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Abstract: The paper is related to the classical problem of the rational approximation of analytic functions
of one or several variables, particulary the issues that arise in the construction and studying of con-
tinued fraction expansions and their multidimensional generalizations—branched continued fraction
expansions. We used combinations of three- and four-term recurrence relations of the generalized
hypergeometric function 3F2 to construct the branched continued fraction expansions of the ratios of this
function. We also used the concept of correspondence and the research method to extend convergence,
already known for a small region, to a larger region. As a result, we have established some convergence
criteria for the expansions mentioned above. It is proved that the branched continued fraction expan-
sions converges to the functions that are an analytic continuation of the ratios mentioned above in some
region. The constructed expansions can approximate the solutions of certain differential equations and
analytic functions, which are represented by generalized hypergeometric function 3F2. To illustrate this,
we have given a few numerical experiments at the end.

Keywords: generalized hypergeometric function; branched continued fraction; convergence; rational
approximation

MSC: 33C20; 30B99; 40A99; 41A20

1. Introduction

Questions that arise in economics, physics, biology, etc., lead to mathematical models,
which are often formulated in the form of functional equations of various types, in particu-
lar, differential, integro-differential and difference equations (see, for example, [1–7]). One
of the fundamental problems in approaches to finding solutions of such equations is the
reconstruction of functions of one or several variables, as well as problems that arise in the
development and implementation of effective methods and algorithms for representing
and approximating the functions of one or several variables. There are many various tools
for representing and approximating the above-mentioned functions, among which, per-
haps, one of the most effective are continued fractions [8–17], and their multidimensional
generalizations—branched continued fractions [18–28].

The concept of constructing continued fraction expansions of the ratios of hyper-
geometric functions was first introduced by C.F. Gauss in 1812 [29] as a composition of
their three-term recurrence relations. This contributed to the construction and study of
continued fraction expansions of many special functions, including those that are solutions
of various differential equations (see more examples in ([8], Part III: Special Functions)).

The first branched continued fraction expansion for the Appell’s hypergeometric
function F1 proposed by N.S. Dronyuk in 1966 (see, ([21], pp. 244-252)). In a similarly way,
using three- and four-term recurrence relations of the function F2, its branched continued
fraction expansions were constructed in [30]. Here also pointed out which three- and
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four-term recurrent relations give similar expansions for Appell’s hypergeometric function
F4. Finally, the branched continued fraction expansions for function F3 can be found in [31].
Note that the above-mentioned expansions have the same structure. The expansions of
other structures were studied in [32] for Appell’s hypergeometric function F4, in [33,34]
for Lauricella’s hypergeometric function FD, in [35] for Lauricella-Saran’s hypergeometric
function FS, in [36] for Horn’s hypergeometric function H3. In the work [26], the branched
continued fraction expansions were found for some ratios of generalized hypergeometric
function rFs and these results were generalized to the basic hypergeometric function rφs.

We consider a generalized hypergeometric function

3F2(a; b; z) = 3F2(a1, a2, a3; b1, b2; z) =
∞

∑
n=0

(a1)n(a2)n(a3)n

(b1)n(b2)n

zn

n!
, (1)

where a1, a2, a3, b1, and b2 are complex constants, b1, b2 are not equal to a non-positive
integer, z ∈ C, (·)k is the Pochhammer symbol defined for any complex number α and non-
negative integer n by (α)0 = 1 and (α)n = α(α + 1) . . . (α + n− 1), which is the solution of
differential equation (see, for example, ([37], p. 8))

z3(1− z)
d3u
dz3 + z(a2z− b2)

d2u
dz2 + (a1z− b1)

du
dz

+ a3u = 0, (2)

where u = u(z) is an unknown function of z. It is know that the series (1) converges for all
|z| < 1 and that for |z| = 1 its convergence depends on the parameters a1, a2, a3, b1, and b2
as follows:

(a) if Re(b1 + b2 − a1 − a1 − a3) > 1, the series (1) converges for all |z| = 1;
(b) if 0 < Re(b1 + b2 − a1 − a1 − a3) ≤ 1, the series (1) converges for |z| = 1 and z 6= 1;
(c) if Re(b1 + b2 − a1 − a1 − a3) ≤ 0, the series (1) diverges for all |z| = 1.

Note that in [26] the authors found, in particular, the branched continued expansions
of three different types of ratios of generalized hypergeometric function:

3F2(a; b; z)
3F2(a1, a2, a3 + 1; b1, b2 + 1; z)

, (3)

3F2(a; b; z)
3F2(a1, a2, a3 + 1; b; z)

, 3F2(a; b; z)
3F2(a; b1, b2 + 1; z)

.

In this paper, we construct and study the branched continued fraction expansions for
four ratios of generalized hypergeometric function (1), among them two ratios of type (3),
and two more of a new type. Explicit formulas for calculating the coefficients of constructed
expansion by the coefficients of the function (1) will also be given. In Section 2.3, we derive
some convergence criteria for the above-mentioned branched continued fractions and
prove their convergence to functions, which are an analytic continuation of the ratios of
generalized hypergeometric function 3F2 in a certain region (here, region is an domain
(open connected set) together with all, part or none of its boundary). Finally, we show
an effective approximation of the analytic function, which under certain conditions is the
solution of the differential Equation (2), using the constructed expansion.

2. Main Results

One of the problems in approaches to constructing branched continued fraction expan-
sions for special functions of one or several variables (such as generalized hypergeometric
functions, hypergeometric functions of Appell, Lauricella and Horn, etc.) is to obtain the
simplest structure of branched continued fractions (elements of which are simple polyno-
mials), as well as problems that arise in the development and implementation of effective
methods for investigating the convergence of branched continued fractions.

Let us start with recurrence relations, which are the starting point in constructing the
expansions of ratios of hypergeometric functions.
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2.1. Recurrence Relations

It is know (see, for example, ([26], Lemma 14.1)) that for function (1) the following
three-term recurrence relations hold

3F2(a; b; z) = 3F2(a1 + 1, a2, a3; b1 + 1, b2; z)− (b1 − a1)a2a3

(b1 + 1)b1b2
z 3F2(a1 + 1, a2 + 1, a3 + 1; b1 + 2, b2 + 1; z), (4)

3F2(a; b; z) = 3F2(a1, a2 + 1, a3; b1, b2 + 1; z)− (b2 − a2)a1a3

(b2 + 1)b1b2
z 3F2(a1 + 1, a2 + 1, a3 + 1; b1 + 1, b2 + 2; z), (5)

3F2(a; b; z) = 3F2(a1, a2, a3 + 1; b1 + 1, b2; z)− (b1 − a3)a1a2

(b1 + 1)b1b2
z 3F2(a1 + 1, a2 + 1, a3 + 1; b1 + 2, b2 + 1; z), (6)

3F2(a; b; z) = 3F2(a1, a2, a3 + 1; b1, b2 + 1; z)− (b2 − a3)a1a2

(b2 + 1)b1b2
z 3F2(a1 + 1, a2 + 1, a3 + 1; b1 + 1, b2 + 2; z). (7)

We note that these relations can be checked by direct verification.

Lemma 1. The following four-term recurrence relations hold

3F2(a; b; z) = 3F2(a1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; z)− (b1 − a3)a1a2

(b1 + 1)b1b2
z 3F2(a1 + 1, a2 + 1, a3 + 1; b1 + 2, b2 + 1; z)

− (b2 − a2)(a3 + 1)a1

(b1 + 1)(b2 + 1)b2
z 3F2(a1 + 1, a2 + 1, a3 + 2; b1 + 2, b2 + 2; z), (8)

3F2(a; b; z) = 3F2(a1 + 1, a2, a3 + 1; b1 + 1, b2 + 1; z)− (b2 − a3)a1a2

(b2 + 1)b1b2
z 3F2(a1 + 1, a2 + 1, a3 + 1; b1 + 1, b2 + 2; z)

− (b1 − a1)(a3 + 1)a2

(b1 + 1)(b2 + 1)b2
z 3F2(a1 + 1, a2 + 1, a3 + 2; b1 + 2, b2 + 2; z). (9)

Proof. From the formula (5), replacing a3 by a3 + 1 and b1 by b1 + 1, we get

3F2(a1, a2, a3 + 1; b1 + 1, b2; z) = 3F2(a1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; z)

− (b2 − a2)a1(a3 + 1)
(b2 + 1)(b1 + 1)b2

z 3F2(a1 + 1, a2 + 1, a3 + 2; b1 + 2, b2 + 2; z).

Applying this relation to the formula (6), we obtain the relation (8).
By analogy, combining the formulas (4) and (7), we have the relation (9).

2.2. Expansions

In this subsection, we construct four closely related formal branched continued fraction
expansions for the ratios of function (1).

Let (ij)0 = (i0, j0) and

I = {(1, 1); (1, 2); (2, 1); (2, 2)}.

Then, for each pair (i0, j0) ∈ I we set

R(ij)0
(a; b; z) = 3F2(a; b; z)

3F2(a1 + δ1
i0

δ1
j0
+ δ2

i0
δ2

j0
, a2 + δ1

i0
δ2

j0
+ δ2

i0
δ1

j0
, a3 + δ2

i0
; b1 + δ1

i0
δ1

j0
+ δ2

i0
, b2 + δ1

i0
δ2

j0
+ δ2

i0
; z)

, (10)

where δ
p
k is the Kronecker symbol.

Applying the formula (4) to the relation (10) with i0 = j0 = 1 one obtains

R1,1(a; b; z) = 1− (b1 − a1)a2a3

(b1 + 1)b1b2
z 3F2(a1 + 1, a2 + 1, a3 + 1; b1 + 2, b2 + 1; z)

3F2(a1 + 1, a2, a3; b1 + 1, b2; z)

= 1− (b1 − a1)a2a3

(b1 + 1)b1b2
z

1
R2,1(a1 + 1, a2, a3; b1 + 1, b2; z)

. (11)
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By analogy, with the use of the formula (5) to (10) the following relation gives

R1,2(a; b; z) = 1− (b2 − a2)a1a3

(b2 + 1)b1b2
z

1
R2,2(a1, a2 + 1, a3; b1, b2 + 1; z)

. (12)

Dividing formula (8) by 3F2(a1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; z) we obtain

R2,1(a; b; z) = 1− (b1 − a3)a1a2

(b1 + 1)b1b2
z 3F2(a1 + 1, a2 + 1, a3 + 1; b1 + 2, b2 + 1; z)

3F2(a1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; z)

− (b2 − a2)(a3 + 1)a1

(b1 + 1)(b2 + 1)b2
z 3F2(a1 + 1, a2 + 1, a3 + 2; b1 + 2, b2 + 2; z)

3F2(a1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; z)

= 1− (b1 − a3)a1a2

(b1 + 1)b1b2
z

1
R1,1(a1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; z)

− (b2 − a2)(a3 + 1)a1

(b1 + 1)(b2 + 1)b2
z

1
R2,2(a1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; z)

. (13)

By analogy, dividing formula (9) by 3F2(a1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; z), the following
relation gives

R2,2(a; b; z) = 1− (b2 − a3)a1a2

(b2 + 1)b1b2
z

1
R1,2(a1 + 1, a2, a3 + 1; b1 + 1, b2 + 1; z)

− (b1 − a1)(a3 + 1)a2

(b1 + 1)(b2 + 1)b1
z

1
R2,1(a1 + 1, a2, a3 + 1; b1 + 1, b2 + 1; z)

. (14)

Now we combine formulas (11)–(14) into one. To this end, for each pair (i0, j0) ∈ I let
us introduce the following set of multiindices

I(ij)0
= {(ij)k : (ij)k = (i1, j1, i2, j2, . . . , ik, jk), 1 + δ1

ik−1
≤ ik ≤ 2, jk ∈ {1, 2}, |ik − jk| 6= |ik−1 − jk−1|, k ≥ 1}.

Then, for all k ≥ 1 and for all (ij)k ∈ I(ij)0
, (ij)0 ∈ I we set

a(ij)0
(ij)k

=

(
a1 +

k−1

∑
p=0

(δ1
ip

δ1
jp
+ δ2

ip
δ2

jp
), a2 +

k−1

∑
p=0

(δ1
ip

δ2
jp
+ δ2

ip
δ1

jp
), a3 +

k−1

∑
p=0

δ2
ip

)
,

b(ij)0
(ij)k

=

(
b1 +

k−1

∑
p=0

(δ1
ip

δ1
jp
+ δ2

ip
), b2 +

k−1

∑
p=0

(δ1
ip

δ2
jp
+ δ2

ip
)

)
,

and also we set

c(ij)0
(ij)k

=
(b1 − a3 + ∑k−2

p=0 δ1
ip

δ1
jp
)(a1 + ∑k−2

p=0(δ
1
ip

δ1
jp
+ δ2

ip
δ2

jp
))(a2 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
δ1

jp
))

(b1 + 1 + ∑k−2
p=0(δ

1
ip

δ1
jp
+ δ2

ip
))(b1 + ∑k−2

p=0(δ
1
ip

δ1
jp
+ δ2

ip
))(b2 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
))

, (15)

if ik−1 = 2, jk−1 = ik = jk = 1,

c(ij)0
(ij)k

=
(b2 − a3 + ∑k−2

p=0 δ1
ip

δ2
jp
)(a1 + ∑k−2

p=0(δ
1
ip

δ1
jp
+ δ2

ip
δ2

jp
))(a2 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
δ1

jp
))

(b2 + 1 + ∑k−2
p=0(δ

1
ip

δ2
jp
+ δ2

ip
))(b1 + ∑k−2

p=0(δ
1
ip

δ1
jp
+ δ2

ip
))(b2 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
))

, (16)

if ik−1 = jk−1 = jk = 2, ik = 1,

c(ij)0
(ij)k

=
(b1 − a1 + ∑k−2

p=0 δ2
ip

δ1
jp
)(a2 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
δ1

jp
))(a3 + ∑k−2

p=0 δ2
ip
)

(b1 + 1 + ∑k−2
p=0(δ

1
ip

δ1
jp
+ δ2

ip
))(b1 + ∑k−2

p=0(δ
1
ip

δ1
jp
+ δ2

ip
))(b2 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
))

, (17)

if ik−1 = jk−1 = jk = 1, ik = 2,
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c(ij)0
(ij)k

=
(b1 − a1 + ∑k−2

p=0 δ2
ip

δ1
jp
)(a3 + 1 + ∑k−2

p=0 δ2
ip
)(a2 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
δ1

jp
))

(b1 + 1 + ∑k−2
p=0(δ

1
ip

δ1
jp
+ δ2

ip
))(b2 + 1 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
))(b1 + ∑k−2

p=0(δ
1
ip

δ1
jp
+ δ2

ip
))

, (18)

if ik−1 = jk−1 = ik = 2, jk = 1,

c(ij)0
(ij)k

=
(b2 − a2 + ∑k−2

p=0 δ2
ip

δ2
jp
)(a1 + ∑k−2

p=0(δ
1
ip

δ1
jp
+ δ2

ip
δ2

jp
))(a3 + ∑k−2

p=0 δ2
ip
)

(b2 + 1 + ∑k−2
p=0(δ

1
ip

δ2
jp
+ δ2

ip
))(b1 + ∑k−2

p=0(δ
1
ip

δ1
jp
+ δ2

ip
))(b2 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
))

, (19)

if ik−1 = 1, jk−1 = ik = jk = 2,

c(ij)0
(ij)k

=
(b2 − a2 + ∑k−2

p=0 δ2
ip

δ2
jp
)(a3 + 1 + ∑k−2

p=0 δ2
ip
)(a1 + ∑k−2

p=0(δ
1
ip

δ1
jp
+ δ2

ip
δ2

jp
))

(b1 + 1 + ∑k−2
p=0(δ

1
ip

δ1
jp
+ δ2

ip
))(b2 + 1 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
))(b2 + ∑k−2

p=0(δ
1
ip

δ2
jp
+ δ2

ip
))

, (20)

if jk−1 = 1, ik−1 = ik = jk = 2.
This allows us to write the relations (11)–(14) in the form

R(ij)0
(a; b; z) = 1−

2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1

z

Ri1,j1(a
(ij)0
(ij)1

; b(ij)0
(ij)1

; z)
for all (ij)0 ∈ I , (21)

where c(ij)0
(ij)1

, (ij)1 ∈ I(ij)0
, (ij)0 ∈ I , are defined by formulas (15)–(20) for k = 1.

By analogy, it is clear that for any k ≥ 2 and for any (ij)k−1 ∈ I(ij)0
, (ij)0 ∈ I the

following recurrence relation holds

Rik−1,jk−1
(a(ij)0

(ij)k−1
; b(ij)0

(ij)k−1
; z) = 1−

2

∑
ik=1+δ1

ik−1
|ik−jk |6=|ik−1−jk−1 |, jk∈{1,2}

c(ij)0
(ij)k

z

Rik ,jk (a
(ij)0
(ij)k

; b(ij)0
(ij)k

; z)
, (22)

where c(ij)0
(ij)k

, (ij)k ∈ I(ij)0
, (ij)0 ∈ I , are defined by formulas (15)–(20).

Next, we will construct branched continued fraction expansions for R(ij)0
(a; b; z) for

all (ij)0 ∈ I . Let (ij)0 be arbitrary pair from the set I . Then, substituting relation (22) at
k = 2 in formula (21) on the first step we obtain

R(ij)0
(a; b; z) = 1−

2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1

z

1−
2

∑
i2=1+δ1

i1
|i2−j2 |6=|i1−j1 |, j2∈{1,2}

c(ij)0
(ij)2

z

Ri2,j2(a
(ij)0
(ij)2

; b(ij)0
(ij)2

; z)

,

where c(ij)0
(ij)r

, (ij)r ∈ I(ij)0
, r = 1, 2, are defined by formulas (15)–(20).

Next, applying recurrence relation (22) after (n− 1) steps, we get

R(ij)0
(a; b; z) = 1−

2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1

z

1 − . . . −
2

∑
in=1+δ1

in−1
|in−jn |6=|in−1−jn−1 |, jn∈{1,2}

c(ij)0
(ij)n

z

Rin ,jn(a
(ij)0
(ij)n

; b(ij)0
(ij)n

; z)
, (23)

where c(ij)0
(ij)r

, (ij)r ∈ I(ij)0
, 1 ≤ r ≤ n, are defined by formulas (15)–(20). Note that here we

used the more convenient notation of branched continued fraction, proposed by J.F.W. Her-
schel ([38], p. 148) following the example of H.H. Bürmann.
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Finally, by the relation (22), one obtains

R(ij)0
(a; b; z) ∼ 1−

2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1

z

1 −
2

∑
i2=1+δ1

i1
|i2−j2 |6=|i1−j1 |, j2∈{1,2}

c(ij)0
(ij)2

z

1 − . . . −
2

∑
ik=1+δ1

ik−1
|ik−jk |6=|ik−1−jk−1 |, jk∈{1,2}

c(ij)0
(ij)k

z

1 − . . . , (24)

where the symbol ∼ denotes a formal branched continued fraction expansion, the coeffi-
cients c(ij)0

(ij)k
, (ij)k ∈ I(ij)0

, are defined by formulas (15)–(20).
Thus, in (24) for each pair (i0, j0) ∈ I we have a formal expansion, which is used to

construct branched continued fraction. For example, for R1,1(a; b; z) we have the following
formal expansion

1−
c1,1

2,1z

1−
c1,1

2,1,1,1z

1−
c1,1

2,1,1,1,2,1z

1−
c1,1

2,1,1,1,2,1,1,1z
1− . . .

−
c1,1

2,1,1,1,2,1,2,2z
1− . . .

−
c1,1

2,1,2,2z

1−
c1,1

2,1,2,2,1,2z

1−
c1,1

2,1,2,2,1,2,2,2z
1− . . .

−
c1,1

2,1,2,2,2,1z

1−
c1,1

2,1,2,2,2,1,1,1z
1− . . .

−
c1,1

2,1,2,2,2,1,2,2z
1− . . .

. (25)

We note one of the interesting properties of this branched continued fraction. To for-
mulate it, we will give a few definitions ([18], p. 17).

The ratios c(ij)0
(ij)k

z/1, (ij)k ∈ I(ij)0
, are called the kth partial quotients, and the set of all

kth quotients forms the kth floor on the branched continued fraction (25).

Proposition 1. Let Qk be the numbers of all kth partial quotients of the kth floor of the branched
continued fraction (25). Then the sequence {Qk} is a sequence of Fibonacci numbers starting from
the third number.

Proof. In view on (11)–(14), the partial quotient in the corresponding ratio with first index
equal to 1, generates one partial quotient on the next floor, and with an index equal to 2,
generates two partial quotients.

Therefore, according to (11) on the first floor is only one partial quotient, which, in turn,
according to (13) on the second floor generates two partial quotients.

Let pk and qk be the numbers of partial quotients of the kth floor of finite branched
continued fraction (25), the denominators of which have ratios with the first index equal
to 1 and 2, respectively. It is obvious that p1 = 0 and q1 = 1. Then on kth floor we have
Qk = pk + qk partial quotients. Each of the pk partial quotients generates one partial
quotient with the first index equal to 2, and each of the qk partial quotients generates
two partial quotients with the first index equal to 1 and 2 in the corresponding ratios in
the denominators.

Thus, if k ≥ 2, then
pk+1 = qk and qk+1 = pk + qk.

It follows that for k ≥ 2

Qk+1 = pk+1 + qk+1 = pk + qk + qk = Qk + pk−1 + qk−1 = Qk + Qk−1,

that proves this proposition.

It is clear that the other three expansions in the right-hand side (24) also have simi-
lar properties.
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2.3. Convergence

One of the fundamental problems of the study of branched continued fractions is the
proving of their convergence. New methods were developed and applied in [39–45] to
establish convergence criteria and in [46–50] to find estimates of convergence rate.

We will remind some concepts on the theory of branched continued fractions (see,
for example, [18]).

Let here and further (ij)0 be an arbitrary pair from the set I . Let nQ(ij)0
(ij)k

(z) denote the
’tails’ of branched continued fraction

1−
2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1

z

1 −
2

∑
i2=1+δ1

i1
|i2−j2 |6=|i1−j1 |, j2∈{1,2}

c(ij)0
(ij)2

z

1 − . . . , (26)

that is
nQ(ij)0

(ij)n
(z) = 1, (ij)n ∈ I(ij)0

, n ≥ 1, (27)

and

nQ(ij)0
(ij)k

(z) = 1−
2

∑
ik+1=1+δ1

ik
|ik+1−jk+1 |6=|ik−jk |, jk+1∈{1,2}

c(ij)0
(ij)k+1

z

1 − . . . −
2

∑
in=1+δ1

in−1
|in−jn |6=|in−1−jn−1 |, jn∈{1,2}

c(ij)0
(ij)n

z

1
, (28)

where (ij)k ∈ I , 1 ≤ k ≤ n− 1, n ≥ 2. Then it is clear that the following recurrence relation
holds

nQ(ij)0
(ij)k

(z) = 1−
2

∑
ik+1=1+δ1

ik
|ik+1−jk+1 |6=|ik−jk |, jk+1∈{1,2}

c(ij)0
(ij)k+1

z

nQ(ij)0
(ij)k+1

(z)
, (ij)k ∈ I , 1 ≤ k ≤ n− 1, n ≥ 2. (29)

If fn denotes the nth approximant of (26), then

f (ij)0
n (z) = 1−

2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1

z

1 −
2

∑
i2=1+δ1

i1
|i2−j2 |6=|i1−j1 |, j2∈{1,2}

c(ij)0
(ij)2

z

1 − . . . −
2

∑
in=1+δ1

in−1
|in−jn |6=|in−1−jn−1 |, jn∈{1,2}

c(ij)0
(ij)n

z

1

= 1−
2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1

z

nQ(ij)0
(ij)1

(z)
, n ≥ 1.

The branched continued fraction (26) is said to converges at z = z0 if its sequence of
approximants { f (ij)0

n (z)} converges, and

lim
n→∞

f (ij)0
n (z)

is called its value.
The branched continued fraction (26), whose elements are functions in the certain

domain D, D ⊂ C, is called uniformly convergent on set E, E ⊂ D, if its sequence of
approximants { f (ij)0

n (z)} converges uniformly on E. When this occurs for an arbitrary set
E such that E ⊂ D (here E is the closure of the set E) we say that the branched continued
fraction converges uniformly on every compact subset of D.

We adopt the convention that a branched continued fraction (26) and all of its approxi-
mants have value 1 at z = 0.
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If nQ(ij)0
(ij)k

(z) 6= 0 for all (ij)k ∈ I , 1 ≤ k ≤ n, n ≥ 1, and for all z in the certain set D,
D ⊂ C, then for each m > n ≥ 1 the following formula is valid (see ([18], p. 28))

f (ij)0
m (z)− f (ij)0

n (z) = (−1)n
2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1
· (−z)

mQ(ij)0
(ij)1

(z) · nQ(ij)0
(ij)1

(z)
. . .

2

∑
in=1+δ1

in−1
|in−jn |6=|in−1−jn−1 |, jn∈{1,2}

c(ij)0
(ij)n
· (−z)

mQ(ij)0
(ij)n

(z) · nQ(ij)0
(ij)n

(z)

×
2

∑
in+1=1+δ1

in
|in+1−jn+1 |6=|in−jn |, jn+1∈{1,2}

c(ij)0
(ij)n+1

· (−z)

mQ(ij)0
(ij)n+1

(z)
. (30)

The following result is valid.

Theorem 1. Let (26) be a branched continued fraction with c(ij)0
(ij)k

, (ij)k ∈ I(ij)0
, defined by

(15)–(20) and such that

br ≥ ar ≥ 0, br ≥ a3 ≥ 0, br 6= 0, r = 1, 2. (31)

Then:

(A) the branched continued fraction (26) converges to a finite value f (ij)0(z) for each z ∈ D, where

D = {z ∈ R : z ≤ 0}, (32)

and it converges uniformly on every compact subset of Int D;
(B) if f (ij)0

n (z) denotes the nth approximant of the branched continued fraction (26), then for each
z ∈ D

| f (ij)0(z)− f (ij)0
n (z)| ≤ (2|z|)n+1

(2|z|+ 1)n , n ≥ 1.

Proof. We will find the upper bound of | f (ij)0
m (z)− f (ij)0

n (z)| for m > n ≥ 1 and z ∈ D.
From (15)–(20) it is clear that for each (ij)k ∈ I(ij)0

the coefficients c(ij)0
(ij)k

of branched
continued fraction (26) take non-negative values in the assumption of this theorem. And,
consequently, in view of the formulas (27) and (28) it follows that

nQ(ij)0
(ij)k

(z) ≥ 1 for all z ∈ D and (ij)k ∈ I , 1 ≤ k ≤ n, n ≥ 1. (33)

In addition, the following inequality holds

c(ij)0
(ij)k
≤ 1 for all (ij)k ∈ I(ij)0

. (34)
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Indeed, for any (ij)k−1 ∈ I(ij)0
if k > 1 and ik−1 = 2, jk−1 = ik = jk = 1 we have

b1 − a3 +
k−2

∑
p=0

δ1
ip

δ1
jp
≤ b1 − a3 +

k−2

∑
p=0

(δ1
ip

δ1
jp
+ δ2

ip
)

≤ b1 +
k−2

∑
p=0

(δ1
ip

δ1
jp
+ δ2

ip
),

a1 +
k−2

∑
p=0

(δ1
ip

δ1
jp
+ δ2

ip
δ2

jp
) ≤ a1 +

k−2

∑
p=0

(δ1
ip

δ1
jp
+ δ2

ip
)

≤ b1 +
k−2

∑
p=0

(δ1
ip

δ1
jp
+ δ2

ip
),

a2 +
k−2

∑
p=0

(δ1
ip

δ2
jp
+ δ2

ip
δ1

jp
) ≤ a2 +

k−2

∑
p=0

(δ1
ip

δ2
jp
+ δ2

ip
)

≤ b2 +
k−2

∑
p=0

(δ1
ip

δ2
jp
+ δ2

ip
).

In view of the formula (15), in this case it follows (34). Now, since

b2 − a3 +
k−2

∑
p=0

δ1
ip

δ2
jp
≤ b2 − a3 +

k−2

∑
p=0

(δ1
ip

δ2
jp
+ δ2

ip
)

≤ b2 +
k−2

∑
p=0

(δ1
ip

δ2
jp
+ δ2

ip
),

from (16) we get (34), when ik−1 = jk−1 = jk = 2 and ik = 1. Finally, by analogy, we are
convinced of the validity of inequality (34) in other cases (see formulas (17)–(20)).

From the inequality (33) it follows that nQ(ij)0
(ij)k

(z) 6= 0 for all (ij)k ∈ I , 1 ≤ k ≤ n,
n ≥ 1, and z ∈ D. Therefore, from (30) for each m > n ≥ 1 and z ∈ D we get

f (ij)0
m (z)− f (ij)0

n (z) = (−1)n
2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1
· (−z)

rQ(ij)0
(ij)1

(z)
. . .

2

∑
in=1+δ1

in−1
|in−jn |6=|in−1−jn−1 |, jn∈{1,2}

c(ij)0
(ij)n
· (−z)

nQ(ij)0
(ij)n−1

(z) · nQ(ij)0
(ij)n

(z)

×
2

∑
in+1=1+δ1

in
|in+1−jn+1 |6=|in−jn |, jn+1∈{1,2}

c(ij)0
(ij)n+1

· (−z)

mQ(ij)0
(ij)n

(z) · mQ(ij)0
(ij)n+1

(z)
, (35)

where r = m, if n is even, and r = n, if n is odd.
Next, using the inequality (34), for any z ∈ D and k ≥ 1 we have

max
(ij)k∈I(ij)0

2

∑
ik+1=1+δ1

ik
|ik−1−jk−1 |6=|ik−jk |, jk+1∈{1,2}

c(ij)0
(ij)k+1

· (−z) ≤ 2|z|,

which by the relations (28) and (29) and the inequality (33), for any r ≥ k + 1 and
(ij)k ∈ I(ij)0

gives us
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2

∑
ik+1=1+δ1

ik
|ik+1−jk+1 |6=|ik−jk |, jk+1∈{1,2}

c(ij)0
(ij)k+1

· (−z)

rQ(ij)0
(ij)k+1

(z) · rQ(ij)0
(ij)k

(z)
≤

2

∑
ik+1=1+δ1

ik
|ik+1−jk+1 |6=|ik−jk |, jk+1∈{1,2}

c(ij)0
(ij)k+1

· (−z)

1 +
2

∑
ik+1=1+δ1

ik
|ik+1−jk+1 |6=|ik−jk |, jk+1∈{1,2}

c(ij)0
(ij)k+1

· (−z)

≤ 2|z|
1 + 2|z| . (36)

Now, by a successive application of inequality (36) and relations (33) and (34) to the
formula (35), for any m > n ≥ 1 and z ∈ D we arrive at

| f (ij)0
m (z)− f (ij)0

n (z)| ≤
(

2|z|
1 + 2|z|

)n 2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1
· |z|

rQ(ij)0
(ij)1

(z)

≤ (2|z|)n+1

(1 + 2|z|)n ,

where r = m, if n is even, and r = n, if n is odd. Hence, due to the arbitrariness of m and
taking into account that for any fixed z ∈ D

(2|z|)n+1

(1 + 2|z|)n → 0 as n→ ∞,

it follows that the branched continued fraction (26) converges to a finite value f (ij)0(z) for
each z ∈ D.

Let K be an arbitrary compact subset of Int D. Then there exists M > 0 such that for
any m > n ≥ 1

| f (ij)0
m (z)− f (ij)0

n (z)| ≤ (2M)n+1

(1 + 2M)n for all z ∈ K.

In addition, if m and r are arbitrary natural numbers such that m > r ≥ n, then

| f (ij)0
m (z)− f (ij)0

r (z)| ≤ | f (ij)0
m (z)− f (ij)0

n (z)|+ | f (ij)0
r (z)− f (ij)0

n (z)| for all z ∈ K.

Hence, taking into account that

(2M)n+1

(1 + 2M)n → 0 as n→ ∞,

it follows that the branched continued fraction (26) converges uniformly on every compact
subset of Int D.

Finally, passing to the limit as m→ ∞, we obtain (B).

Note that it follows from the proof of Theorem 1 that (26) is a branched continued
fraction with positive elements for each nonzero z = z0 from the set (32). This means that
(see, ([18], p. 29))

f (ij)0
2n−2(z0) < f (ij)0

2n (z0) < f (ij)0
2n+1(z0) < f (ij)0

2n−1(z0), n ≥ 1,
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(here f (ij)0
0 (z0) = 1), so that the even and odd parts of (26) both converge to finite value

f (ij)0(z0). This system of inequalities expresses a so-called ‘fork property’ for branched
continued fractions.

Theorem 2. Let (1) be a generalized hypergeometric function 3F2(a; b; z) with parameters satisfy-
ing the inequalities (31).

Then:

(A) for each z ∈ Hε, where

Hε =
⋃

−π/(2+2ε)<ϕ<π/(2+2ε)

Hϕ,ε, (37)

Hϕ,ε =

{
z ∈ C : |z|+ Re(ze−2iϕ) ≤ 1− ε

4
cos2 ϕ

}
, 0 < ε < 1, (38)

the branched continued fraction (26), where c(ij)0
(ij)k

, (ij)k ∈ I(ij)0
, defined by (15)–(20), converges

to a finite value f (ij)0(z);
(B) the convergence is uniform on every compact subset of Int Hε, and f (ij)0(z) is holomorphic on

Int Hε;
(C) the function f (ij)0(z) is an analytic continuation of (10) in Hε.

In our proof we will use the auxiliary lemma, which follows from ([51], Theorem 2).

Lemma 2. Let the elements d(ij)0
(ij)k

, (ij)k ∈ I(ij)0
, of branched continued fraction

2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

d(ij)0
(ij)1

1 −
2

∑
i2=1+δ1

i1
|i2−j2 |6=|i1−j1 |, j2∈{1,2}

d(ij)0
(ij)2

1 − . . . (39)

satisfy the following conditions

2

∑
ik=1+δ1

ik−1
|ik−jk |6=|ik−1−jk−1 |, jk∈{1,2}

|d(ij)0
(ij)k
| − Re(d(ij)0

(ij)k
e−i(ϕ(ij)k−1

+ϕ(ij)k
)
)

p(ij)k−1
(cos ϕ(ij)k

− p(ij)k
)

≤ 2(1− ε), (ij)k ∈ I(ij)0
,

where ϕ(ij)0
, p(ij)0

, and ϕ(ij)k
, p(ij)k

, (ij)k ∈ I(ij)0
, are real numbers such that

|ϕ(ij)0
| ≤ ϕ∗, p(ij)0

≥ 0, |ϕ(ij)k
| ≤ ϕ∗, 0 ≤ p(ij)k

≤ (1− ε) cos ϕ(ij)k
, (ij)k ∈ I(ij)0

,

where ε and ϕ∗ are constants such that 0 < ε < 1 and 0 < ϕ∗ < π/(2 + 2ε).
Then:

(A) the approximants of branched continued fraction (39) are all finite and lie in the half-plane

Vϕ(ij)0
,p(ij)0

= {v : Re(ve−iϕ(ij)0 ) ≥ −p(ij)0
};

(B) a branched continued fraction (39) converges if the series

∞

∑
k=1

(
max

(ij)k∈I(ij)0
|d(ij)0

(ij)k
|
)−1

diverges.
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We will now add the necessary notations and definitions. Let

L(z) =
∞

∑
k=0

akzk,

where ak ∈ C, k ≥ 0, z ∈ C, be a formal power series at z = 0. Let F(z) be a function
holomorphic in a neighbourhood of the origin (z = 0). Let the mapping Λ : F(z)→ Λ(F)
associate with F(z) its Taylor expansion in a neighbourhood of the origin.

A sequence {Fn(z)} of functions holomorphic at the origin is said to correspond at
z = 0 to a formal power series L(z) if

lim
n→∞

λ
(

L−Λ(Fn)
)
= ∞,

where λ is the function defined as follows: λ : L→ Z≥0 ∪ {∞}; if L(z) ≡ 0 then λ(L) = ∞;
if L(z) 6≡ 0 then λ(L) = m, where m is the smallest degree of terms for which ak 6= 0, that
is m = k + l.

If {Fn(z)} corresponds at z = 0 to a formal power series L(z), then the order of
correspondence of Fn(z) is defined to be

νn = λ
(

L−Λ(Fn)
)
.

By the definition of λ, the series L(z) and Λ(Fn) agree for all terms up to and including
degree (νn − 1).

A branched continued fraction is said to correspond at z = 0 to a formal double power
series L(z) if its sequence of approximants corresponds to L(z).

For more details on the concept of correspondence, we refer to ([12], pp. 148–160) (see,
also ([8], pp. 30–35)).

Proof of Theorem 2. Let ϕ be an arbitrary real in (−π/(2 + 2ε), π/(2 + ε)) and z be an
arbitrary point in (38). We choose

p(ij)0
=

1
2

cos ϕ, p(ij)k
=

1
2

cos ϕ, (ij)k ∈ I(ij)0
. (40)

Then for any (ij)k ∈ I(ij)0
we have

2

∑
ik=1+δ1

ik−1
|ik−jk |6=|ik−1−jk−1 |, jk∈{1,2}

|c(ij)0
(ij)k

z| − Re(c(ij)0
(ij)k

(−z)e−2iϕ)

cos ϕ− p(ij)k

=
2

∑
ik=1+δ1

ik−1
|ik−jk |6=|ik−1−jk−1 |, jk∈{1,2}

2c(ij)0
(ij)k

(|z|+ Re(ze−2iϕ))

cos ϕ

≤ 1
2
(1− ε) cos ϕ

2

∑
ik=1+δ1

ik−1
|ik−jk |6=|ik−1−jk−1 |, jk∈{1,2}

c(ij)0
(ij)k

≤ (1− ε) cos ϕ

≤ 2(1− ε)p(ij)k−1
.

Thus, the elements of (26) satisfy the conditions of Lemma 2, with ϕ(ij)0
= ϕ and

ϕ(ij)k
= ϕ, (ij)k ∈ I(ij)0

, iff z ∈ Hϕ,ε.
By the inequality (34) we obtain

max
(ij)k∈I(ij)0

|c(ij)0
(ij)k
· (−z)| ≤ |z|,
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that gives us
∞

∑
k=1

(
max

(ij)k∈I(ij)0
|c(ij)0
(ij)k
· (−z)|

)−1

≥ 1
|z|

∞

∑
k=1

1,

this means that this series is divergent for each nonzero z ∈ Hϕ,ε.
Recall that we adopted the convention according to which a branched continued

fraction (26) and all of its approximants have value 1 at z = 0.
Thus, it follows from (B) of Lemma 2 that the branched continued fraction (26) con-

verges to finite value for all z ∈ Hϕ,ε and, consequently, for all z ∈ Hε by virtue of
arbitrariness ϕ. This proves (A).

Now, we prove (B). From (A) of Lemma 2 it follows that for every index (ij)1 ∈ I(ij)0

and point z ∈ Hϕ,ε the values of all ’tails’ nQ(ij)0
(ij)1

(z), n ≥ 1, of (26) are finite and lie in the
half-plane

V(ij)1
(ϕ, p(ij)1

) =
{

v : Re(ve−iϕ) ≥ cos ϕ− p(ij)1

}
. (41)

It follows from (40) that nQ(ij)0
(ij)1

(z) 6= 0 for all indices and points z ∈ Hϕ,ε. Thus,

the approximants f (ij)0
n (z), n ≥ 1, of (26) form a sequence of holomorphic functions in

Int Hϕ,ε and, consequently, in Int Hε by virtue of arbitrariness ϕ.
Let K be an arbitrary compact subset of Int Hε. Then there exists an open disk

Qr = {z ∈ C : |z| < r},

containing K. Let us cover K with domains of the form Pϕ,ε,r = Int Hϕ,ε
⋂

Qr. From this
cover we choose the finite subcover

Pϕ1,ε,r, Pϕ2,ε,r, . . . , Pϕk ,ε,r.

Using (34), (40) and (41), for the arbitrary s ∈ {1, 2, . . . , k} we obtain for any
z ∈ Pϕs ,ε,r and n ≥ 1

| f (ij)0
n (z)| ≤ 1 +

2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1
|z|

Re(nQ(ij)0
(ij)1

(z)e−iϕs)

< 1 +
2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

|z|
cos ϕs − p(ij)1

< 1 +
4r

cos ϕs

= M(Pϕs ,ε,r).

Set
M(K) = max

1≤s≤k
M(Pϕs ,ε,r).

Then for arbitrary z ∈ K we obtain | f (ij)0
n (z)| ≤ M(K), for n ≥ 1, i.e., the sequence

{ f (ij)0
n (z)} is uniformly bounded on every compact subset of Int Hε. An application of

Theorem 24.2 [16] yields the uniform convergence of (26) to holomorphic functions on all
compact subsets of Int Hε. This proves (B).

Finally, we prove (C). We set

nF(ij)0
(ij)n

(z) = Rin ,jn(a
(ij)0
(ij)n

; b(ij)0
(ij)n

; z), (ij)n ∈ I , n ≥ 1, (42)
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where the expression in the right-hand side is defined by (23), and

nF(ij)0
(ij)k

(z) = 1−
2

∑
ik+1=1+δ1

ik
|ik+1−jk+1 |6=|ik−jk |, jk+1∈{1,2}

c(ij)0
(ij)k+1

z

1 − . . . −
2

∑
in=1+δ1

in−1
|in−jn |6=|in−1−jn−1 |, jn∈{1,2}

c(ij)0
(ij)n

z

nF(ij)0
(ij)n

(z)
,

where (ij)k ∈ I , 1 ≤ k ≤ n− 1, n ≥ 2. Then for all i(k) ∈ I , 1 ≤ k ≤ n− 1, and n ≥ 2

nF(ij)0
(ij)k

(z) = 1−
2

∑
ik+1=1+δ1

ik
|ik+1−jk+1 |6=|ik−jk |, jk+1∈{1,2}

c(ij)0
(ij)k+1

z

nF(ij)0
(ij)k+1

(z)
. (43)

From (10) and (23) it follows that for each n ≥ 1

R(ij)0
(a; b; z) = 1−

2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

c(ij)0
(ij)1

z

n+1F(ij)0
(ij)1

(z)
.

Since nF(ij)0
(ij)k

(0) = 1 and nQ(ij)0
(ij)k

(0) = 1 for any (ij)k ∈ I , 1 ≤ k ≤ n, n ≥ 1, there exist

Λ(1/nF(ij)0
(ij)k

) and Λ(1/nQ(ij)0
(ij)k

), i.e., the 1/nF(ij)0
(ij)k

(z) and 1/nQ(ij)0
(ij)k

(z) have Taylor expansions

in a neighbourhood of the origin. In addition, since nF(ij)0
(ij)k

(0) 6= 0 and nQ(ij)0
(ij)k

(0) 6= 0 for all
indices, taking into account (27), (29), (42), and (43), from (30) for each n ≥ 1 one obtains

R(ij)0
(a; b; z)− f (ij)0

n (z) =
2

∑
i1=1+δ1

i0
|i1−j1 |6=|i0−j0 |, j1∈{1,2}

(−1)nc(ij)0
(ij)1
· (−z)

n+1F(ij)0
(ij)1

(z) · nQ(ij)0
(ij)1

(z)
. . .

2

∑
in=1+δ1

in−1
|in−jn |6=|in−1−jn−1 |, jn∈{1,2}

c(ij)0
(ij)n
· (−z)

n+1F(ij)0
(ij)n

(z) · nQ(ij)0
(ij)n

(z)

×
2

∑
in+1=1+δ1

in
|in+1−jn+1 |6=|in−jn |, jn+1∈{1,2}

c(ij)0
(ij)n+1

· (−z)

n+1F(ij)0
(ij)n+1

(z)
.

From this formula for any n ≥ 1 at z = 0 we have

Λ(R(ij)0
)−Λ( f (ij)0

n ) =
+∞

∑
k=n+1

α
(n)
k zk,

where a(n)k , k ≥ n, are some coefficients. It follows that

νn = λ
(

Λ(R(ij)0
)−Λ( f (ij)0

n )
)
= n + 1

tends monotonically to ∞ as n→ ∞.
Thus, the branched continued fraction (26) corresponds at z = 0 to a formal power

series Λ(R(ij)0
). Therefore (C) is an immediate consequence of Theorem 5.13 [12].

Setting i0 = j0 = 1, a1 = 0 and replacing b1 by b1 − 1 in Theorem 2, we obtain a
corollary.

Corollary 1. Let (1) be a generalized hypergeometric function 3F2(1, a2, a3; b; z) with parameters
satisfying inequalities

b1 > 1, b1 − 1 ≥ a3 ≥ 0, b2 6= 0, b2 ≥ ak ≥ 0, k = 2, 3. (44)
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Then:

(A) for each z ∈ Hε, where Hε defined by (37), the branched continued fraction

1

1−
c1,1

2,1z

1−
c1,1

2,1,1,1z

1−
c1,1

2,1,1,1,2,1z
1− . . .

−
c1,1

2,1,2,2z

1−
c1,1

2,1,2,2,1,2z
1− . . .

−
c1,1

2,1,2,2,2,1z
1− . . .

, (45)

where c1,1
(ij)k

, (ij)k ∈ I1,1, defined by formulas (15)–(20), where a1 = 0 and b1 replaced by

b1 − 1, converges to a finite value f 1,1(z);
(B) the convergence is uniform on every compact subset of Int Hε, and f 1,1(z) is holomorphic on

Int Hε;
(C) the function f 1,1(z) is an analytic continuation of 3F2(1, a2, a3; b; z) in Hε.

It is clear that we will get similar corollaries if:

(a) i0 = 1, j0 = 2, a2 = 0 and b2 replaced by b2 − 1;
(b) i0 = 2, j0 = 1, a2 = 0 (or a3 = 0) and a3 (or a2), b1, b2 replaced by a3 − 1 (or a2 − 1),

b1 − 1, b2 − 1, respectively;
(c) i0 = 2, j0 = 2, a1 = 0 (or a3 = 0) and a1 (or a3), b1, b2 replaced by a1 − 1 (or a3 − 1),

b1 − 1, b2 − 1, respectively.

3. Numerical Experiments

In this section, we illustrate the use of branched continued fractions to approximate the
solutions of differential equations. Approximation of some analytic functions by branched
continued fractions can be found in [42,52–54].

It should be noted that if the conditions of Corollary 1 are satisfied, then the branched
continued fraction (45) satisfies the differential Equation (2) in which a1 = 1. This means
that the approximations of (45) can be used to approximate the solution of this differential
equation in the region (37).

For example, we set a2 = 1/2, a3 = 1, b1 = 6, b2 = 2. Then, it is obvious that the
parameters satisfy the conditions (44) and, therefore, from (15)–(20), where a1 = 0 and b1
replaced by b1 − 1, we have such approximations

f 1,1
1 (z) = 1, f 1,1

2 (z) =
28

28− z
, f 1,1

3 (z) =
168− 11z
168− 18z

, etc.,

for the solution u(z) of differential equation

z3(1− z)
d3u
dz3 + z

( z
2
− 2
)d2u

dz2 + (z− 6)
du
dz

+ u = 0. (46)

The values of these approximations are given in Table 1 together with the values of
the partial sums Sn(z) of 3F2(1, 1/2, 1; 6, 2; z) for 1 ≤ n ≤ 13 and for the various value
of z. Those numbers illustrate the rate of convergence of f 1,1

n (z) and Sn(z) to u(z) as
n increases. Comparing them, we see that the branched continued fraction (45) gives
better approximations of the solution of differential Equation (46) than the generalized
hypergeometric series 3F2(1, 1/2, 1; 6, 2; z).
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Table 1. Approximation of the solution of differential Equation (46) by the branched continued fraction (45) and the
generalized hypergeometric series 3F2(1, 1/2, 1; 6, 2; z).

n f 1,1
n (0.1) Sn(0.1) f 1,1

n (−1.0) Sn(−1.0) f 1,1
n (−4.0) Sn(−4.0)

1 1.000000000000 1.000000000000 1.000000000000 1.000000000000 1.000000000000 1.000000000000
2 1.004184100418 1.004166666667 0.960000000000 0.958333333333 0.857142857143 0.833333333333
3 1.004227053140 1.004226190476 0.963541666667 0.964285714290 0.893939393940 0.928571428570
4 1.004227621300 1.004227585565 0.963169003257 0.962890625000 0.883767535070 0.839285714286
5 1.004227630503 1.004227628968 0.963214851933 0.963324652778 0.886929122814 0.950396825397
6 1.004227630666 1.004227630596 0.963208892004 0.963161892361 0.885923553202 0.783730158730
7 1.004227630669 1.004227630666 0.963209728694 0.963231646825 0.886262535450 1.069444444444
8 1.004227630669 1.004227630669 0.963209609365 0.963198586116 0.886148086455 0.527777777778
9 1.004227630669 1.004227630669 0.963209627248 0.963215540326 0.886188283668 1.638888888889

10 1.004227630669 1.004227630669 0.963209624564 0.963206276061 0.886174256708 −0.789682539683
11 1.004227630669 1.004227630669 0.963209624981 0.963211610032 0.886179300167 4.803391053391
12 1.004227630669 1.004227630669 0.963209624917 0.963208401315 0.886177503402 −8.654942279943
13 1.004227630669 1.004227630669 0.963209624927 0.963210404948 0.886178158992 24.960442335442

It should be noted that analogous results can be observed in cases (a)–(c) given at the
end of Section 2.3.

Finally, we consider the approximation of functions by constructed expansions.
The dilogarithm is the function defined by the power series (see, for example, [55])

Li2(z) =
∞

∑
k=1

zk

k2 for |z| < 1

with an analytic continuation given by

Li2(z) = −
∫ z

0

ln(1− u)
u

du for z ∈ C \ [1,+∞). (47)

In [56], it is shown that

Li2(z) =
z
1 +

a2z
1 +

a3z
1 +

. . . for z ∈ C \ [1,+∞), (48)

where

a2n =
A(1)

n A(0)
n−1

A(0)
n A(1)

n−1

, a2n+1 =
A(1)

n−1 A(0)
n+1

A(0)
n A(1)

n

, A(r)
n = det

∥∥∥∥ (−1)i+j+r

(r + i + j− 1)2

∥∥∥∥
1≤i,j≤n

.

In addition, Li2(z) can be expressed as (see, ([57], Section 2.6))

Li2(z) = z 3F2(1, 1, 1; 2, 2; z). (49)

It follows from Corollary 1 that in the region (37) the function Li2(z) is represented by
a branched continued fraction of the form

z

1−
c1,1

2,1z

1−
c1,1

2,1,1,1z

1−
c1,1

2,1,1,1,2,1z
1− . . .

−
c1,1

2,1,2,2z

1−
c1,1

2,1,2,2,1,2z
1− . . .

−
c1,1

2,1,2,2,2,1z
1− . . .

, (50)
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where c1,1
(ij)k

, (ij)k ∈ I1,1, defined by formulas (15)–(20), where a1 = 0 and b1 replaced by
b1 − 1.

Plots of the values of the nth approximants of the branched continued fraction (50) are
shown in Figure 1. Here we can see the so-called ‘fork property’ for a branched continued
fraction with positive elements (see [18] (p. 29)). That is, the plots of the values of even
(odd) approximations of (50) approaches from above (below) to the plot of the function
Li2(z).

-20 -15 -10 -5

-10

-8

-6

-4

-2

3rd, 4th, 5th, 6th, 7th, 8th, Li2(z)

Figure 1. The plots of values of the nth approximants of (50) for Li2(z).

Figure 2 shows the plots where the approximant f 1,1
8 (z) of the branched continued

fraction (50) guarantees certain truncation error bounds for function Li2(z).

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

Re z

Im
z

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Figure 2. The plots where the approximant f 1,1
8 (z) of (50) guarantees certain truncation error bounds

for Li2(z).

The numerical illustration of (48)–(50) is given in the Table 2. Here we compare the
relative errors of the approximation of function (47) by the partial sums of the power series
and the approximants of the continued fraction and the branched continued fraction. As a
results, the nth approximant of (50) is eventually a better approximation to (47) than the
nth partial sum of (49) and the nth approximant of (48) is.
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Table 2. Relative error of 5th partial sum and 5th approximants for Li2(z).

z (47) (49) (48) (50)

0.2 0.2110037754 9.88869× 10−6 3.84790× 10−7 3.79061× 10−7

0.1 0.1026177911 2.92233× 10−7 9.50960× 10−9 9.36538× 10−9

−0.2 −0.1908001378 8.12951× 10−6 1.64637× 10−7 1.62051× 10−7

−0.4 −0.3658325775 2.40912× 10−4 3.70070× 10−6 3.64181× 10−6

−0.5 −0.4484142069 7.10129× 10−4 9.59022× 10−6 9.43694× 10−6

−0.7 −0.6051584023 3.58461× 10−3 3.80158× 10−5 3.74047× 10−5

−0.9 −0.7521631792 1.18992× 10−2 1.00919× 10−4 9.92914× 10−5

−5 −2.749279126 3.48554× 10+1 1.83416× 10−2 1.80702× 10−2

−25 −6.785907900 5.42019× 10+4 2.91475× 10−1 2.88304× 10−1

In [58], it is given that function

arcsinh2√z = ln2(
√

z +
√

z + 1) (51)

(here the principal branch of the square root is assumed) has a generalized hypergeometric
series in the form

z 3F2(1, 1, 1; 3/2, 2;−z) =
∞

∑
n=0

(−1)n((1)n)3

(3/2)n(2)n

zn+1

n!
. (52)

So, it follows from Corollary 1 that the branched continued fraction

z

1 +
z/3

1 +
z/15

1 +
2z/15
1 + . . .

+
8z/21

1 +
4z/75
1 + . . .

+
3z/7

1 + . . .

(53)

is an analytic continuation of function (51) in the region

Hε = {z ∈ C : | arg(z)| ≤ π/(1 + ε)}, 0 < ε < 1.

Plots of the values of the nth approximants of the branched continued fraction (53) for
arcsinh2√z are shown in Figure 3.

5 10 15 20

2

4

6

8

3rd, 4th, 5th, 6th, 7th, 8th, arcsinh2√z

Figure 3. The plots of values of the nth approximants of (53) for arcsinh2√z.

Figure 4 shows the plots where the approximant f 1,1
8 (z) of the branched continued

fraction (53) guarantees certain truncation error bounds for function arcsinh2√z.
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-1 0 1 2 3

-2

-1

0

1

2

Re z

Im
z

0.00024

0.00048

0.00072

0.00096

0.00120

0.00144

Figure 4. The plots where the approximant f 1,1
8 (z) of (53) guarantees certain truncation error bounds

for arcsinh2√z.

Finally, a numerical illustration of (52) and (53) is given in the Table 3.

Table 3. Relative error of 5th partial sum and 5th approximant for arcsinh2√z.

z (51) (52) (53)

0.1 0.09683377 5.89297× 10−7 9.38113× 10−9

0.2 0.18792863 1.81135× 10−5 2.44604× 10−7

0.4 0.35575900 5.39204× 10−4 5.37787× 10−6

0.7 0.57918140 8.01911× 10−3 5.37870× 10−5

0.9 0.71337919 2.62446× 10−2 1.40695× 10−4

1 0.77681940 4.26521× 10−2 2.07391× 10−4

3 1.73437810 8.86578× 10−1 6.54173× 10−3

10 3.49148329 9.99511× 10−1 8.03203× 10−2

50 7.04436144 9.99999× 10−1 4.29712× 10−1

Here we have results like to the results in the previous example.

4. Discussion

In [26], the authors constructed branched continued fraction expansions for some
ratios of the generalized hypergeometric function 3F2. In this work, we have constructed
new expansions and investigated their convergence in some region together with the
already known ones. This allows us to approximate the solutions of certain differential
equations and also analytic functions, represented by generalized hypergeometric function
3F2, using branched continued fractions. The result is a generalization of the classical
continued fraction expansions of Gauss’s hypergeometric function ratios.

Compared with power series or multiple power series under certain conditions,
branched continued fractions have wider convergence regions and are endowed with the
property of numerical stability. This makes them an effective tool for rational approximation
in the theory approximation. Studying the branched continued fractions is to develop new
and effective methods for establishing convergence criteria and finding estimates of the
rate of convergence.

Despite the fact that the established convergence region for the constructed expansions
is wider than the convergence region of the corresponding generalized hypergeometric
function 3F2, the problem of studying wider convergence regions and establishing estimates
of the of convergence rate of the expansions mentioned above still remains open.

The proposed methods for constructing and studying the branched continued fraction
expansions of the ratios of generalized hypergeometric function 3F2 can also be applied to
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construct the expansions of other relations of generalizations of the Gauss hypergeometric
function. This, in turn, will allow the use of branched continued fractions to approximate
the solutions of some differential equations and their system, which can be used in applied
problems in physics, astronomy, economics, etc. Here it is appropriate to mention one of
the interesting applications of continued fractions in modelling the birth-death processes
in the works [59–61]. Finally, we point to the works [62–64], where is no less interesting
application of continued and branched continued fractions in chemical graph theory.
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