ξ1 = 0.03 + 0.01 sin 2t,
ξ2 = 0.02 + 0.01 sin 2t, tk = 0.1kπ, k ∈ N.

It is not difficult to derive that λ̃1 > 0 and λ2 > 0. Then by Theorem 4, all species of (2) are
permanent in the mean. Figure 3a confirms this.

Next we illustrate the cases of extinction in Theorem 4. In order to reveal the impacts
of stochastic or impulsive factors, we only change the values of stochastic or impulsive
parameters and keep all other parameters the same.

(i) Let σ2(t) = 2+ 0.01 sin 2t, then λ̃1 > 0 and λ̃2 < 0. Theorem 4 implies x1 is permanent
in the mean and x2 is extinct, see Figure 3b. It shows that too much white noise results
in the extinction of the predator.

(ii) If ξ1 = 2 + 0.01 sin 2t, ξ2 = 1.8 + 0.01 sin 2t, then λ1 < 0 and λ2 > 0. Theorem 4
implies x1 is extinct and x2 is permanent in the mean, as illustrated in Figure 3c, which
shows that too large a pulse leads to the extinction of the prey.

(iii) If σ1(t) = 2 + 0.02 sin 2t, σ2(t) = 1 + 0.01 sin 2t, then λ1 < 0 and λ̃2 < 0. Theorem 4
shows that both prey and predator are extinct (Figure 3d). This indicates that the
white noise has a huge influence on the system permanence, and too much noise will
make all species extinct.
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Figure 3. The permanence in the mean and extinction of (2) with initial data x1(0) = x2(0) = 0.02.
(a) the time series graph of x1(t) and x2(t); (b) the permanence in the mean of x1(t) and extinction of
x2(t) with σ1(t) = 0.02+ 0.02 sin 2t, σ2(t) = 2+ 0.01 sin 2t; (c) the extinction of x1(t) and permanence
in the mean of x2(t) with ξ1 = 2 + 0.01 sin 2t, ξ2 = 1.8 + 0.01 sin 2t; (d) the extinction of all species
with σ1(t) = 2 + 0.02 sin 2t and σ2(t) = 1 + 0.01 sin 2t.
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Example 3. For the autonomous and non-impulsive case, let a11 = 2, a12 = 0.8, c1 = 1, m0 = 0.3,
m1 = 0.2, m2 = 1, a21 = 0.8, a22 = 0.7, c2 = 0.8, σ1 = 0.2, σ2 = 0.1. An easy computation shows
that (H3) holds, so the distribution of (2) is stable (see Figure 4). Figure 4a,b shows the time series
graphs of x1(t) and x2(t), respectively. Figure 4c is the density of distribution of x1(t) and x2(t).
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Figure 4. The distribution of (13) with initial data x1(0) = x2(0) = 0.02. (a) the time series graph of
x1(t); (b) the time series graph of x2(t); (c) the density of distribution of x1(t) and x2(t).

7. Discussion and Conclusions

In this paper, a stochastic predator–prey system with impulsive effects and
Beddington–DeAngelis functional responses is studied. The complicated dynamical be-
haviors are revealed in our main results. Sufficient conditions of the existence of periodic
Markovian process are established in Theorem 2. The attractivity of solutions is shown in
Theorem 3. The extinction and permanence in the mean of predator and prey species are
represented in Theorem 4. The existence and ergodicity of the stationary distribution for
the autonomous and non-impulsive cases of system (2) are given in Theorem 5. Finally,
using Matlab, some simulations (Figures 1–4) are given to verify the main results.

By giving some remarks (Remarks 1, 2 and 3), the main difference from some existing
results are shown in detail. Particularly, we establish the sufficient conditions assuring the
existence of a periodic Markovian process of (2), which has not been studied previously. In
the process of our analysis, the Beddington–DeAngelis functional responses brought some
difficulties and inequality techniques were applied to overcome them. When there are too
many kinds of functional responses, what is the best way to deal with other functional
responses? Further, time delays often appear in biological models; how should the effect of
time delays be discussed? These are necessary and interesting questions for us to study in
the future.
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