
axioms

Article

A Relation-Theoretic Metrical Fixed Point Theorem for Rational
Type Contraction Mapping with an Application

Asik Hossain 1,*, Faizan Ahmad Khan 2,* and Qamrul Haq Khan 1

����������
�������

Citation: Hossain, A.; Khan, F.A.;

Khan, Q.H. A Relation-Theoretic

Metrical Fixed Point Theorem for

Rational Type Contraction Mapping

with an Application. Axioms 2021, 10,

316. https://doi.org/10.3390/

axioms10040316

Academic Editor: Hari Mohan

Srivastava

Received: 18 October 2021

Accepted: 19 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India; qhkhan.ssitm@gmail.com
2 Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia
* Correspondence: asik.amu1773@gmail.com (A.H.); fkhan@ut.edu.sa (F.A.K.)

Abstract: In this article, we discuss the relation theoretic aspect of rational type contractive mapping
to obtain fixed point results in a complete metric space under arbitrary binary relation. Furthermore,
we provide an application to find a solution to a non-linear integral equation.

Keywords: binary relation; <-completeness; rational contraction

MSC: 47H10; 54H25

1. Introduction

In 1922, the first prosperous result was postulated by S. Banach [1] in the fixed point
theory for contractive mapping. For its modesty, his work functioned as a schematic
research tool in a different branch of mathematics. This theorem went in a different
direction to verify its effectiveness. Such as

(i) Enlarging the ambient space;
(ii) Improving the underlying contraction condition;
(iii) Weakening the involved metrical notions.

Among the several extensions of the Banach contraction principle to various spaces,
some are rectangular metric space, generalized metric space, partial metric space, b-metric
space, partial b-metric space, symmetric space and quasi metric space. Partial metric space
was introduced by Matthews [2] in 1994. Nowadays, there are many fixed point theories in
Partial metric space.

Several researchers stated various contraction conditions [3–8] for the fixed point
theorem. Inspired by Turinici’s [9] work, Ran-Reurings in 2004 formulate the result that
there will be a fixed point of self-mappings that is applied only for those points which
are comparable to each other by an order relation in partial metric space. Later, the work
was extended by J. J. Nieto and R. Rodríguez-López [10]. In 1975, Dass and Gupta [11],
came up with a new contractive condition termed as a rational type contraction. Later,
Canbrera et al. [12] used the result of Dass and Gupta [11] in 2013 to obtain the fixed point
results in partial ordered metric space.

Alternatively, Alam and Imdad [13] established a profound generalization of the
Banach contraction principle with an amorphous binary relation. With this structure,
various relation-theoretic results were proposed in different aspects of the binary relation
or contractive condition.

There are too many applications of fixed point theory in the field of ordinary differ-
ential equations, systems of matrix equation, integral equations, game theory, economics,
optimization models and numerical models in statistics. Moreover, for the multivalued
maps in the equilibrium in the duopoly markets and in aquatic ecosystem there are also
too many applications. In an ordinary differential equation, the application provided by
J. J. Nieto and R. Rodríguez-López [10] and the system of matrix equations by Ran and
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Reurings [14], the fixed point for iteration to find optimal solution in statistics [15], for the
stability problem in Intuitionistics Fuzzy Banach Space [16], and many more such as [17].

This article intends to establish some fixed point theorems under contractive mapping
over a complete metric space. Ultimately, an example is provided to establish the result
for our assumptions. Furthermore, we provide an application [18] in a non-linear integral
equation to obtain a fixed point.

2. Preliminaries

In this section, we present some basic definitions which will be required in proving
our main results. We denote N ∪ {0} as N0 throughout the paper.

Definition 1 ([11]). Let (W, d) be a complete metric space and T a self-mapping on W. Then, T is
said to be a rational type contraction if there exist δ1, δ2 ∈ [0, 1) with δ1 + δ2 < 1, satisfying

d(Tµ, Tν) ≤ δ1
d(ν, Tν)[1 + d(µ, Tµ)]

[1 + d(µ, ν)]
+ δ2d(µ, ν) f or all µ, ν ∈W.

Definition 2 ([19]). Let W be a nonempty set. A subset < of W2 is called a binary relation on W.
The subsets W2 and ∅ of W2 are in trivial relation.

Definition 3 ([13]). Consider a binary relation < on a nonempty set W. For µ, ν ∈W, one may
say that µ and ν are <-comparative if either (µ, ν) ∈ < or (ν, µ) ∈ <. We symbolize it with
[µ, ν] ∈ <.

Definition 4 ([19–24]). On a nonempty set W, a binary relation < is termed as

(i) Reflexive if (µ, µ) ∈ < ∀ µ ∈W;
(ii) Symmetric if (µ, ν) ∈ < then (ν, µ) ∈ <;
(iii) Anti-symmetric if (µ, ν) ∈ < and (ν, µ) ∈ < then µ = ν;
(iv) Transitive if (µ, ν) ∈ < and (ν, κ) ∈ < then (µ, κ) ∈ <;
(v) A partial order if < is reflexive, anti-symmetric and transitive.

Definition 5 ([19]). Let W be a nonempty set and < a binary relation on W.

(i) The dual relation, transpose or inverse of <, signified by <−1 is interpreted by,

<−1 = {(µ, ν) ∈W2 : (ν, µ) ∈ <}.

(ii) Symmetric closure <s of <, is defined to be the set < ∪ <−1 (i.e., <s = < ∪<−1).

Proposition 1 ([13]). For a binary relation < defined on a nonempty set W,

(µ, ν) ∈ <s =⇒ [µ, ν] ∈ <.

Definition 6 ([13]). Consider a nonempty set W and let < be a binary relation on W. A sequence
{µn} ⊂W is called <-preserving if

(µn, µn+1) ∈ < ∀ n ∈ N0.

Definition 7 ([13]). For a nonempty set W with a self-mapping T on it. Any binary relation < on
W is T-closed if ∀ µ, ν ∈W,

(µ, ν) ∈ < =⇒ (Tµ, Tν) ∈ <.

Definition 8 ([25]). Let (W, d) be a metric space and < a binary relation on W. Then, (W, d) is
<-complete if every <-preserving Cauchy sequence in W converges.
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It is obvious that every complete metric space is <-complete with respect to a binary
relation < but not conversely. For instance, Suppose W = (−2, 2] together with the usual
metric d. Notice that (W, d) is not complete. Now endow W with the following relation:

< = {(µ, ν) ∈W2 : µ, ν ≥ 0}.

Then, (W, d) is a <-complete metric space.

Definition 9 ([22]). Let W be a nonempty set endowed with a binary relation <. A subset D of W
is called <-directed if for each µ, ν ∈ D, there exists κ ∈W such that (µ, κ) ∈ < and (ν, κ) ∈ <.

Definition 10 ([25]). Let (W, d) be a metric space endowed with a binary relation < with µ ∈W.

Then T : W →W is called <-continuous at µ if for any <-preserving sequence {µn} with µn
d−→ µ,

we obtain T(µn)
d−→ T(µ). Furthermore, T is called <-continuous if it is <-continuous at each

point of W.

Definition 11 ([13]). Let (W, d) be a metric space. A binary relation < on W is termed as
d-self-closed if whenever {µn} is an <-preserving sequence and

µn
d−→ µ,

then there exists a subsequence {µnk} of {µn} with [µnk , µ] ∈ < ∀ k ∈ N0.

Proposition 2 ([13]). If (W, d) is a metric space, < is a binary relation on W,T is a self-mapping
on W and δ1, δ2 ∈ [0, 1) with δ1 + δ2 < 1 then the following conditions are equivalent

(i) d(Tµ, Tν) ≤ δ1
d(ν,Tν)[1+d(µ,Tµ)]

[1+d(µ,ν)] + δ2d(µ, ν) ∀ µ, ν ∈W with (µ, ν) ∈ <,

(ii) d(Tµ, Tν) ≤ δ1
d(ν,Tν)[1+d(µ,Tµ)]

[1+d(µ,ν)] + δ2d(µ, ν) ∀ µ, ν ∈W with [µ, ν] ∈ <.

The proof is followed by the symmetrycity of the metric d.

3. Main Result

In this fragment, we will introduce the fixed point theorem under rational contraction
in the relation theoretic sense.

Theorem 1. Consider (W, d) as a metric space together with a binary relation< and a self-mapping
T on it. Assume that the following conditions hold:

(i) (W, d) is <-complete;
(ii) W(T;<) is non-empty;
(iii) < is T-closed;
(iv) Either T is continuous or < is d-self closed;
(v) There exist δ1, δ2 ∈ [0, 1) with δ1 + δ2 < 1 such that

d(Tµ, Tν) ≤ δ1
d(ν, Tν)[1 + d(µ, Tµ)]

1 + d(µ, ν)
+ δ2d(µ, ν) f or µ, ν ∈W with (µ, ν) ∈ <.

Then T has a fixed point.

Proof. From the condition (ii), we always have a µ0 ∈ W such that (µ0, Tµ0) ∈ <, then
define a Picard sequence of iterates µn+1 = Tµn. If Tµ0 = µ0 then nothing to prove.
If Tµ0 6= µ0 then by condition < is T-closed we obtain

(Tµ0, T2µ0), ((T2µ0, T3µ0)), ((T3µ0, T4µ0)) · · · ((Tnµ0, Tn+1µ0)) · · · ∈ <.
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So we have (µn, µn+1) ∈ < ∀n ∈ N0 i.e., {µn} is a < preserving sequence.
If µn0+1 = Tµn0 = µn0 then µn0 is a fixed point of T; then the proof is complete.
If µn+1 6= µn for n ≥ 1 then by condition (v) for (µn, µn+1) ∈ <, we have

d(µn, µn+1) = d(Tµn−1, Tµn) ≤ δ1
d(µn, Tµn)[1 + d(µn−1, Tµn−1)]

[1 + d(µn−1, µn)]
+ δ2d(µn−1, µn)

= δ1
d(µn, µn+1)[1 + d(µn−1, µn)]

[1 + d(µn−1, µn)]
+ δ2d(µn−1, µn)

= δ1d(µn, µn+1) + δ2d(µn−1, µn)

(1− δ1)d(µn, µn+1) ≤ δ2d(µn−1, µn)

d(µn, µn+1) ≤
δ2

1− δ1
d(µn−1, µn).

Then, by an induction process, we will obtain

d(µn, µn+1) ≤
(

δ2

1− δ1

)n

d(µ0, µ1) for any n ∈ N0. (1)

Denote γ = δ2
1−δ1

< 1, then Equation (1) can be rewritten as

d(µn, µn+1) ≤ (γ)nd(µ0, µ1) for any n ∈ N0.

Next, for {µn} to be a Cauchy sequence, let m > n then

d(µn, µm) ≤ d(µn, µn+1) + d(µn+1, µn+2) + ....... + d(µm−1, µm)

≤ γnd(µ0, µ1) + γn+1d(µ0, µ1) + ....... + γm−1d(µ0, µ1)

≤ (γn + γn+1 + ...... + γm−1)d(µ0, µ1)

≤ γn(1 + γ + γ2 + ...... + γm−n−1)d(µ0, µ1)

≤ γn
(

1− γm−n

1− γ

)
d(µ0, µ1).

For m, n→ ∞ and as γ < 1, then we obtain lim
n,m→∞

d(µn, µm) = 0. So, we have proved that

{µn} is a Cauchy sequence.
Since the space (W, d) is a <-complete metric space, then there always exists µ ∈W such
that µn → µ.
Then by continuity of T, we have

Tµ = T
(

lim
n→∞

µn
)
= lim

n→∞
Tµn = lim

n→∞
µn+1 = µ.

So, µ is a fixed point of T.

If otherwise, < is d-self closed then for the <-preserving sequence {µn}
d−→ µ there exists a

subsequence {µnk} of {µn} with [µnk , µ] ∈ < ∀ k ∈ N0.
Then, by condition (v), [µnk , µ] ∈ < and Proposition 2 and µnk → µ

d(µnk+1, Tµ) = d(Tµnk , Tµ) ≤ δ1
d(µ, Tµ)[1 + d(µnk , Tµnk )]

1 + d(µnk , µ)
+ δ2d(µnk , µ)

≤ δ1
d(µ, Tµ)[1 + d(µnk , µnk+1)]

1 + d(µnk , µ)
+ δ2d(µnk , µ).
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Taking n→ ∞, we obtain

d(µ, Tµ) ≤ δ1d(µ, Tµ)

(1− δ1)d(µ, Tµ) ≤ 0.

Since 0 ≤ δ1 < 1 then, the only possibility is d(µ, Tµ) = 0. Hence, µ = Tµ. Then, µ is a
fixed point of T.

Theorem 2. If in addition to Theorem 1 we have the condition:
(vi) T(W) is <s-directed.
Then T has a unique fixed point.

Proof. Let us suppose that µ, ν are two fixed points, i.e., Tµ = µ and Tν = ν then we have
the two cases,
Case I: if (µ, ν) ∈ < then

d(µ, ν) = d(Tµ, Tν) ≤ δ1
d(ν, Tν)[1 + d(µ, Tµ)]

[1 + d(µ, ν)]
+ δ2d(µ, ν)

d(µ, ν) ≤ δ2d(µ, ν)

then (1− δ2)d(µ, ν) ≤ 0 implies that d(µ, ν) = 0 as δ2 > 0.
Case II: if (µ, ν) /∈ < then by T(W) is <s-directed then there exists κ ∈W such that (µ, κ) ∈
< and (κ, ν) ∈ <. Since < is T-closed Tnκ will be related to Tnµ, i.e., (Tnκ, Tnµ = µ) ∈ <
for any n ∈ N0. Then, by contractive condition (v) of Theorem 1, for any n ∈ N0, we have

d(Tnκ, µ) = d(Tnκ, Tnµ) ≤ δ1
d(Tn−1µ, Tnµ)[1 + d(Tn−1κ, Tnκ)]

1 + d(Tn−1κ, Tn−1µ)
+ δ2d(Tn−1κ, Tn−1µ)

= δ1
d(µ, µ)[1 + d(Tn−1κ, Tnκ)]

1 + d(Tn−1κ, µ)
+ δ2d(Tn−1κ, µ)

= δ2d(Tn−1κ, µ).

Then by mathematical induction, we obtain

d(Tnκ, µ) ≤ (δ2)
nd(κ, µ).

Since δ2 < 1 then lim
n→∞

d(Tnκ, µ) = 0, which provides us lim
n→∞

Tnκ = µ.

In a similar fashion we also obtain lim
n→∞

Tnκ = ν.

Then, by the unity of limits we obtain µ = ν.
So our supposition that µ and ν are two different fixed points is wrong. Hence, the mapping
T has a unique fixed point.

Corollary 1. If we substitute δ2 = 0 into Theorems 1 and 2, we have the following fixed
point theorem.
Consider (W, d) as a metric space together with a binary relation < and a self mapping T on it.
Assume that the following conditions holds:

(i’) W(T;<) is non-empty;
(ii’) < is T-closed;
(iii’) (W, d) is <-complete;
(iv’) Either T is <-continuous or < is d-self closed;
(v’) There exist δ1 ∈ [0, 1) such that

d(Tµ, Tν) ≤ δ1
d(ν, Tν)[1 + d(µ, Tµ)]

[1 + d(µ, ν)]
f or (µ, ν) ∈ < and µ, ν ∈W,
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(vi’) T(W) is <s-directed.

Then, T has a unique fixed point.

Remark 1. If we put δ1 = 0 into Theorems 1 and 2, then under the setting of < =� as the partial
order, we obtain Theorems (2.1), (2.2) and (2.3) of [26].

Remark 2. If we substitute δ1 = 0 and 0 < δ2 < 1
3 into Theorems 1 and 2, then the condition (v)

reduces to the Kannan contraction [27] (δ3 ∈ (0, 1
2 ))

d(Tµ, Tν) ≤ δ3[d(µ, Tµ) + d(ν, Tν)] f or µ, ν ∈W with (µ, ν) ∈ <.

Proof. As δ1 = 0 and 0 ≤ δ2 < 1
3 , then the condition (v) of Theorem 1 reduces to the form

d(Tµ, Tν) ≤ δ2d(µ, ν) ≤ δ2
[
d(µ, Tµ) + d(Tµ, Tν) + d(Tν, ν)

]
≤ δ2

[
d(µ, Tµ) + d(ν, Tν)

]
+ δ2d(Tµ, Tν)

(1− δ2)d(Tµ, Tν) ≤
[
d(µ, Tµ) + d(ν, Tν)

]
d(Tµ, Tν) ≤ δ2

1− δ2

[
d(µ, Tµ) + d(ν, Tν)

]
d(Tµ, Tν) ≤ δ3

[
d(µ, Tµ) + d(ν, Tν)

]
f or δ3 =

δ2

1− δ2
<

1
2

.

Remark 3. If diameter (W) ≤ 1 and 2δ1 + δ2 < 1, then conditions (v) of Theorem 1 reduces to
the Riech [28] type conditions:

d(Tµ, Tν) ≤ δ1d(µ, Tµ) + δ1d(ν, Tν) + δ2d(µ, ν).

Proof. For any µ, ν ∈W with (µ, ν) ∈ <,

d(Tµ, Tν) ≤ δ1
d(ν, Tν)[1 + d(µ, Tµ)]

[1 + d(µ, ν)]
+ δ2d(µ, ν)

≤ δ1d(ν, Tν) + δ1d(ν, Tν)d(µ, Tµ) + δ2d(µ, ν).

As the diameter of W is less than equal to one then d(ν, Tν) < 1. Then, we have

d(Tµ, Tν) ≤ δ1d(ν, Tν) + δ1d(µ, Tµ) + δ2d(µ, ν).

Finally, we produce an illustrative example to substantiate the utility of our result,
which does not satisfy the hypotheses of the existing results [1,11–13,18], but satisfies the
hypotheses of our result, and hence has a fixed point.

Example 1. Consider the metric space W = (−1, 1] with the usual metric d and a binary relation
< = {(µ, ν) ∈W2 : ν > µ ≥ 0} together with a mapping T : W →W defined by

T(x) =
{ 1

2 , i f − 1 < µ < 0,
µ
4 , i f 0 ≤ µ ≤ 1.
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It is clear that < is T-closed and T is not a continuous function.
Now, for (µ, ν) ∈ <

d(Tµ, Tν) = |Tµ− Tν|

= |µ
4
− ν

4
|

=
1
4
|µ− ν|

≤ 1
2
|µ− ν|

[1 + |µ− ν|]

<
1
2

1
[1 + |µ− ν|] ×

8
5

∣∣3ν

4

∣∣[1 +
∣∣3µ

4

∣∣]
<

1
2
× 8

5
| 3ν

4 |[1 + |
3µ
4 |]

1 + |µ− ν|

<
4
5
|ν− ν

4 |[1 + |µ−
µ
4 |]

1 + |µ− ν| +
1

10
|µ− ν|

= δ1
d(ν, Tν)[1 + d(µ, Tµ)]

[1 + d(µ, ν)]
+ δ2d(µ, ν) for δ1 =

4
5
< 1 and δ2 =

1
10

< 1.

So, δ1 + δ2 = 4
5 + 1

10 = 9
10 < 1.

Then T has fixed point µ = 0.
Notice that condition (v) of Theorem 1 does not hold for the whole space (for example,

take µ = 1 and ν = 0). Therefore, this example cannot be solved by the existing results,
which establishes the importance of our result.

4. Application to Non-Linear Integral Equations

Consider W = C[a, b] the class of all continuous functions from [a, b] to [a, b] with metric

d(µ, ν) = sup
τ∈[a,b]

{
|µ(τ)− ν(τ)|

}
then (W, d) is a complete metric space.

Theorem 3. Consider the non-linear integral equation

µ(τ) = f (τ) +
∫ b

a
Q(τ, r, µ(r))dr (2)

where τ ∈ [a, b], f : [a, b]→ R and Q : [a, b]2 ×R→ R. Suppose the following conditions holds:

(i) f is continuous and Q(τ, r, µ(r)) is integrable w.r.t r on [a, b];
(ii) Tµ ∈ C[a, b] for all µ ∈ C[a, b] where

Tµ(τ) = f (τ) +
∫ b

a Q(τ, r, µ(r))dr,

(iii) For all r, τ ∈ [a, b] and µ, ν ∈ C[a, b] with (µ, ν) ∈ <

Q(τ, r, ν(r))−Q(τ, r, µ(r)) < η(t, r)|µ(r)− ν(r)|

where η : [a, b]2 → R+ is a continuous function satisfying

sup
τ∈[a,b]

( ∫ b
a η(τ, r)dr

)
< 1,

(iv) There exist µ0(τ) ≤ f (τ) +
∫ b

a Q(τ, r, µ0(r))dr for all τ ∈ [a, b].

Then, the non-linear integral Equation (2) has a unique solution µ ∈ C[a, b].
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Proof. For the proof, let us define a binary relation on W

< =

{
(µ, ν) ∈W2 if µ(τ) < ν(τ) for all τ ∈ [a, b]

}
.

By assumption (iv) we have µ0 ∈ C[a, b] such that

µ0(τ) ≤ f (τ) +
∫ b

a
Q(τ, r, µ0(r))dr

≤ Tµ0(τ)

this implies that µ0<Tµ0, then W(T;<) is non-empty.
Now, to prove that the relation < is T-closed, choose µ, ν ∈ C[a, b] such that µ<ν,then

µ(r) < ν(r)

|µ(r)− ν(r)| > 0

η(τ, r)|µ(r)− ν(r)| > 0

then by condition (iii) of Theorem 3, we have

Q(τ, r, µ(r)) < Q(τ, r, ν(r))∫ b

a
Q(τ, r, µ(r))dr <

∫ b

a
Q(τ, r, ν(r))dr

f (τ) +
∫ b

a
Q(τ, r, µ(r))dr < f (τ) +

∫ b

a
Q(τ, r, ν(r))dr

Tµ(r) < Tν(r)

then (Tµ, Tν) ∈ <. Hence, < is T-closed.
Now for (µ, ν) ∈ <means that µ(τ) < ν(τ)

d(Tµ, Tν) = |Tµ− Tν| =

∣∣∣∣ f (τ) + ∫ b

a
Q(τ, r, µ(r))dr− f (τ)−

∫ b

a
Q(τ, r, ν(r))dr

∣∣∣∣
=

∣∣∣∣ ∫ b

a
Q(τ, r, µ(r))dr−

∫ b

a
Q(τ, r, ν(r))dr

∣∣∣∣
<

∫ b

a
η(τ, r)|µ(r)− ν(r)|dr from condition (iii)

< sup
τ∈[a,b]

( ∫ b

a
η(τ, r)dr

)
|µ(r)− ν(r)|

< δ2|µ(r)− ν(r)| f or δ2 = sup
τ∈[a,b]

( ∫ b

a
η(τ, r)dr

)
< 1

<
δ1|ν(r)− Tν(r)|[1 + |µ(r)− Tµ(r)|]

[1 + |µ(r)− ν(r)|] + δ2|µ(r)− ν(r)| f or δ1 = 1− δ2

<
δ1d(ν, Tν)[1 + d(µ, Tµ)]

[1 + d(µ, ν)]
+ δ2d(µ, ν).

So, the contractive condition also satisfied.
For < to be d-self closed, consider {µn} a <-preserving Cauchy sequence converging to
µ ∈ C[a, b]. As {µn} is < preserving, we have

µ0(τ) ≤ µ1(τ) ≤ µ2(τ) ≤ µ3(τ) ≤ ............. ≤ µn(τ) ≤ µn+1(τ) ≤ ....... ≤ µ(τ) τ ∈ [a, b]

then we have µn< µ ∀ n ∈ N. Therefore, < is d-self closed.
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Now, let us assume that κ(τ) = max{µ(τ), ν(τ)} then κ(τ) ∈ C[a, b]
=⇒ µ(τ) ≤ κ(τ) and ν(τ) ≤ κ(τ). So, <s- directed.
Hence, we observe that the integral Equation (2) satisfies all the conditions of Theorem 1
and Theorem 2 under the given assumption of Theorem 3, which amounts to saying that
the integral Equation (2) has a unique solution.

Now to show the guarantees, the existence of the function Q(τ, r, µ(r)) satisfies all the
assumptions of the above application.

Example 2. Consider W = C[0, π
4 ] together with the metric

d(µ, ν) = sup
τ∈[0, π

4 ]

{
|µ(τ)− ν(τ)|

}
.

Define a binary relation

< =

{
µ<ν if µ(τ) < ν(τ) for all τ ∈

[
0,

π

4
]}

.

Consider the non-linear integral equation as

µ(τ) = 3τ − 4
∫ π

4

0
(τr)sin(µ(r))dr for µ ∈ C

[
0,

π

4
]
,

and

Tµ(τ) = 3τ − 4
∫ π

4

0
(τr)sin(µ(r))dr for µ ∈ C

[
0,

π

4
]
.

Proof. Since f (τ) = 3τ, which is continuous on
[
0, π

4
]

and Q(τ, r, µ(r)) = 4(τr)sin(µ(r))
is integrable w.r.t r on

[
0, π

4
]
.

Now for every τ ∈
[
0, π

4
]

and the sequence {τn} ⊂
[
0, π

4
]

with lim
n→∞

τn = τ.

Then, for any µ ∈ C
[
0, π

4
]
,

∣∣Tµ(τn)− Tµ(τ)| = | f (τn)− f (τ)− 4
∫ π

4

0
r(τn − τ)sin(µ(r))dr

∣∣
≤

∣∣ f (τn)− f (τ)
∣∣+ 4

∫ π
4

0
r
∣∣τn − τ

∣∣|sin(µ(r))|dr

≤
∣∣3τn − 3τ

∣∣+ 4
∣∣τn − τ

∣∣ ∫ π
4

0
rdr

≤ 3
∣∣τn − τ

∣∣+ π2

8

∣∣τn − τ
∣∣.

Taking as a limit n→ ∞ ∣∣Tµ(τn)− Tµ(τ)
∣∣ = 0.

which implies that Tµ(τn) = Tµ(τ). Hence, Tµ ∈ C
[
0, π

4
]

for all µ ∈ C
[
0, π

4
]
.

Now for all r, τ ∈
[
0, π

4
]

and µ, ν ∈ C
[
0, π

4
]

with µ<ν we have

Q(τ, r, ν(r))−Q(τ, r, µ(r)) ≤ 4× τr
∣∣sin(ν(r))− sin(ν(r))

∣∣
≤ η(τ, r)

∣∣µ(r)− ν(r)
∣∣ for η(τ, r) = 4τr.
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Consequently, η(τ, r) = 4τr is a continuous function from
[
0, π

4
]
×
[
0, π

4
]
→ [0, ∞) and

sup
τ∈[0, π

4 ]

( ∫ π
4

0
η(τ, r)dr

)
= sup

τ∈[0, π
4 ]

∫ π
4

0
4τr dr

= sup
τ∈[0, π

4 ]

4τ

[
r2

2

] π
4

0

= sup
τ∈[0, π

4 ]

4τ

(
π2

32

)

=
π2

8
sup

τ∈[0, π
4 ]

τ

=
π2

8
× π

4

=
π3

32
< 1.

Now choosing µ0(τ) = 2τ for τ ∈ [0, π
4 ], we have Tµ0(τ) = µ0(τ) = 2τ.

Hence µ0(τ) = 2τ is a fixed point of T.

5. Conclusions

In this article, we have established the relation theoretical fixed point results for the
rational type contraction. One may observe that, for the uniqueness of the fixed point,
the <s-directed condition can be replaced by other conditions. Here, we also included
some contractions that can be obtained on restriction to the rational contraction. Our
results deduce some well known fixed point results if the binary relation is universal. The
example we provided is unique in that it will satisfy all the relational elements but fails
for many elements outside of the relation. Moreover, we provide an abstract version of an
application to a non-linear integral equation. Lastly, we include an example that guarantees
the existence of such a non-linear integral equation.
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