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1. Introduction

Over the last few decades, many authors, such as Hanson [1], Craven [2], Corley [3],
Zalmai [4] etc., studied different types of optimization problems. One of such optimization
problems is semi-infinite programming problem. In recent times, many authors, such as
Goberna and Lopez [5], Shapiro [6], etc., have studied optimality conditions of semi-infinite
programming problems. In 2005, Shapiro [7] studied the Lagrangian-type duality of semi-
infinite programming problems under convexity assumption. In 2010, Kostyukova and
Tchemisova [8] established sufficient optimality conditions of semi-infinite programming
problems using convexity assumption. In 2012, Mishra and Jaiswal [9] established the
sufficient optimality conditions of semi-infinite programming problems using generalized
convexity assumption. They also formulated duality model and proved the corresponding
theorems of Mond–Weir type dual.

In 1976, Avriel [10] introduced the notion of arcwise connectedness as a generalization
of convexity. It was basically introduced by replacing the line segment and joining two
points by a continuous arc. Later, Fu and Wang [11] and Lalitha et al. [12] introduced the
notion of cone arcwise connected set-valued maps as an extension of the class of convex
set-valued maps. Lalitha et al. [12] established the sufficient optimality conditions of set-
valued optimization problems via contingent epiderivative and cone arcwise connectedness
assumptions. In 2013, Yu [13] established the necessary and sufficient optimality conditions
for the existence of global proper efficient points of vector optimization problems using cone
arcwise connectedness. Yihong and Min [14] introduced the concept of α-order nearly cone
arcwise connected set-valued maps and derived the necessary and sufficient optimality
conditions of some set-valued optimization problems. Yu [15] established the necessary
and sufficient optimality conditions for the existence of global proper efficient elements
in vector optimization problems. In 2018, Peng and Xu [16] introduced the notion of cone
subarcwise connected set-valued maps. They also established the second-order necessary
optimality conditions for global proper efficiency of set-valued optimization problems.

In this paper, we consider a set-valued semi-infinite programming problem (SP),
where the objective function and constraints are set-valued maps. We are mainly interested
in establishing the sufficient KKT optimality conditions of the problem (SP) in terms of
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generalized cone arcwise connectedness. We also study the duality theorems of Mond–Weir
(MWD), Wolfe (WD), and mixed (MD) types associated with the problem (SP).

This paper is organized as follows. In Section 2, we state some definitions and
preliminary concepts of set-valued maps. The concept of ρ-cone arcwise connectedness is
included in Section 3. In Section 4, we establish (see Section 5) the sufficient KKT optimality
conditions for the problem (SP). We also study the duality results of various types using
generalized cone arcwise connectedness assumptions (see Sections 6–8). Section 9 concludes
the paper.

2. Definitions and Preliminaries

Let V be a real normed space and Ω be a nonempty subset of V. Then, Ω is said
to be a cone if λv ∈ Ω, for all v ∈ Ω and λ ≥ 0. Furthermore, Ω is called non-trivial if
Ω 6= {θV}, proper if Ω 6= V, pointed if Ω ∩ (−Ω) = {θV}, solid if int(Ω) 6= ∅, closed if
Ω = Ω, and convex if λΩ + (1− λ)Ω ⊆ Ω, for all λ ∈ [0, 1], where int(Ω) and Ω denote
the interior and closure of Ω, respectively, and θV is the zero element of V.

Aubin [17,18] introduced the notion of contingent cone in set-valued optimization
theory. Moreover, Aubin [17,18] and Cambini et al. [19] introduced the notion of second-
order contingent set in a set-valued optimization theory.

Definition 1 ([17,18]). Let V be a real normed space, ∅ 6= B ⊆ V, and v′ ∈ B. The contingent
cone to B at v′ is denoted by T(B, v′) and is defined as follows: an element v ∈ T(B, v′) if there are
sequences {λn} in R, with λn → 0+ and {vn} in V, with vn → v, such that

v′ + λnvn ∈ B, ∀n ∈ N,

or, there exist sequences {tn} in R, with tn > 0 and {v′n} in B, with v′n → v′, such that

tn(v′n − v′)→ v.

Let U, V be real normed spaces, 2V be the set of all subsets of V, and Ω be a solid
pointed convex cone in V. Let F : U → 2V be a set-valued map from U to V, i.e., F (u) ⊆ V,
for all u ∈ U. The domain, image, graph, and epigraph of F are defined by

dom(F ) = {u ∈ U : F (u) 6= ∅},

F (A) =
⋃

u∈A
F (u), for any ∅ 6= A ⊆ U,

gr(F ) = {(u, v) ∈ U ×V : v ∈ F (u)},

and
epi(F ) = {(u, v) ∈ U ×V : v ∈ F (u) + Ω}.

Jahn and Rauh [20] introduced the notion of contingent epiderivative of set-valued
maps. It plays a vital role in various aspects of set-valued optimization problems.

Definition 2 ([20]). A single-valued map D↑F (u′, v′) : U → V whose epigraph coincides with
the contingent cone to the epigraph of F at (u′, v′), i.e.,

epi(D↑F (u′, v′)) = T(epi(F ), (u′, v′)),

is said to be the contingent epiderivative of F at (u′, v′).

We now turn our attention to the notion of cone convexity of set-valued maps which
was introduced by Borwein [21] in 1977.
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Definition 3 ([21]). Let A be a nonempty convex subset of a real normed space U. A set-valued
map F : U → 2V , with A ⊆ dom(F ), is called Ω-convex on A if ∀u1, u2 ∈ A and λ ∈ [0, 1],

λF (u1) + (1− λ)F (u2) ⊆ F (λu1 + (1− λ)u2) + Ω.

In 1976, Avriel [10] introduced the notion of arcwise connectedness of set-valued maps.

Definition 4. A subset A of a real normed space U is said to be an arcwise connected set if for
all u1, u2 ∈ A there is a continuous arc Hu1,u2(λ) defined on [0, 1] with a value in A such that
Hu1,u2(0) = u1 andHu1,u2(1) = u2.

Fu and Wang [11] and Lalitha et al. [12] introduced the notion of cone arcwise connectedness
of set-valued maps. It is basically an extension of the class of cone convex set-valued maps.

Definition 5 ([11,12]). Let A be an arcwise connected subset of a real normed space U and
F : U → 2V be a set-valued map, with A ⊆ dom(F ). Then, F is said to be Ω-arcwise connected
on A if

(1− λ)F (u1) + λF (u2) ⊆ F (Hu1,u2(λ)) + Ω, ∀u1, u2 ∈ A and ∀λ ∈ [0, 1].

Peng and Xu [16] introduced the notion of cone subarcwise connectedness of set-
valued maps.

Definition 6 ([16]). Let A be an arcwise connected subset of a real normed space U, e ∈ int(Ω),
and F : U → 2V be a set-valued map, with A ⊆ dom(F ). Then, F is said to be Ω-subarcwise
connected on A if

(1− λ)F (u1) + λF (u2) + εe ⊆ F (Hu1,u2(λ)) + Ω,

∀u1, u2 ∈ A, ∀ε > 0, and ∀λ ∈ [0, 1].

3. ρ-Cone Arcwise Connectedness

Das and Nahak [22–25] and Treanţă and Das [26] introduced the notion of ρ-cone
convexity of set-valued maps. They establish the sufficient KKT optimality conditions of
set-valued optimization problems under contingent epiderivative and ρ-cone convexity
assumptions. They also construct various duality models and prove the associated duality
theorems. For ρ = 0, we get the usual notion of cone convexity of set-valued maps
introduced by Borwein [21] in the year of 1977.

We introduce the notion of ρ-cone arcwise connectedness of set-valued maps as a
generalization of cone arcwise connected set-valued maps.

Definition 7. Let A be an arcwise connected subset of a real normed space U, e ∈ int(Ω),
and F : U → 2V be a set-valued map, with A ⊆ dom(F ). Then, F is said to be ρ-Ω-arcwise
connected on A with respect to e if there exists ρ ∈ R, such that

(1− λ)F (u1) + λF (u2) ⊆ F (Hu1,u2(λ)) + ρλ(1− λ)‖u1 − u2‖2e + Ω,

∀u1, u2 ∈ A and ∀λ ∈ [0, 1].

Remark 1. If ρ > 0, then F is called strongly ρ-Ω-arcwise connected; if ρ = 0, we have the
notion of Ω-arcwise connectedness; and if ρ < 0, then F is called weakly ρ-Ω-arcwise connected.
Obviously, strongly ρ-Ω-arcwise connectedness ⇒ Ω-arcwise connectedness ⇒ weakly ρ-Ω-
arcwise connectedness.

Further, we formulate an example of ρ-cone arcwise connected set-valued map, which
is not cone arcwise connected.
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Example 1. Let U = R2, V = R, Ω = R+ and

A =

{
u = (u1, u2) | u1 + u2 ≥

1
2

, u1 ≥ 0, u2 ≥ 0
}
⊂ U.

DefineHu,s(λ) = (1− λ)u + λs, where u = (u1, u2), s = (s1, s2), and λ ∈ [0, 1]. Clearly,
A is an arcwise connected set. For the set-valued map F : U → 2V , defined as follows: F (u) = [0, 2],
u1 + u2 ≥ 1

2 , u1 6= u2, and F (u) = [3, 5] for {u1 + u2 < 1
2} ∪ {u1 + u2 ≥ 1

2 , u1 = u2}, we
find that F is not Ω-arcwise connected for u = (1, 0), s = (0, 1) and λ = 1

2 . On the other hand,
by considering ρ = −2 and e = [3, 3] = {3}, we get that F is a ρ-Ω-arcwise connected set-valued
map for u = (1, 0), s = (0, 1).

Theorem 1. Let A be an arcwise connected subset of a real normed space U, e ∈ int(Ω), and
F : U → 2V be ρ-Ω-arcwise connected on A with respect to e. Let u′ ∈ A and v′ ∈ F (u′). Then,

F (u)− v′ ⊆ D↑F (u′, v′)(H′u′ ,u(0+)) + ρ‖u− u′‖2e + Ω, ∀u ∈ A,

where

H′u′ ,u(0+) = lim
λ→0+

Hu′ ,u(λ)−Hu′ ,u(0)
λ

,

assuming thatH′u′ ,u(0+) exists for all u, u′ ∈ A.

Proof. Let u ∈ A. As F is ρ-Ω-arcwise connected on A with respect to e, we have

(1− λ)F (u′) + λF (u) ⊆ F (Hu′ ,u(λ)) + ρλ(1− λ)‖u− u′‖2e + Ω,

∀λ ∈ [0, 1].

Let v ∈ F (u). Consider a real sequence {λn}, with λn ∈ (0, 1), n ∈ N, such that
λn → 0+ when n→ ∞. Suppose

un = Hu′ ,u(λn)

and
vn = (1− λn)v′ + λnv− ρλn(1− λn)‖u− u′‖2e.

Therefore,
vn ∈ F (un) + Ω.

It is clear that

un = Hu′ ,u(λn)→ Hu′ ,u(0) = u′, vn → v′, when n→ ∞,

un − u′

λn
=
Hu′ ,u(λn)−Hu′ ,u(0)

λn
→ H′u′ ,u(0+), when n→ ∞,

and

vn − v′

λn
= v− v′ − ρ(1− λn)‖u− u′‖2e→ v− v′ − ρ‖u− u′‖2e, when n→ ∞.

Therefore,

(H′u′ ,u(0+), v− v′ − ρ‖u− u′‖2e) ∈ T(epi(F ), (u′, v′)) = epi(D↑F (u′, v′)).

Consequently,

v− v′ − ρ‖u− u′‖2e ∈ D↑F (u′, v′)(H′u′ ,u(0+)) + Ω,
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which is true, for all v ∈ F (u). Hence,

F (u)− v′ ⊆ D↑F (u′, v′)(H′u′ ,u(0+)) + ρ‖u− u′‖2e + Ω, ∀u ∈ A.

Hence, the theorem follows.

4. Formulation of the Main Problem

Let U be a countably infinite subset of Rp, ∅ 6= A ⊆ Rn, and F = (F1,F2, . . . ,Fm) :
Rn → 2R

m
, G : Rn ×U → 2R be two set-valued maps with

A ⊆ dom(F ) and A×U ⊆ dom(G).

Let B1, B2, . . . , Bm be n× n positive semi-definite symmetric real matrices. We consider
a set-valued semi-infinite programming problem (SP).

minimize
x∈A

(F1(x) + (xT B1x)
1
2 ,F2(x) + (xT B2x)

1
2 , . . . ,Fm(x) + (xT Bmx)

1
2 )

subject to G(x, u) ∩ (−R+) 6= ∅, ∀u ∈ U.

We define the feasible set of the problem (SP) by

S = {x ∈ A : G(x, u) ∩ (−R+) 6= ∅, ∀u ∈ U}.

Definition 8. A point (x′, y′) ∈ Rn × Rm, with x′ ∈ S and y′ = (y′1, y′2, . . . , y′m) ∈ F (x′),
is said to be a minimizer of the problem (SP) if for all (x, y) ∈ Rn × Rm, with x ∈ S and
y = (y1, y2, . . . , ym) ∈ F (x),

(y1 + (xT B1x)
1
2 , y2 + (xT B2x)

1
2 , . . . , ym + (xT Bmx)

1
2 )

− (y′1 + (x′T B1x′)
1
2 , y′2 + (x′T B2x′)

1
2 , . . . , y′m + (x′T Bmx′)

1
2 ) /∈ (−Rm

+) \ {θRm}.

Definition 9. A point (x′, y′) ∈ Rn ×Rm, with x′ ∈ S and y′ = (y′1, y′2 . . . , y′m) ∈ F (x′), is
said to be a weak minimizer of the problem (SP) if for all (x, y) ∈ Rn × Rm, with x ∈ S and
y = (y1, y2, . . . , ym) ∈ F (x),

(y1 + (xT B1x)
1
2 , y2 + (xT B2x)

1
2 , . . . , ym + (xT Bmx)

1
2 )

− (y′1 + (x′T B1x′)
1
2 , y′2 + (x′T B2x′)

1
2 , . . . , y′m + (x′T Bmx′)

1
2 ) /∈ (−int(Rm

+)).

Let J be the index set, such that U = {uj : j ∈ J}. Let x′ ∈ A. We denote a set J(x′) by

J(x′) = {j ∈ J : 0 ∈ G(x′, uj)}.

We assume that J(x′) 6= ∅.
For special case, when f = ( f1, f2, . . . , fm) : Rn → Rm and g : Rn × U → R are

single-valued maps, we can have multiobjective semi-infinite programming problem ([9])
as

minimize
x∈A

( f1(x) + (xT B1x)
1
2 , f2(x) + (xT B2x)

1
2 , . . . , fm(x) + (xT Bmx)

1
2 )

subject to g(x, u) ∈ (−R+), ∀u ∈ U,

by considering Fi(x) = { fi(x)}, i = 1, 2, . . . , m, and G(x, u) = {g(x, u)} in the problem (SP).

5. Optimality Conditions

Let xi ∈ Rn, i = 1, 2, . . . , m. Define maps .T Bixi : Rn → R, i = 1, 2, . . . , m, by

(.T Bixi)(x) = xT Bixi, ∀x ∈ Rn.



Axioms 2021, 10, 302 6 of 17

The gradient vector of .T Bixi, denoted by ∇(.T Bixi), is given by

∇(.T Bixi) = Bixi.

Let x′ ∈ A and j ∈ J(x′). Define a set-valued map G(., uj) : Rn → 2R by

G(., uj)(x) = G(x, uj), ∀x ∈ dom(G).

We establish the sufficient KKT optimality conditions of the set-valued semi-infinite
programming problem (SP) under ρ-cone arcwise connectedness assumption.

Theorem 2 (Sufficient optimality conditions). Let A be an arcwise connected subset of Rn,
x′ ∈ S, and y′ = (y′1, y′2, . . . , y′m) ∈ F (x′). Let xi ∈ Rn, i = 1, 2, . . . , m and z′ = (z′j)j∈J ,
with z′j ∈ G(x′, uj) ∩ (−R+). Let ρi, ρ′i, ρ′′j ∈ R, for i = 1, 2, . . . , m and j ∈ J(x′). Suppose that
Fi, .T Bixi, i = 1, 2, . . . , m, and G(., uj), j ∈ J(x′), are ρi-R+-arcwise connected, ρ′i-R+-arcwise
connected, and ρ′′j -R+-arcwise connected set-valued maps, respectively, on A with respect to 1.
Further, we suppose that the contingent epiderivatives D↑Fi(x′, y′i) and D↑G(., uj)(x′, z′j) exist. If
there exist y∗i > 0, i = 1, 2, . . . , m, and z∗j ≥ 0, j ∈ J(x′), with z∗j 6= 0, for finitely many j, and

m

∑
i=1

y∗i (ρi + ρ′i) + ∑
j∈J(x′)

z∗j ρ′′j ≥ 0, (1)

satisfying the following conditions( m

∑
i=1

y∗i (D↑Fi(x′, y′i) + (Bixi)
T) + ∑

j∈J(x′)
z∗j D↑G(., uj)(x′, z′j)

)
(H′x′ ,x(0+))

≥ 0, ∀x ∈ A,

(2)

z∗j z′j = 0, ∀j ∈ J(x′), (3)

xT
i Bixi ≤ 1, i = 1, 2, . . . , m, (4)

and
(x′T Bix′)

1
2 = x′T Bixi, i = 1, 2, . . . , m. (5)

Then, (x′, y′) is a weak minimizer of (SP).

Proof. Let (x′, y′) be not a weak minimizer of (SP). Then there exist x ∈ S and y =
(y1, . . . , ym) ∈ F (x), such that

(y1 + (xT B1x)
1
2 , y2 + (xT B2x)

1
2 , . . . , ym + (xT Bmx)

1
2 )

<(y′1 + (x′T B1x′)
1
2 , y′2 + (x′T B2x′)

1
2 , . . . , y′m + (x′T Bmx′)

1
2 ).

As y∗ ∈ Rm
+ \ {θRm}, we have

m

∑
i=1

y∗i (yi + (xT Bix)
1
2 ) <

m

∑
i=1

y∗i (y
′
i + (x′T Bix′)

1
2 ). (6)

Since Fi, i = 1, 2, . . . , m, is ρi-R+-arcwise connected on A with respect to 1 and
(x′, y′i) ∈ gr(Fi), we have

Fi(x)− y′i − ρi‖x− x′‖2 ⊆ D↑Fi(x′, y′i)(H′x′ ,x(0+)) +R+.

Hence,
yi − y′i − ρi‖x− x′‖2 ∈ D↑Fi(x′, y′i)(H′x′ ,x(0+)) +R+.
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Therefore,

y∗i (yi − y′i)− ρi‖x− x′‖2y∗i ≥ y∗i D↑Fi(x′, y′i)(H′x′ ,x(0+)). (7)

Again, as .T Bixi, i = 1, 2, . . . , m and G(., uj), j ∈ J(x′), are ρ′i-R+-arcwise connected
and ρ′′j -R+-arcwise connected, respectively, on A, with respect to 1, we have

xT Bixi − x′T Bixi − ρ′i‖x− x′‖2 ≥ (Bixi)
T(H′x′ ,x(0+))

and
G(x, uj)− z′j − ρ′′j ‖x− x′‖2 ⊆ D↑G(., uj)(x′, z′j)(H′x′ ,x(0+)) +R+.

As x ∈ S, there exists zj ∈ G(x, uj) ∩ (−R+), j ∈ J(x′). So, we have

zj − z′j − ρ′′j ‖x− x′‖2 ∈ D↑G(., uj)(x′, z′j)(H′x′ ,x(0+)) +R+.

Therefore,

y∗i (xT Bixi − x′T Bixi)− ρ′i‖x− x′‖2y∗i ≥ y∗i (Bixi)
T(H′x′ ,x(0+)) (8)

and
z∗j (zj − z′j)− ρ′′j ‖x− x′‖2z∗j ≥ z∗j D↑G(., uj)(x′, z′j)(H′x′ ,x(0+)). (9)

From (7)–(9), we have

m

∑
i=1

y∗i (yi − y′i + xT Bixi − x′T Bixi) + ∑
j∈J(x′)

z∗j (zj − z′j)

− ‖x− x′‖2
m

∑
i=1

y∗i (ρi + ρ′i)− ‖x− x′‖2 ∑
j∈J(x′)

z∗j ρ′′j

≥
( m

∑
i=1

y∗i (D↑Fi(x′, y′i) + (Bixi)
T) + ∑

j∈J(x′)
z∗j D↑G(., uj)(x′, z′j)

)
(H′x′ ,x(0+)) ≥ 0.

From (1), we have

m

∑
i=1

y∗i (yi − y′i + xT Bixi − x′T Bixi) + ∑
j∈J(x′)

z∗j (zj − z′j)

≥ ‖x− x′‖2
( m

∑
i=1

y∗i (ρi + ρ′i) + ∑
j∈J(x′)

z∗j ρ′′j

)
≥ 0.

As z∗j z′j = 0 and zj ∈ (−R+), ∀j ∈ J(x′), we have

∑
j∈J(x′)

z∗j (zj − z′j) ≤ 0.

Hence,
m

∑
i=1

y∗i (yi − y′i + xT Bixi − x′T Bixi) ≥ 0.

Using the generalized Schwarz inequality, we have

(xT Bix)
1
2 (xT

i Bixi)
1
2 ≥ xT Bixi.
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Again, from (5), we have

(x′T Bix′)
1
2 = x′T Bixi, i = 1, 2, . . . , m.

Therefore,

m

∑
i=1

y∗i (yi − y′i + (xT Bix)
1
2 (xT

i Bixi)
1
2 − (x′T Bix′)

1
2 ) ≥ 0.

From (4), we have xT
i Bixi ≤ 1, i = 1, 2, . . . , m. So, we have

(xT Bix)
1
2 ≥ (xT Bix)

1
2 (xT

i Bixi)
1
2 .

Hence,
m

∑
i=1

y∗i (yi + (xT Bix)
1
2 ) ≥

m

∑
i=1

y∗i (y
′
i + (x′T Bix′)

1
2 ),

which contradicts (6). Hence, (x′, y′) is a weak minimizer of (SP).

6. Mond–Weir Type Dual

We consider the Mond–Weir type dual (MWD) of the problem (SP), where Fi and
G(., uj) are contingent epiderivable set-valued maps:

maximize (y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm))

subject to ( m

∑
i=1

y∗i (D↑Fi(x′, y′i) + (Bixi)
T) + ∑

j∈J(x′)
z∗j D↑G(., uj)(x′, z′j)

)
(H′x′ ,x(0+))

≥ 0, ∀x ∈ A,

∑
j∈J(x′)

z∗j z′j ≥ 0,

xT
i Bixi ≤ 1, xi ∈ Rn, i = 1, 2, . . . , m,

x′ ∈ A, y′ = (y′1, y′2, . . . , y′m) ∈ F (x′), z′ = (z′j)j∈J , z′j ∈ G(x′, uj), j ∈ J,

y∗i > 0, i = 1, 2, . . . , m,
m

∑
i=1

y∗i = 1, z∗ = (z∗j )j∈J , z∗j ≥ 0, j ∈ J,

and z∗j 6= 0, for finitely many j ∈ J.

Definition 10. A feasible point (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) of (MWD) is said to be a weak
maximizer of (MWD) if for all feasible points (x, y, x̂1, x̂2, . . . , x̂m, z, y∗1 , z∗1) of (MWD),

(y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm))

≮ (y1 + (xT B1 x̂1), y2 + (xT B2 x̂2), . . . , ym + (xT Bm x̂m)),

where y = (y1, y2, . . . , ym), y′ = (y′1, y′2, . . . , y′m) ∈ Rm.

Theorem 3 (Weak duality). Let A be an arcwise connected subset of Rn and x0 be an element
of the feasible set S of (SP). Let (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) be a feasible solution of (MWD).
Let ρi, ρ′i, ρ′′j ∈ R, for i = 1, 2, . . . , m and j ∈ J(x′). Suppose that Fi, .T Bixi, i = 1, 2, . . . , m,
and G(., uj), j ∈ J(x′), are ρi-R+-arcwise connected, ρ′i-R+-arcwise connected, and ρ′′j -R+-arcwise
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connected set-valued maps, respectively, on A, with respect to 1, satisfying (5 1). Further, we
suppose that the contingent epiderivatives D↑Fi(x′, y′i) and D↑G(., uj)(x′, z′j) exist. Then,

(F1(x0) + (xT
0 B1x0)

1
2 ,F2(x0) + (xT

0 B2x0)
1
2 , . . . ,Fm(x0) + (xT

0 Bmx0)
1
2 )

− (y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) ⊆ Rm \ (−int(Rm
+)).

Proof. Assume that there is point yi ∈ Fi(x0), i = 1, 2, . . . , m, such that

(y1 + (xT
0 B1x0)

1
2 , y2 + (xT

0 B2x0)
1
2 , . . . , ym + (xT

0 Bmx0)
1
2 )

− (y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) ∈ (−int(Rm
+)).

As y∗ ∈ Rm
+ \ {θRm}, we have

m

∑
i=1

y∗i (yi + (xT
0 Bix0)

1
2 ) <

m

∑
i=1

y∗i (y
′
i + (x′T Bixi)). (10)

As Fi, i = 1, 2, . . . , m, is ρi-R+-arcwise connected on A with respect to 1 and
(x′, y′i) ∈ gr(Fi), we have

Fi(x0)− y′i − ρi‖x0 − x′‖2 ⊆ D↑Fi(x′, y′i)(H′x′ ,x0
(0+)) +R+.

Hence,
yi − y′i − ρi‖x0 − x′‖2 ∈ D↑Fi(x′, y′i)(H′x′ ,x0

(0+)) +R+.

Therefore,

y∗i (yi − y′i)− ρi‖x0 − x′‖2y∗i ≥ y∗i D↑Fi(x′, y′i)(H′x′ ,x0
(0+)). (11)

As .T Bixi, i = 1, 2, . . . , m, is ρ′i-R+-arcwise connected on A with respect to 1, we have

xT
0 Bixi − x′T Bixi − ρ′i‖x0 − x′‖2 ≥ (Bixi)

T(H′x′ ,x0
(0+)).

Therefore,

y∗i (xT
0 Bixi − x′T Bixi)− ρ′i‖x0 − x′‖2y∗i ≥ y∗i (Bixi)

T(H′x′ ,x0
(0+)). (12)

Again, as G(., uj), j ∈ J(x′), is ρ′′j -R+-arcwise connected on A with respect to 1 and
z′j ∈ G(x′, uj), j ∈ J(x′), we have

G(x0, uj)− z′j − ρ′′j ‖x0 − x′‖2 ⊆ D↑G(., uj)(x′, z′j)(H′x′ ,x0
(0+)) +R+.

As x0 ∈ S, there exists zj ∈ G(x0, uj) ∩ (−R+), j ∈ J(x′), we have

zj − z′j − ρ′′j ‖x0 − x′‖2 ∈ D↑G(., uj)(x′, z′j)(H′x′ ,x0
(0+)) +R+.

Hence,

z∗j (zj − z′j)− ρ′′j ‖x0 − x′‖2z∗j ≥ z∗j D↑G(., uj)(x′, z′j)(H′x′ ,x0
(0+)). (13)
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From (11)–(13), we have

m

∑
i=1

y∗i (yi − y′i + xT
0 Bixi − x′T Bixi) + ∑

j∈J(x′)
z∗j (zj − z′j)

− ‖x0 − x′‖2
m

∑
i=1

y∗i (ρi + ρ′i)− ‖x0 − x′‖2 ∑
j∈J(x′)

z∗j ρ′′j

≥
( m

∑
i=1

y∗i (D↑Fi(x′, y′i) + (Bixi)
T) + ∑

j∈J(x′)
z∗j D↑G(., uj)(x′, z′j)

)
(H′x′ ,x0

(0+))

≥ 0.

From (1), we have

m

∑
i=1

y∗i (yi − y′i + xT
0 Bixi − x′T Bixi) + ∑

j∈J(x′)
z∗j (zj − z′j)

≥ ‖x0 − x′‖2
( m

∑
i=1

y∗i (ρi + ρ′i) + ∑
j∈J(x′)

z∗j ρ′′j

)
≥ 0.

As ∑
j∈J(x′)

z∗j z′j ≥ 0, z∗j ≥ 0, and zj ∈ (−R+), j ∈ J(x′), we have

∑
j∈J(x′)

z∗j (zj − z′j) ≤ 0.

Hence,
m

∑
i=1

y∗i (yi − y′i + xT
0 Bixi − x′T Bixi) ≥ 0.

Using the generalized Schwarz inequality, we have

(xT
0 Bix0)

1
2 (xT

i Bixi)
1
2 ≥ xT

0 Bixi.

Again, from the constraints of (MWD), we have

xT
i Bixi ≤ 1, i = 1, 2, . . . , m.

Hence, (xT
0 Bix0)

1
2 ≥ xT

0 Bixi. It shows that

m

∑
i=1

y∗i (yi + (xT
0 Bix0)

1
2 ) ≥

m

∑
i=1

y∗i (y
′
i + (x′T Bixi)),

which contradicts (10). Therefore,

(y1 + (xT
0 B1x0)

1
2 , y2 + (xT

0 B2x0)
1
2 , . . . , ym + (xT

0 Bmx0)
1
2 )

− (y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) /∈ (−int(Rm
+)).

Hence,

(F1(x0) + (xT
0 B1x0)

1
2 ,F2(x0) + (xT

0 B2x0)
1
2 , . . . ,Fm(x0) + (xT

0 Bmx0)
1
2 )

− (y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) ⊆ Rm \ (−int(Rm
+)).

It completes the proof of the theorem.
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Theorem 4 (Strong duality). Suppose that (x′, y′) is a weak minimizer of (SP), z′ = (z′j)j∈J ,
z′j ∈ G(x′, uj) ∩ (−R+), j ∈ J, and xi ∈ Rn, i = 1, 2, . . . , m. Suppose that, for some y∗i > 0,

i = 1, 2, . . . , m, with
m

∑
i=1

y∗i = 1 and z∗j ≥ 0, with z∗j 6= 0 for finitely many j ∈ J and z∗j = 0,

∀j ∈ J \ J(x′). Equations (5.2)–(5.5) are satisfied at the point (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗).
Then, (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) is a feasible solution of (MWD). If the Theorem 6.1 holds
between the problems (SP) and (MWD), then (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) is a weak maximizer
of (MWD).

Proof. As (2)–(5) are satisfied at the point (x′, y′, x1, . . . , xm, z′, y∗, z∗), we have

( m

∑
i=1

y∗i (D↑Fi(x′, y′i) + (Bixi)
T) + ∑

j∈J(x′)
z∗j D↑G(., uj)(x′, z′j)

)
((H′x′ ,x(0+)))

≥ 0, ∀x ∈ A,

z∗j z′j = 0, ∀j ∈ J(x′),

xT
i Bixi ≤ 1, i = 1, 2, . . . , m,

and
(x′T Bix′)

1
2 = x′T Bixi, i = 1, 2, . . . , m.

Hence, (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) is a feasible solution of (MWD). Assume that the
weak duality Theorem 3 holds between the problems (SP) and (MWD). Let
(x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) be not a weak maximizer of (MWD). Then, there exists
a feasible solution (x, y, x̂1, x̂2, . . . , x̂m, z, y∗1 , z∗1) of (MWD), such that

(y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm))

− (y1 + (xT B1 x̂1), y2 + (xT B2 x̂2), . . . , ym + (xT Bm x̂m)) ∈ (−int(Rm
+)).

where y = (y1, . . . , ym) ∈ Rm. As (x′T Bix′)
1
2 = x′T Bixi, i = 1, 2, . . . , m, we have

(y′1 + (x′T B1x′)
1
2 , y′2 + (x′T B2x′)

1
2 , . . . , y′m + (x′T Bmx′)

1
2 )

− (y1 + (xT B1 x̂1), y2 + (xT B2 x̂2), . . . , ym + (xT Bm x̂m)) ∈ (−int(Rm
+)),

which contradicts the Theorem 3 between (SP) and (MWD). Hence, (x′, y′, x1, . . . , xm, z′,
y∗, z∗) is a weak maximizer of (MWD).

Theorem 5 (Converse duality). Let A be an arcwise connected subset of Rn. Suppose that
(x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) is a feasible solution of (MWD), with

(x′T Bix′)
1
2 = x′T Bixi, i = 1, 2, . . . , m.

Let ρi, ρ′i, ρ′′j ∈ R, for i = 1, 2, . . . , m and j ∈ J(x′). Suppose that Fi, .T Bixi, i = 1, 2, . . . , m,
and G(., uj), j ∈ J(x′), are ρi-R+-arcwise connected, ρ′i-R+-arcwise connected, and ρ′′j -R+-arcwise
connected set-valued maps, respectively, on A, with respect to 1, satisfying (1). We suppose that
the contingent epiderivatives D↑Fi(x′, y′i) and D↑G(., uj)(x′, z′j) exist. If x′ ∈ S, then (x′, y′) is a
weak minimizer of (SP).

Proof. Let (x′, y′) be not a weak minimizer of (SP). Then, x ∈ S and y = (y1, y2, . . . , ym) ∈ F (x)
exist, such that

(y1 + (xT B1x)
1
2 , y2 + (xT B2x)

1
2 , . . . , ym + (xT Bmx)

1
2 )

− (y′1 + (x′T B1x′)
1
2 , y′2 + (x′T B2x′)

1
2 , . . . , y′m + (x′T Bmx′)

1
2 ) ∈ (−int(Rm

+)).
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As y∗ ∈ Rm
+ \ {θRm}, we have

m

∑
i=1

y∗i (yi + (xT Bix)
1
2 ) <

m

∑
i=1

y∗i (y
′
i + (x′T Bix′)

1
2 ). (14)

Since Fi, i = 1, 2, . . . , m, is ρi-R+-arcwise connected on A with respect to 1 and
(x′, y′i) ∈ gr(Fi), we have

Fi(x)− y′i − ρi‖x− x′‖2 ⊆ D↑Fi(x′, y′i)(H′x′ ,x(0+)) +R+.

Hence,
yi − y′i − ρi‖x− x′‖2 ∈ D↑Fi(x′, y′i)(H′x′ ,x(0+)) +R+.

Therefore,

y∗i (yi − y′i)− ρi‖x− x′‖2y∗i ≥ y∗i D↑Fi(x′, y′i)(H′x′ ,x(0+)). (15)

Again, as .T Bixi, i = 1, 2, . . . , m, and G(., uj), j ∈ J(x′), are ρ′i-R+-arcwise connected
and ρ′′j -R+-arcwise connected, respectively, on A, with respect to 1, we have

xT Bixi − x′T Bixi − ρ′i‖x− x′‖2 ≥ (Bixi)
T(H′x′ ,x(0+))

and
G(x, uj)− z′j − ρ′′j ‖x− x′‖2 ⊆ D↑G(., uj)(x′, z′j)(H′x′ ,x(0+)) +R+.

As x ∈ S, there exists zj ∈ G(x, uj) ∩ (−R+), ∀j ∈ J(x′). So,

zj − z′j − ρ′′j ‖x− x′‖2 ∈ D↑G(., uj)(x′, z′j)(H′x′ ,x(0+)) +R+.

Therefore,

y∗i (xT Bixi − x′T Bixi)− ρ′i‖x− x′‖2y∗i ≥ y∗i (Bixi)
T(H′x′ ,x(0+)) (16)

and
z∗j (zj − z′j)− ρ′′j ‖x− x′‖2z∗j ≥ z∗j D↑G(., uj)(x′, z′j)(H′x′ ,x(0+)). (17)

From (15)–(17), we have

m

∑
i=1

y∗i (yi − y′i + xT Bixi − x′T Bixi) + ∑
j∈J(x′)

z∗j (zj − z′j)

− ‖x− x′‖2
m

∑
i=1

y∗i (ρi + ρ′i)− ‖x− x′‖2 ∑
j∈J(x′)

z∗j ρ′′j

≥
( m

∑
i=1

y∗i (D↑Fi(x′, y′i) + (Bixi)
T) + ∑

j∈J(x′)
z∗j D↑G(., uj)(x′, z′j)

)
(H′x′ ,x(0+)) ≥ 0.

By (1), we have

m

∑
i=1

y∗i (yi − y′i + xT Bixi − x′T Bixi) + ∑
j∈J(x′)

z∗j (zj − z′j)

≥ ‖x− x′‖2
( m

∑
i=1

y∗i (ρi + ρ′i) + ∑
j∈J(x′)

z∗j ρ′′j

)
≥ 0.
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As ∑
j∈J(x′)

z∗j z′j ≥ 0, z∗j ≥ 0, and zj ∈ (−R+), j ∈ J(x′), we have

∑
j∈J(x′)

z∗j (zj − z′j) ≤ 0.

Hence,
m

∑
i=1

y∗i (yi − y′i + xT Bixi − x′T Bixi) ≥ 0.

From the generalized Schwarz inequality, we have

(xT Bix)
1
2 (xT

i Bixi)
1
2 ≥ xT Bixi.

Again, by assumption, we have

(x′T Bix′)
1
2 = x′T Bixi, i = 1, 2, . . . , m.

Therefore,

m

∑
i=1

y∗i (yi − y′i + (xT Bix)
1
2 (xT

i Bixi)
1
2 − (x′T Bix′)

1
2 ) ≥ 0.

As xT
i Bixi ≤ 1, i = 1, 2, . . . , m, (from the constraints of (MWD)), we have

(xT Bix)
1
2 ≥ (xT Bix)

1
2 (xT

i Bixi)
1
2 .

Hence,
m

∑
i=1

y∗i (yi + (xT Bix)
1
2 ) ≥

m

∑
i=1

y∗i (y
′
i + (x′T Bix′)

1
2 ),

which contradicts (14). So, (x′, y′) is a weak minimizer of (SP).

7. Wolfe Type Dual

We consider the Wolfe type dual (WD) of the problem (SP), where Fi and G(., uj) are
contingent epiderivable set-valued maps:

maximize (y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) +
(

∑
j∈J(x′)

z∗j z′j
)

1Rm

subject to ( m

∑
i=1

y∗i (D↑Fi(x′, y′i) + (Bixi)
T) + ∑

j∈J(x′)
z∗j D↑G(., uj)(x′, z′j)

)
(H′x′ ,x(0+))

≥ 0, ∀x ∈ A,

xT
i Bixi ≤ 1, xi ∈ Rn, i = 1, 2, . . . , m,

x′ ∈ A, y′ = (y′1, y′2, . . . , y′m) ∈ F (x′), z′ = (z′j)j∈J(x′), z′j ∈ G(x′, uj), j ∈ J,

y∗i > 0, i = 1, 2, . . . , m,
m

∑
i=1

y∗i = 1, and z∗ = (z∗j )j∈J , z∗j ≥ 0, j ∈ J,

and z∗j 6= 0, for finitely many j ∈ J.
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Definition 11. A feasible point (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) of (WD) is said to be a weak
maximizer of (WD) if for all feasible points (x, y, x̂1, x̂2, . . . , x̂m, z, y∗1 , z∗1) of (WD),

(y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) +
(

∑
j∈J(x′)

z∗j z′j
)

1Rm

≮ (y1 + (xT B1 x̂1), y2 + (xT B2 x̂2), . . . , ym + (xT Bm x̂m)) +
(

∑
j∈J(x′)

z∗j zj

)
1Rm ,

where y = (y1, y2, . . . , ym), y′ = (y′1, y′2, . . . , y′m) ∈ Rm.
We can prove the duality theorems of Wolfe type associated with the problem (SP). The proofs

are very similar to Theorems 3–5, and hence we omit it.

Theorem 6 (Weak duality). Let A be an arcwise connected subset of Rn and x0 ∈ S. Let
(x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) be a feasible solution of (WD). Let ρi, ρ′i, ρ′′j ∈ R, for i = 1, 2, . . . , m
and j ∈ J(x′). Suppose that Fi, .T Bixi, i = 1, 2, . . . , m, and G(., uj), j ∈ J(x′), are ρi-R+-arcwise
connected, ρ′i-R+-arcwise connected, and ρ′′j -R+-arcwise connected set-valued maps, respectively,
on A, with respect to 1, satisfying (1). Suppose that the contingent epiderivatives D↑Fi(x′, y′i) and
D↑G(., uj)(x′, z′j) exist. Then,

(F1(x0) + (xT
0 B1x0)

1
2 ,F2(x0) + (xT

0 B2x0)
1
2 , . . . ,Fm(x0) + (xT

0 Bmx0)
1
2 )

≮ (y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) +
(

∑
j∈J(x′)

z∗j z′j
)

1Rm .

Theorem 7 (Strong duality). Suppose that (x′, y′) is a weak minimizer of (SP), z′ = (z′j)j∈J ,
z′j ∈ G(x′, uj) ∩ (−R+), j ∈ J, and xi ∈ Rn, i = 1, 2, . . . , m. Suppose that for some y∗i > 0,

i = 1, 2, . . . , m, with
m

∑
i=1

y∗i = 1 and z∗j ≥ 0, with z∗j 6= 0 for finitely many j ∈ J and z∗j = 0,

∀j ∈ J \ J(x′), Equations (2)–(5) are satisfied at the point (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗). Then,
(x′, y′, x1, . . . , xm, z′, y∗, z∗) is a feasible solution of (WD). If the Theorem 6 holds between the
problems (SP) and (WD), then (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) is a weak maximizer of (WD).

Theorem 8 (Converse duality). Let A be an arcwise connected subset of Rn. Suppose that
(x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) is a feasible solution of (WD), with

(x′T Bix′)
1
2 = x′T Bixi, i = 1, 2, . . . , m

and
∑

j∈J(x′)
z∗j z′j ≥ 0.

Let ρi, ρ′i, ρ′′j ∈ R, for i = 1, 2, . . . , m and j ∈ J(x′). Suppose that Fi, .T Bixi, i = 1, 2, . . . , m,
and G(., uj), j ∈ J(x′), are ρi-R+-arcwise connected, ρ′i-R+-arcwise connected, and ρ′′j -R+-arcwise
connected set-valued maps, respectively, on A, with respect to 1, satisfying (1). We suppose that
the contingent epiderivatives D↑Fi(x′, y′i) and D↑G(., uj)(x′, z′j) exist. If x′ ∈ S, then (x′, y′) is a
weak minimizer of (SP).
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8. Mixed Type Dual

We consider the mixed type dual (MD) of the problem (SP), where Fi and G(., uj) are
contingent epiderivable set-valued maps:

maximize (y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) +
(

∑
j∈J(x′)

z∗j z′j
)

1Rm

subject to ( m

∑
i=1

y∗i (D↑Fi(x′, y′i) + (Bixi)
T) + ∑

j∈J(x′)
z∗j D↑G(., uj)(x′, z′j)

)
(H′x′ ,x(0+))

≥ 0, ∀x ∈ A,

z∗j z′j ≥ 0, ∀j ∈ J(x′),

xT
i Bixi ≤ 1, xi ∈ Rn, i = 1, 2, . . . , m,

x′ ∈ A, y′ = (y′1, y′2, . . . , y′m) ∈ F (x′), z′ = (z′j)j∈J , z′j ∈ G(x′, uj), j ∈ J,

y∗i > 0, i = 1, 2, . . . , m,
m

∑
i=1

y∗i = 1, and z∗ = (z∗j )j∈J , z∗j ≥ 0, j ∈ J,

and z∗j 6= 0, for finitely many j ∈ J.

Definition 12. A feasible point (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) of (MD) is said to be a weak
maximizer of (MD) if for all feasible points (x, y, x̂1, x̂2, . . . , x̂m, z, y∗1 , z∗1) of (MD),

(y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) +
(

∑
j∈J(x′)

z∗j z′j
)

1Rm

≮ (y1 + (xT B1 x̂1), y2 + (xT B2 x̂2), . . . , ym + (xT Bm x̂m)) +
(

∑
j∈J(x′)

z∗j zj

)
1Rm ,

where y = (y1, y2, . . . , ym), y′ = (y′1, y′2, . . . , y′m) ∈ Rm.

We develop the duality results of mixed type of the problem (SP). The proofs are very
similar to Theorems 3–5, and hence we omit it.

Theorem 9 (Weak duality). Let A be an arcwise connected subset of Rn and x0 ∈ S. Let
(x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) be a feasible solution of (MD). Let ρi, ρ′i, ρ′′j ∈ R, for i = 1, 2, . . . , m
and j ∈ J(x′). Suppose that Fi, .T Bixi, i = 1, 2, . . . , m, and G(., uj), j ∈ J(x′), are ρi-R+-
arcwise connected, ρ′i-R+-arcwise connected, and ρ′′j -R+-arcwise connected set-valued maps, re-
spectively, on A, with respect to 1, satisfying (1). Let the contingent epiderivatives D↑Fi(x′, y′i)
and D↑G(., uj)(x′, z′j) exist. Then,

(F1(x0) + (xT
0 B1x0)

1
2 ,F2(x0) + (xT

0 B2x0)
1
2 , . . . ,Fm(x0) + (xT

0 Bmx0)
1
2 )

≮ (y′1 + (x′T B1x1), y′2 + (x′T B2x2), . . . , y′m + (x′T Bmxm)) +
(

∑
j∈J(x′)

z∗j z′j
)

1Rm .

Theorem 10 (Strong duality). Suppose that (x′, y′) is a weak minimizer of (SP), z′ = (z′j)j∈J ,
z′j ∈ G(x′, uj) ∩ (−R+), j ∈ J, and xi ∈ Rn, i = 1, 2, . . . , m. Suppose that for some y∗i > 0,

i = 1, 2, . . . , m, with
m

∑
i=1

y∗i = 1 and z∗j ≥ 0, with z∗j 6= 0 for finitely many j ∈ J and z∗j = 0,

∀j ∈ J \ J(x′). Equations (2)–(5) are satisfied at the point (x′, y′, x1, x2, . . . , xm, z′, y∗, z∗). Then,
(x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) is a feasible solution of (MD). If the Theorem 9 holds between the
problems (SP) and (MD), then

(x′, y′, x1, x2, . . . , xm, z′, y∗, z∗)
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is a weak maximizer of (MD).

Theorem 11 (Converse duality). Let A be an arcwise connected subset of Rn. Suppose that
(x′, y′, x1, x2, . . . , xm, z′, y∗, z∗) is a feasible solution of (MD), with (x′T Bix′)

1
2 = x′T Bixi,

i = 1, 2, . . . , m. Let ρi, ρ′i, ρ′′j ∈ R, for i = 1, 2, . . . , m and j ∈ J(x′). Suppose that Fi, .T Bixi,
i = 1, 2, . . . , m, and G(., uj), j ∈ J(x′), are ρi-R+-arcwise connected, ρ′i-R+-arcwise connected,
and ρ′′j -R+-arcwise connected set-valued maps, respectively, on A, with respect to 1, satisfying (1).
We suppose that the contingent epiderivatives D↑Fi(x′, y′i) and D↑G(., uj)(x′, z′j) exist. If x′ ∈ S,
then (x′, y′) is a weak minimizer of (SP).

9. Conclusions

In this paper, we have established the sufficient KKT optimality conditions of a set-
valued semi-infinite programming problem (SP) under ρ-cone arcwise connectedness
assumptions. We studied the duality theorems of Mond–Weir, Wolfe, and mixed types
associated with the problem (SP).
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