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Abstract: We propose a family of multi-moment methods with arbitrary orders of accuracy for
the hyperbolic equation via the reconstructed interpolating differential operator (RDO) approach.
Reconstruction up to arbitrary order can be achieved on a single cell from properly allocated model
variables including spatial derivatives of varying orders. Then we calculate the temporal derivatives
of coefficients of the reconstructed polynomial and transform them into the temporal derivatives of
the model variables. Unlike the conventional multi-moment methods which evolve different types of
moments by deriving different equations, RDO can update all derivatives uniformly via a simple
linear transform more efficiently. Based on difference in introducing interaction from adjacent cells,
the central RDO and the upwind RDO are proposed. Both schemes enjoy high-order accuracy which
is verified by Fourier analysis and numerical experiments.

Keywords: hyperbolic conservation laws; multi-moment; high-order accuracy; local reconstruction

1. Introduction

In the last few decades, high-order numerical methods are becoming increasingly
popular in the research community due to the advantages over the low-order methods
in achieving higher resolution more efficiently with lower computational cost [1]. The
conventional high-order approaches based on high-order finite difference (FD) and the
finite volume (FV) methods only use one degree of freedom (DOF) on each node or cell.
For these methods, a high-order approximation requires a wide stencil which introduces
huge communication costs between computational nodes on supercomputers.

To narrow the stencil, a natural and feasible approach is to include two or more
DOFs per cell so as to construct a higher-order polynomial. The constrained interpolation
profile (CIP) scheme [2,3] evolves two moments, i.e., the physical variable and the spatial
derivative simultaneously and independently according to the governing equations in
different forms. Specifically, CIP describes the spatial profile using the third-order Hermite
interpolation and updates the profile according to the local analytic solution in via the
semi-Lagrangian approach. Following this pioneering work, the so-called CIP-conservative
semi-Lagrangian (CIP-CSL) schemes [4,5] add the cell-averaged value as an extra moment
to ensure the conservativeness for the scalar conservative advection transport. Successive
studies have resulted in a more general framework, the so-called CIP/multi-moment
finite volume method (CIP/MM FVM) which has been applied to various fluid dynamic
simulations [6–8]. The interpolated differential operator (IDO) method [9] is similar to
CIP but IDO updates the model variables using the Eulerian method instead of the semi-
Lagragian method. A conservative variant of IDO scheme also predicts the cell-averaged
moment separately [10]. Both CIP and IDO require an additional equation for the spatial
derivative moment which can be difficult to obtain when treating nonlinear and high-
dimensional problems.

Axioms 2021, 10, 295. https://doi.org/10.3390/axioms10040295 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-8763-5740
https://orcid.org/0000-0003-1150-9382
https://doi.org/10.3390/axioms10040295
https://doi.org/10.3390/axioms10040295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10040295
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10040295?type=check_update&version=2


Axioms 2021, 10, 295 2 of 21

A compact CIP/MM-FVM formulation that uses high-order derivative moments can
reach arbitrary accuracy order has been presented in [11]. This approach predicts the high-
order derivative moments in the Eulerian representation via solving a linearized high-order
derivative Riemann derivative problem [12]. As a more flexible variant of CIP/MM-FVM,
the multi-moment constrained finite volume (MCV) [13] treats the cell-averaged moments
as constraints instead of explicit model variables. Following this principle, the MCV
method has been generalized to the unstructured meshes [14,15] recently.

High-order schemes based on local flux reconstruction are another representative
class of high-order schemes which also use compact stencil for spatial discretization and
are increasingly attractive. Examples includes the discontinuous Galerkin(DG) [16], the
spectral volume [17] and the flux reconstruction [18] method.

This article presents a new efficient compact multi-moment method termed recon-
structed interpolating differential operator (RDO) method which does not involve the
cross-cell reconstruction for the hyperbolic equations. This work can be viewed as an
generalization of the original IDO scheme [9] to arbitrary orders, non-uniform meshes
and higher dimensions. Moreover, this work proposes a novel updating rules for model
variables via a direct linear transform, which does not require introducing additional
equations for different types of moments. The core idea is simple and direct. In each cell,
the solution is approximated by a polynomial to interpolate the moments including the
point values and high-order derivatives at the cell boundaries. The next step computes the
temporal derivatives of the polynomial coefficients with the aid of solution points. Then the
temporal derivatives are retrieved from the temporal derivatives of polynomial coefficient
via a linear transform. To deal with the non-uniqueness of temporal derivatives computed
form different cells at cell boundaries, the central and the upwind RDO are proposed.
Fourier analysis and numerical tests indicate that our scheme can achieve arbitrary orders
of accuracy.

The remaining part of this paper is organized as follows. Section 2 gives the basic
formulation of RDO in one dimension. Section 3 describes the generalization of RDO
to higher dimensions. Then Section 4 investigates the accuracy order and stability by
classical Fourier analysis. Numerical tests in Section 5 validate the Fourier analysis results
and compare the computational efficiency and numerical performance of RDO of various
orders. Section 6 ends this paper with a few conclusions and discussions.

2. Basic Formulation for the One-Dimensional Problem

Consider the 1D scalar hyperbolic equation

∂u
∂t

+
∂ f (u)

∂x
= 0, (1)

where x is the spatial coordinate, t denotes time, u is the conserved variable and f (u) is
the flux.

To begin with, we introduce some notations here. The bold lower-case letter such
as a, u stands for a column vector. The bold capital letter like A denotes a matrix. The
column vector [a1, . . . , am]

T is denoted by [ak]
m
k=1 for simplicity. AT denotes the transpose

of A. The `p norm of the vector a is denoted by ‖a‖p and ‖a‖ is a simplified form of ‖a‖2
throughout this paper. The matrix norm of H is defined by ‖H‖ = max‖z‖=1‖Hz‖/‖z‖.

2.1. Spatial Discretization

We divide the computational domain [xmin, xmax] into N non-overlapping cells or
elements, among which the j-th cell is Ij := [xj−1/2, xj+1/2]. For convenience, we denote the
middle point of Ij by xj = (xj−1/2 + xj+1/2)/2 and the length of Ij by ∆xj = xj+1/2− xj−1/2.

Model variables including point-based value and derivatives are independently
evolved in our scheme. For simplicity, the RDO scheme that have M model variables in each
cell is denoted by RDO-M. The allocation of model variables has a slight difference between
M = 2K and M = 2K + 1. For RDO-2K, 2K model variables in each cell are all located at
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the cell boundaries. These model variables are {uj±1/2, (ux)j±1/2, . . . , (uxK−1)j±1/2}, where
(uxk )j−1/2 is the approximation of uxk (xj−1/2) at x = xj−1/2.

For RDO-(2K + 1), we add the function value at the middle of the cell, i.e., uj ≈ u(xj)
as an extra model variable and use a 2K-thorder polynomial to represent the solution
polynomial. Specifically, the (2K + 1) model variables used in RDO-(2K + 1) are {uj±1/2,
(ux)j±1/2, . . . , (uxK−1)j±1/2} ∪

{
uj
}

.

2.2. Updating Model Variables

This section only presents the detailed formulation of RDO-2K (K ≥ 2). The procedure
for RDO-(2K + 1) is almost the same and hence omitted here for simplicity. The procedure
to compute time derivatives of model variables can be divided into three stages as follows.

2.2.1. First Stage: Reconstructing Polynomial from Model Variables

This stage finds a solution polynomial hj(x) on Ij = [xj−1/2, xj+1/2] to interpolate
model variables defined at cell boundaries. The interpolation polynomial is of (2K− 1)-th
order since there are totally 2K model variables. We first introduce a local coordinate to
map Ij to the standard cell [−1, 1],

s(x) :=
2(x− xj)

∆xj
∈ [−1, 1], for x ∈ [xj−1/2, xj+1/2]. (2)

The usage of s(x) unifies the interpolation templates and hence reduces the computa-
tional cost in polynomial reconstruction. The solution polynomial hj(x) under the local

coordinate s is then h̃j(s) = hj(x(s)).
dh̃j
ds and

dhj
dx are connected by the chain rule

dh̃j(s)
ds

=
dx
ds

dh
dx

=
∆xj

2
dh
dx

. (3)

Suppose h̃j(s) = ∑2K−1
i=0 aisi. Then the polynomial coefficients {ai}2K−1

i=0 can be deter-
mined by the following linear system:

dk

dsk h̃j(s)
∣∣
s=±1 =

2K−1

∑
i=k

i!
(i− k)!

ai(±1)i =

(∆xj

2

)k

· (uxk )j±1/2, (4)

for k = 0, . . . , K. This is a linear system about 2K unknowns {a0, . . . , a2K−1} and we can
write it into the matrix form

Ha = dj, (5)

where H is the coefficient matrix and dj denotes the rescaled model variables

dj =
[
uj−1/2,

∆xj

2
(ux)j−1/2, . . . ,

(∆xj

2
)K−1

(uxK−1)j−1/2,

uj+1/2,
∆xj

2
(ux)j+1/2, . . . ,

(∆xj

2
)K−1

(uxK−1)j+1/2
]T. (6)

The coefficients of the solution polynomial is then

a = H−1dj. (7)

Through the high-order Hermite interpolation (4), the solution polynomial is (K− 1)-
th smooth globally. Introducing the local coordinate makes the inverse of the coefficient
matrix H the same for all cells so as to reduce the computational costs in solving the linear
system in each cell. When the condition number of this linear system is too high as K
increases, one can use the symbolic tool in Maple or Matlab to obtain a sufficiently accurate
inverse of the matrix to avoid the loss of accuracy.
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2.2.2. Second Stage: Computing Temporal Derivatives on Solution Points

This part computes the temporal derivative of the obtained solution polynomial
hj(x). For this, we choose 2K solution points xj,k = xj + ξk∆xj, k = 1, . . . , 2K on Ij with
ξk ∈ [−1, 1]. {ξk}2K

k=1 are the same for each element. Through numerical and theoretical
analysis later, we find that a simple choice of uniformly distributed solution points is
sufficient for good numerical performance, i.e.,

ξk = −1 +
2(k− 1)
2K− 1

, k = 1, . . . , 2K. (8)

We can now easily update the solution polynomials via updating solution values
located on selected solution points. Current solution values and approximated spatial
derivatives are, respectively,

uj,k = h̃j(s(xj,k)), (ux)j,k =
(∆xj

2
)−1 dh̃j(s)

ds

∣∣∣
s=s(xj,k)

, k = 1, . . . , 2K. (9)

where
dh̃j
ds can be obtained by

[
dh̃j

ds

∣∣∣
s=s(xj,k)

]2K

k=1

= Da, D =


0 ξ1 . . . (2K− 1)ξ2K−2

1
0 ξ2 . . . (2K− 1)ξ2K−2

2
...

...
. . .

...
0 ξM . . . (2K− 1)ξ2K−2

M

. (10)

According to (1), the temporal derivatives of solution values become

duj,k

dt
= − fu(uj,k) · (ux)j,k, k = 1, . . . , 2K. (11)

Then we use
duj,k

dt to retrieval the temporal derivatives of the coefficients of solution
polynomials hj(s). This can be done by solving the following linear systems

dh̃j
(
s(xj,k)

)
dt

=
2K−1

∑
i=0

dai
dt

s(xj,k)
i =

duj,k

dt
, k = 1, . . . , 2K. (12)

Note that s(xj,k) = ξk. This is a 2K× 2K linear system about
{dai

dt
}

and the coefficient
matrix is the Vandermonde matrix

V =


1 ξ1 . . . ξ2K−1

1
1 ξ2 . . . ξ2K−1

2
. . . . . . . . . . . .
1 ξ2K . . . ξ2K−1

2K

. (13)

This coefficient matrix remains the same for all cells. Therefore, we also can store the
inverse in advance to reduce computational costs.

2.2.3. Third Stage: Retrieving the Temporal Derivatives

Using
{dai

dt
}

, the temporal derivatives of model variables can be directly retrieved by
the following linear transform,(

d
dt

(uxk )j±1/2

)
j
=
(∆xj

2
)−k

2K−1

∑
i=k

i!
(i− k)!

dai
dt

(±1)i, k = 0, . . . , K− 1. (14)
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The subscript j in the left-hand side of (14) indicates that this temporal derivative
is computed from the cell Ij alone. At the cell boundary x = xj+1/2, we obtain the
temporal derivatives from the Ij and Ij−1 at the same time, which can take different
values. This leaves us the problem about how to define the proper temporal derivatives of{
(uxk )j+1/2

}K

k=0
properly.

A natural thought is choosing the one from the upwind direction so as to obey the

physical property of the hyperbolic equation. We denote
dφj+1/2

dt computed in the cell Ij by(dφj+1/2
dt

)
j for the model variable φ. Then the upwind temporal derivative of φ is

d
dt

φj+1/2 =

(dφj+1/2

dt

)
jup

, (15)

where jup denotes the index in the upwind direction which is determined by the sign of
fu(uj+1/2). To be more specific,

jup =

{
j, if fu(uj+1/2) ≥ 0;
j + 1, otherwise.

(16)

This scheme is termed upwind RDO scheme due to the upwind property.
Another idea to determine d

dt φj−1/2 is simply computing the algebraic average of the
temporal derivatives from two cells just like the classical central difference scheme. Then
the central temporal derivative of some model variables φ is

d
dt

φj−1/2 =
1
2

((dφj+1/2

dt

)
j
+

(dφj+1/2

dt

)
j+1

)
(17)

One may consider a sum weighted by cell length in (17) when encountering the non-
uniform mesh like the spectral element method [19]. However, (17) works sufficiently well,
as shown in the numerical tests on non-uniform meshes.

2.3. Time Integration

We have obtained the spatial discretization and temporal derivatives of model vari-
ables, which can be described in the semi-discrete form

dΦ
dt

= L(Φ), (18)

where Φ denotes the collection of all model variables. Suppose the value of Φ at n-th time
step is Φ(n), then Φ(n+1) at the next time step is computed by the fourth-order Runge–Kutta
method [20] to ensure the numerical accuracy in time. We have

Φ(n+1) = Φ(n) +
∆t
6
(k1 + 2k2 + 2k3 + k4), (19)

where ∆t is the time step length and

k1 = L(Φ(n)),

k2 = L(Φ(n) +
1
2

k1∆t),

k3 = L(Φ(n) +
1
2

k2∆t),

k4 = L(Φ(n) + k3∆t).

(20)
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2.4. Discussion

The involved polynomial interpolation procedures (4) and (14) are implemented
within the cell. In other words, no cross-cell polynomial interpolation is needed in the
proposed schemes, which means the scheme is compact and makes it possible to solve the
problems on the non-uniform mesh more flexibly than the conventional IDO methods.

We can also construct RDO-2 and RDO-3 by assigning merely function values at
cell boundaries without derivative moments. Then central and the upwind RDO-2 are,
respectively, the classical central difference and the upwind difference method. Besides,
the spectral element method [21] with three element base function in one dimension is also
the special case of central RDO-3.

3. Generalization to Higher Dimensions

Now we extend the algorithm to rectangular meshes to solve the two dimensional
conservative equations and briefly explain how to extend this problem into three dimen-
sion. The core issue is to define proper model variables on cell boundaries and find a
benign polynomial space to interpolate them. Furthermore, the reconstructed piecewise
polynomials should also be at least differentiable at the cell boundaries. Therefore we also
use Hermite interpolation to represent the solution polynomials.

3.1. Spatial Discretization

Suppose the computational domain is a rectangle [a, b] × [c, d] and is divided into
N1 × N2 non-overlapping cells. We denote the cell at the i-th row and j-th column by Ii,j =
[xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]. Denote ∆xi = xi+1/2 − xi−1/2 and ∆yj = yj+1/2 − yj−1/2.

To explain the intuition of spatial discretization, we first consider the bicubic Hermite
interpolation on the cell Ii,j. In this case, 16 DOFs are needed as 4 DOFs are assigned on
each vertex. These 4 DOFs are u, ux, uy and the second-order mixed derivative uxy. A bit
different from the 1D situation, uxy are requited here to guarantee that the reconstructed
piecewise Hermite polynomials possesses continuous normal derivatives along cell edges.
A similar allocation of model variables can be seen in the IDO method for solving the
two-dimensional Poission Equations [22].

For general RDO-2K in 2D, the needed model variables on each vertex are
{

∂i+ju
∂xiyj

}
0≤i,j≤K−1

,

which means that each element has totally 4K2 model variables. However, since the adjacent
cells share the same model variables on common vertices, the number of effective DOFs
on each element is only K2. We use the following polynomial spaces for representing the
solution polynomial is the following full polynomial spaces [23],

Q2K =
{

q(x, y)
∣∣q(x, y) = ∑

0≤l,m≤2K−1
al,mxlym}. (21)

Its space dimension is dim(Q2K) = (2K)2. Q2K is the tensor product of the 1D
Hermite polynomials.

For RDO-(2K + 1), the reconstructed polynomial space becomes Q2K+1 which has
(2K + 1)2 dimensions. Hence, each element needs additionally (2K + 1)2− (2K)2 = 4K + 1
model variables, which include ui,j that denotes the function value on the barycenter, and K
model variables, u, un, un2 , · · · , unK−1 on four edge centers. Here unk denotes the kth-order
normal derivative on the edge center.

Figure 1a,b illustrate the choices of model variables for RDO-4 and RDO-5, which are
representative examples of RDO-(2K) and RDO-(2K + 1), respectively. Dots represent the
point-valued variables. Single arrows represent the first derivatives. Paired arrows denote
the mixed derivatives uxy.
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(a) Model variables (RDO-4) (b) Model variables (RDO-5)

(c) Solution points (RDO-4) (d) Solution points (RDO-5)

Figure 1. The illustration of model variables and solution points used in RDO-4 and RDO-5 in the
two-dimensional space.

3.2. First Stage: Reconstructing Solution Polynomial

The first step interpolates the solution polynomials hi,j(x, y) on Ii,j. To begin with, we
also introduce a local coordinate to map the cell Ii,j to the standard cell [−1, 1]× [−1, 1],{

s(x, y) = 2(x− xi)/∆xi ∈ [−1, 1];
r(x, y) = 2(y− yj)/∆yj ∈ [−1, 1].

(22)

Similar to the one-dimensional case, hi,j(x, y) is also transformed into h̃i,j(r, s) under
the local coordinate. Correspondingly, 4K2 model variables serves as constraints. The
solution polynomial

h̃i,j(r, s) =
2K−1

∑
α=0

2K−1

∑
β=0

aα,βrαsβ

is then determined by

∂l+m

∂rlsm h̃(r, s)
∣∣
r=±1,s=±1 =

2K−1

∑
α=l

2K−1

∑
β=m

aα,β
l!

(l − α)!
m!

(m− β)!
(±1)α(±1)β

=

(
∆xi
2

)l(∆yj

2

)m

(uxl ym)i±1/2,j±1/2, 0 ≤ l, m ≤ 2K− 1.

(23)

The inverse of the coefficient matrix of the linear system (23) about
{

aα,β
}

can also be
solved in advance so as to effectively save computational costs in solving (23).

3.3. Second Stage: Computing Temporal Derivatives on Solution Points

This stage represents the solution polynomial on solution points and update it. The
chosen solution points in 2D are tensor products of 1D points. Specifically, these 4K2 points
in the local coordinate are in the form of

(sk, rl) = (ξk, ξl), k, l ∈ {1, . . . , 2K}. (24)
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Figure 1c,d illustrate the distribution of solution points for RDO-4 and RDO-5. The
solution values and spatial derivatives can be computed as

ui,j;k,l = h̃i,j(s, r), (25)

(ux)i,j;k,l = (
∆xj

2
)−1 ∂

∂s
h̃j(s, r), (26)

(uy)i,j;k,l = (
∆yj

2
)−1 ∂

∂r
h̃j(s, r). (27)

Then the temporal derivatives of solution values become

dui,j;k,l

dt
= − fu(ui,j;k,l)(ux)i,j;k,l − gu(ui,j;k,l)(uy)i,j;k,l . (28)

Then the temporal derivatives of coefficients of the solution polynomial,
daα,β

dt can be
obtained by solving the following linear system,

dh̃j(s(xi,j;k,l))

dt
=

2K−1

∑
l=0

2K−1

∑
m=0

daα,β

dt
l!

(l − α)!
m!

(m− β)!
(±1)α(±1)β. (29)

3.4. Third Stage: Retrieving the Model Variables

From
{

dai,j
dt

}
, we can obtain the temporal derivatives of model variables by the

following relationships for RDO-2K

(
d
dt

(
uxl ym

)
i±1/2,j±1/2

)
(i,j)

= (
∆xi

2
)l(

∆yi
2

)m
2K−1

∑
α=l

2K−1

∑
β=m

l!
(l − α)!

m!
(m− β)!

dai,j

dt
(−1)α+β (30)

for l, m ∈ {0, · · · , 2K− 1}. The subscript (i, j) in RHS of (30) specifies that the temporal
derivatives are computed from Ii,j and do not involve any external information. To properly
introduce the external interaction, both central and upwind schemes can be reconstructed
similar to the one dimensional case.

3.5. Three Dimensional Case

In three dimensions, RDO-2K on the cuboid mesh can also be constructed similarly
via the polynomial space

C2K =
{

p(x, y, z)
∣∣ ∑

0≤i,j,k≤K−1
ai,j,kxiyjzk},

and chooses
{

∂i+j+ku
∂xiyjzk

}
0≤i,j,z≤K−1 on each vertex as model variables. There are totally (2K)3

model variables in each cell. The remaining procedure is exactly the same as in lower
dimensional space and we do not repeat the formulation here.

4. Fourier Analysis

This part analyses the accuracy and the stability of presenting scheme in solving the
linear advection equation. For concreteness, we only give a detailed analysis for RDO-4
since the generalized RDO-M can be analyzed following the same routine.

4.1. Formulation of the Amplification Matrix

Consider the linear scalar advection equation

ut + ux = 0. (31)

Suppose the spatial domain is [0, L] and is discretized by a uniform mesh spacing
∆x. The initial condition is periodic, uini = eiwx/∆x where i denotes

√
−1 and the scaled
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wavenumber is w = 2πk∆x/L ∈ [0, π). Then the initial model variables for the upwind
RDO-4 on Ij =

[
xj−1/2, xj+1/2

]
are

uj±1/2 = eiw(xj±1/2∆x)/∆x, (32a)

(ux)j±1/2 =
iw
∆x

eiw(xj±1/2∆x)/∆x. (32b)

The core in Fourier analysis is reformulating the algorithm into the matrix form

d
dt

d =
1

∆x
Sd (33)

using the periodicity of uini and S denotes the amplification matrix. We do this step by step
as follows.

Stage 1 described in Section 2 reconstructs the Hermite polynomial coefficients aj
from the rescaled model variables dj in the cell Ij,

aj = H−1dj, (34)

where H is defined by (5) and dj is the composition of the model variables after the
coordinate transform,

dj = [uj−1/2, (ux)j−1/2∆x/2, uj+1/2, (ux)j+1/2∆x/2]T

= [1,
iw
2

, 1,
iw
2
]Teiwxj/∆x.

(35)

In Stage 2, the solution values and derivatives on solution points are, respectively,[
uj,k

]4

k=1
= V H−1dj, (36)

and [
(ux)j,k

]4

k=1
=

2
∆x

DH−1dj, (37)

where V and D can be found in (13) and (10). According to (31), the temporal derivatives
on the solution points are [

d
dt

uj,k

]4

k=1
= − 2

∆x
DH−1dj. (38)

Then the temporal derivatives on solution points are transformed back to the temporal
derivatives of model variables, which is the inverse problem of (37):(

d
dt

dj

)
j
= HV−1

[
d
dt

uj,k

]4

k=1
= − 2

∆x
HV−1DH−1dj =

1
∆x

S̃dj, (39)

where the subscript j in the left-hand side indicates that the temporal derivatives are
computed locally form j-th cell, and S̃ = −2HV−1DH−1.

In the linear case, V−1D is an invariant about the choice of solution points. Further-
more, the matrix V−1D has a simple structure

V−1D =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

. (40)

Therefore, it can be easily concluded that RDO schemes using different sets of solution
points are identical in solving the linear advection equation as the following theorem tells.
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Theorem 1. For RDO-M schemes (M ≥ 4), the numerical result is independent of the solution
points chosen in solving the linear advection equation on uniform meshes.

Proof. This can be proved by showing that V−1D is invariant about the choice of solution
points {ξ1, . . . , ξM}. In fact, one can easily check that

V−1D =


1 ξ1 . . . ξM−1

1
1 ξ2 . . . ξM−1

2
. . . . . . . . . . . .
1 ξM . . . ξM−1

M


−1

0 ξ1 . . . (M− 1)ξM−2
1

0 ξ2 . . . (M− 1)ξM−2
2

...
...

. . .
...

0 ξM . . . (M− 1)ξM−2
M



=



0 1
0 2

0 3
. . . . . .

. . . M− 1
0


. (41)

Moreover, it is noticed that the in-cell temporal derivatives (39) only relies on H, V−1D
and dj. H and dj are independent with the choice of solution points. Therefore, we can
conclude that the semi-discrete scheme is independent of solution points chosen.

Equation (39) gives the in-cell numerical approximation of derivatives of model
derivatives. Denote the temporal derivatives pj =

(
d
dt dj

)
j
. From the periodicity of the

initial profile, we know that

dj±1 = e±iwdj, (42)

pj±1 = e±iw pj (43)

Then for the upwind discretization, the periodicity of the initial profile (42) tells that

d
dt

dj =
[
pj−1(3), pj−1(4), pj(3), pj(4)

]T
=
[
e−iw pj(3), e−iw pj(4), pj(3), pj(4)

]T
.

(44)

Hence, we can obtain the amplification matrix Sup for the upwind scheme as follows,

d
dt

dj =
1

∆x
TupS̃dj =

1
∆x

Supdj, Sup := TupS̃ (45)

with

Tup =


0 0 e−iw 0
0 0 0 e−iw

0 0 1 0
0 0 0 1

. (46)

Similarly, the temporal derivatives of dj for the central RDO-4 are

d
dt

dj =
1
2

[
pj−1(3) + pj(1), pj−1(4) + pj(2), pj(3) + pj+1(1), pj(4) + pj+1(2)

]T

=
1
2

[
e−iw pj(3) + pj(1), e−iw pj(4) + pj(2), eiw pj(1) + pj(3), eiw pj(2) + pj(4)

]T
.

(47)



Axioms 2021, 10, 295 11 of 21

Combining (39) and (47) we have

d
dt

dj =
1

∆x
TcentralS̃dj =

1
∆x

Scentraldj, Scentral := TcentralS̃ (48)

where

Tcentral =


1/2 0 e−iw/2 0

0 1/2 0 e−iw/2
eiw/2 0 1/2 0

0 eiw/2 0 1/2

. (49)

4.2. Accuracy Analysis

We can see that both the central and the upwind RDO-4 have fourth spatial local
discretization errors. However, this does not suffice to ensure the third order accuracy in
numerical experiments. In fact, the order accuracy is determined by the principal eigenval-
ues σ(w) according to [18], with σ(w) being the principle eigenvalue of the amplification
matrix S. Other eigenvalues of S are spurious ones. Specifically, if σ(w) can be expanded
as a Taylor series in w,

σ(w) = −iw +O(wm+1), (50)

then the scheme is m-th order accurate. Since it is difficult to calculate an expression
manually in practice, we use the symbolic computation tools in Matlabr.

For the upwind RDO-4, we can obtain the principal eigenvalue of the amplification
matrix Supwind is

σ(w) = −iw− 1
72

w4 +O(w5). (51)

This indicates that the upwind RDO-4 is third order accurate in space. Besides, the
term − 1

72 w4 introduces a small amount of dissipation which tends to smear the solution,
which is certificated in the numerical experiments.

The principal eigenvalue of the amplification matrix Scentral for central RDO-4 is

σ(w) = −iw− i
16

w3 +O(w5), (52)

and we can see that only second order spatial accuracy is maintained for the central scheme.
It is also worthy noting that − i

16 w3 introduces slight dispersion, which means that phase
speed varies as w changes. Therefore, during the long-term simulation of a complicated
initial profile that contains waves of different frequency, the profile will be distorted finally.
This is also verified in numerical experiments in Section 5.

The accuracy analysis for higher-order RDO schemes is exactly the same as RDO-4.
However, a concise Taylor expansion of principal eigenvalue like (51) and (52) is very
difficult (if not impossible) to obtain even using the mathematical software. Here we try to
calculate the truncation order of σ(w) of a scheme by the following approximation. First,
choose a proper w, say w = π/4. Then the error is

δ(w) = σ(w) + iw. (53)

Next, we halve the wave number w and obtain the error corresponding to w/2

δ(w/2) = σ(w/2) + iw/2. (54)

Noticing that

O(w/2) ≈ 1
2m+1O(w

m+1), (55)
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for the m-th order accurate scheme, one has

δ(w/2) ≈ 1
2m+1 δ(w). (56)

Hence the order of accuracy can be approximated by a simple logarithmic operation

m ≈ log(|δ(w)|/|δ(w/2)|)
log(2)

− 1. (57)

The modulus operation is required here since the error result can be complex valued.
Errors and estimated accuracy orders for the upwind and the central schemes can be seen
in Tables 1 and 2. The errors for the upwind schemes agree with the local discretization
error well. The upwind scheme using M model variables per cell achieves (M − 1)-th
accuracy order strictly. However, the accuracy orders for the central schemes varies quite
irregularly. Specifically, when M = 5 and 9, the accuracy orders for central schemes remain
consistent with that of upwind schemes. When M = 6 and 7, central schemes achieve
higher accuracy orders than upwind schemes. Nevertheless, there also some choices of
M like M = 4 and 8 such that the accuracy order of the central scheme is lower than the
corresponding upwind scheme. It is remarkable that when M = 7, the central scheme
enjoys two orders higher accuracy than that of the local discretization error.

Table 1. Errors and accuracy orders for central RDO schemes via Fourier analysis.

RDO-M Coarse Mesh Error (w = π/4) Fine Mesh Error (w = π/8) Order

M = 5 −7.88 × 10−7 + 3.16 × 10−6i −1.24 × 10−8 + 1.00 × 10−7i 4.02
M = 6 −3.14 × 10−5 − 4.27 × 10−6i −5.04 × 10−7 − 3.40 × 10−8i 4.97
M = 7 −1.36 × 10−7 + 2.85 × 10−7i −5.42 × 10−10 + 2.34 × 10−9i 6.04
M = 8 −1.00 × 10−7 − 1.00 × 10−8i −3.98 × 10−10 − 1.98 × 10−11i 6.98
M = 9 −2.42 × 10−10 + 5.31 × 10−10i −2.34 × 10−13 + 1.07 × 10−12i 8.05

Table 2. Errors and accuracy orders for upwind RDO schemess via Fourier analysis.

RDO-M Coarse Mesh Error (w = π/4) Fine Mesh Error (w = π/8) Order

M = 5 3.36 × 10−6i 1.02 × 10−7i 4.16
M = 6 1.17 × 10−5i 8.71 × 10−8i 6.08
M = 7 8.97 × 10−9i 1.74 × 10−11i 8.00
M = 8 −2.17 × 10−7i −1.76 × 10−9i 5.95
M = 9 6.46 × 10−10i 1.13 × 10−12i 8.15

Tables 1 and 2 and also contain abundant information about the dissipation and
dispersion of the schemes. It should be noted that a positive real part of δ(w) will cause
the scheme eventually blow up if no additional dissipation is added in time stepping. In
Table 2, the real parts of δ(w) are negative for all upwind schemes which introduces a
certain amount of spurious dissipation so as to stabilize the scheme. From Table 1 we can
see that δ(w) are pure imaginary numbers with all choices of M, which means that the
dispersion is dominant in the numerical error for the central schemes. However, it can be
easily observed that the dispersion and dissipation error decays rapidly as M increases for
the proposed schemes.

In (39), one can see that the numerical error in computing H−1 dominates the error
of temporal derivatives, since H and V−1D have explicit expression. However, the error
of computing H−1 is inevitably increasing as M increases, which indicates that there is
a limit of accuracy for the presented method. Denote the numerical inverse of H by Ĥ,
which is obtained by Matlab. It is well known that the error

∥∥H−1 − Ĥ
∥∥ hinges on the
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condition number of H. Moreover, a more accurate estimate
∥∥H−1 − Ĥ

∥∥ can be bounded
by the following inequality,

∥∥H−1 − Ĥ
∥∥ =

1
‖H‖‖H‖

∥∥H−1 − Ĥ
∥∥

≥ 1
‖H‖

∥∥I − HĤ
∥∥ := Einv. (58)

Then Einv determines the smallest error that RDO-M can reach through the grid
refinement. The results of cond(H) and Einv with M varying form 4 to 11 are shown in
Table 3. We can see that cond(H) and Einv grow quickly as M increases. Hence, there is
a tradeoff between the higher convergence rate and Einv. In this work, we suggest that
M ≤ 9 is ideal for the practical numerical experiments.

Table 3. cond(H) and the Erecon as the function of M.

M 4 5 6 7 8 9 10 11

cond(H) 9.92 1.40 × 102 4.13 × 102 1.49 × 103 5.25 × 104 9.24 × 105 3.71 × 107 5.12 × 108

Einv 1.60 × 10−16 4.55 × 10−16 1.21 × 10−15 1.39 × 10−15 3.24 × 10−14 3.17 × 10−13 4.56 × 10−12 1.24 × 10−11

4.3. Stability Analysis

Now we investigate the maximum tolerant time step length when using the Runge–
Kutta time integration scheme. Let the time step length be ∆t = c∆x and c is the Courant
number for (31). The amplification matrix for the proposed schemes using the fourth order
Runge Kutta method for time integration (19) can be simplified as

R = I + cS +
c2S2

2
+

c3S3

6
+

c4S4

24
. (59)

To ensure the stability, the Courant number c should be chosen such that the spectral
radius of the amplification matrix R, i.e., the largest absolute value of its eigenvalues, is not
greater than 1 for all wavenumbers w. The spectral radius of R for the upwind schemes
and the central schemes are presented in Figures 2 and 3, respectively, which can also tell
the Courant number limitation related to the stability condition.

Both types of schemes have a fairly large permissible range of c. As more moments
are used, the stability condition becomes more strict for both types of RDO schemes.
Generally, the Courant number limitation of the central scheme is larger than that of the
upwind schemes. For example, the Courant number limit for upwind RDO-5 is about
0.25 and this number is approximately 0.39 for the central RDO-5, although both schemes
are fourth-order accurate. The Courant number limits for RDO schemes are presented in
Table 4.

Table 4. The Courant number limit for RDO schemes.

M 4 5 6 7

cmax
Upwind 0.45 0.25 0.24 0.12
Central 0.69 0.39 0.33 0.24
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Figure 2. Contour plots of spectral radii of amplification matrices of the upwind schemes.
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Figure 3. Contour plots of spectral radii of amplification matrices of the central schemes.
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5. Numerical Results

This section provides several numerical tests to verify the formal accuracy and other
numerical properties like diffusion and dispersion of the proposed schemes.

5.1. Accuracy Test
5.1.1. One-Dimensional Linear Case

We first test the accuracy when solving the scalar hyperbolic Equation (31) analysed in
Section 4. The initial condition is u(x, 0) = sin(x) on [0, 2π) with the periodical boundary
condition. The exact solution is u(x, t) = sin(x− t).

Both the central and the upwind RDO-M with the number of moments M varying
from 4 to 9 are tested on uniform meshes. To measure the accuracy, two typical norms for
errors are used here,

E1 =
N

∑
j=1

∣∣∣uj − utrue
j

∣∣∣, (60)

E∞ = max
1≤j≤N

∣∣∣uj − utrue
j

∣∣∣. (61)

We study the convergence rate by recording the errors at t = 2π and gradually refining
the grids. The time step length is set as a very small number such that the temporal error
does not influence the accuracy results. The error results are presented in Table 5. In
general, the orders of accuracy computed from the grid refinement agree with the Fourier
analysis results in Tables 1 and 2 well, with same trends in both orders of accuracy and
error magnitudes. It can be observed that the upwind RDO-M achieves (M− 1)-th order of
accuracy for all M, which agrees with the local discretization error. On the other hand, the
loss of accuracy order when M = 4, 8 and the supravergence phenomenon when M = 6, 7
indicated by Fourier analysis are also observed for the central RDO schemes in this test.

Besides the uniform meshes, we also consider the non-uniform meshes that are
randomly generated by setting cell boundaries as

xj− 1
2
= xj− 1

2
+ ηζ j∆x, ζ j ∼ Unif(−1, 1), j = 1, . . . , N, (62)

where N denotes the number of cells, ∆x = L/N,
{

ζ j
}N

j=1 are independently random

variables, η represents the magnitude of perturbation and Unif(−1, 1) denotes the uniform
distribution over [−1, 1]. We set η = 0.1 in the present work. In this setting, the maximal
and the minimal possible values of ∆xj are, respectively, 0.8∆x and 1.2∆x.

The accuracy results of RDO schemes over non-uniform meshes are listed in Table 6.
It can be observed that the lack of uniformity in the mesh causes slightly larger errors and
does not influence the convergence rate essentially. Therefore, the proposed schemes works
consistently well on both uniform and non-conform meshes.

5.1.2. Two-Dimensional Linear Case

Consider the following two-dimensional scalar hyperbolic equation

ut + ux + uy = 0. (63)

The initial condition is u(x, y; 0) = sin(x + y) on [0, 2π]× [0, 2π] with the periodical
boundary condition. The exact solution is u(x, y; t) = sin(x + y− 2t). The errors and the
orders of accuracy for the central and the upwind RDO-M with M changing from 4 to 8
are shown in Table 7.

The errors and accuracy orders of the two-dimensional schemes are similar to that
of the one-dimensional schemes, which illustrates that both the upwind and the central
RDO schemes work well in two dimensions. Specifically, central RDO schemes achieves
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significantly lower errors compared with upwind RDO schemes when M = 6, 7. However,
for any other presented values of M, upwind RDO performs better.

5.1.3. Nonlinear Case

This case considers solving the one-dimensional Burger’s equation

ut + uux = 0. (64)

The initial condition is u(x, 0) = 0.5 + sin x with the periodical boundary condition
for x ∈ [0, 2π]. We compute the numerical solution at t = 0.2π when the profile is still
smooth and record the errors under grid refinement. The results can be seen in Table 8.
Both schemes lose accuracy due to nonlinearity compared with results of the linear cases
shown in Table 5. The accuracy orders of central RDO schemes coincide the accuracy
orders of local polynomial reconstruction better when M ≥ 5. However, upwind schemes
generally enjoy smaller errors in this test.

Table 5. Accuracy results from grid convergence on uniform meshes for the linear advection equation.

RDO-M N E1 Order E∞ Order E1 Order E∞ Order

Central Schemes Upwind Schemes

M = 4
10 3.40 × 10−2 - 5.25 × 10−2 - 1.31 × 10−2 - 2.02 × 10−2 -
20 8.21 × 10−3 2.05 1.30 × 10−2 2.02 1.70 × 10−3 2.95 2.65 × 10−3 2.93
30 3.67 × 10−3 1.98 5.75 × 10−3 2.01 5.06 × 10−4 2.98 7.93 × 10−4 2.98

M = 5
10 2.40 × 10−4 - 3.71 × 10−4 - 2.28 × 10−4 - 3.49 × 10−4 -
20 1.37 × 10−5 4.13 2.17 × 10−5 4.10 1.42 × 10−5 3.95 2.12 × 10−5 3.97
30 2.70 × 10−6 4.00 4.24 × 10−6 4.02 2.95 × 10−6 4.00 4.12 × 10−6 3.97

M = 6
10 1.20 × 10−5 - 1.20 × 10−5 - 5.26 × 10−5 - 8.13 × 10−5 -
20 1.79 × 10−7 4.07 1.79 × 10−7 6.07 1.68 × 10−6 4.97 2.64 × 10−6 4.94
30 1.58 × 10−8 5.99 1.58 × 10−8 5.99 2.23 × 10−7 4.99 3.49 × 10−7 4.99

M = 7
10 1.57 × 10−7 - 2.42 × 10−7 - 3.88 × 10−7 - 5.99 × 10−7 -
20 6.21 × 10−10 7.98 9.72 × 10−10 7.96 6.24 × 10−9 5.96 9.68 × 10−9 5.95
30 2.80 × 10−11 7.64 6.07 × 10−11 6.84 5.48 × 10−10 6.00 8.59 × 10−10 5.97

M = 8
10 2.96 × 10−7 - 4.58 × 10−7 - 1.06 × 10−7 - 1.64 × 10−7 -
20 4.80 × 10−9 5.95 7.59 × 10−9 5.91 8.48 × 10−10 6.97 1.33 × 10−9 6.94
30 4.22 × 10−10 6.00 6.62 × 10−10 6.02 4.98 × 10−11 6.99 7.82 × 10−11 7.00

M = 9
5 1.89 × 10−7 - 2.93 × 10−7 - 1.81 × 10−7 - 2.71 × 10−7 -

10 5.38 × 10−10 8.46 8.31 × 10−10 8.46 5.85 × 10−10 8.28 9.24 × 10−10 8.20
15 1.96 × 10−11 8.17 3.07 × 10−11 8.13 2.24 × 10−11 8.05 3.49 × 10−11 8.08

Table 6. Accuracy results from grid convergence on non-uniform meshes generated by (62) for the linear advection equation.

RDO-M N E1 Order E∞ Order E1 Order E∞ Order

Central Schemes Upwind Schemes

M = 4
10 3.99 × 10−2 - 5.80 × 10−2 - 1.39 × 10−2 - 2.19 × 10−2 -
20 8.97 × 10−3 2.15 1.20 × 10−2 2.27 1.84 × 10−3 2.92 2.87 × 10−3 2.93
30 4.05 × 10−3 1.96 5.50 × 10−3 1.92 5.49 × 10−4 2.98 8.57 × 10−4 2.98

M = 5
10 2.45 × 10−4 - 3.81 × 10−4 - 2.64 × 10−4 - 4.09 × 10−4 -
20 1.43 × 10−5 4.10 2.29 × 10−5 4.06 1.43 × 10−5 4.21 2.34 × 10−5 4.13
30 2.79 × 10−6 4.02 4.51 × 10−6 4.01 3.06 × 10−6 3.80 4.67 × 10−6 3.98
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Table 6. Cont.

RDO-M N E1 Order E∞ Order E1 Order E∞ Order

Central Schemes Upwind Schemes

M = 6
10 1.36 × 10−5 - 2.45 × 10−5 - 6.04 × 10−5 - 9.24 × 10−5 -
20 4.11 × 10−7 5.05 9.03 × 10−7 4.76 1.81 × 10−6 5.06 2.90 × 10−6 4.99
30 3.57 × 10−8 6.03 7.54 × 10−8 6.12 2.37 × 10−7 5.01 3.68 × 10−7 5.09

M = 7
10 2.05 × 10−7 - 4.64 × 10−7 - 4.17 × 10−7 - 6.14 × 10−7 -
20 2.30 × 10−9 6.48 4.96 × 10−9 6.55 7.04 × 10−9 5.89 1.02 × 10−8 5.91
30 1.71 × 10−10 6.40 3.58 × 10−10 6.48 5.88 × 10−10 6.12 9.65 × 10−10 5.82

M = 8
10 3.23 × 10−7 - 5.94 × 10−7 - 1.41 × 10−7 - 2.19 × 10−7 -
20 5.34 × 10−9 5.92 9.25 × 10−9 6.00 1.02 × 10−9 7.11 1.62 × 10−9 7.08
30 4.55 × 10−10 6.07 7.58 × 10−10 6.17 6.13 × 10−11 6.94 9.62 × 10−11 6.96

M = 9
5 2.07 × 10−7 - 3.33 × 10−7 - 2.03 × 10−7 - 3.27 × 10−7 -

10 5.83 × 10−10 8.47 9.50 × 10−10 8.45 7.11 × 10−10 8.15 1.12 × 10−9 8.19
15 2.16 × 10−11 8.12 3.40 × 10−11 8.21 2.50 × 10−11 8.26 3.71 × 10−11 8.41

Table 7. Accuracy results on uniform meshes for the 2D linear advection equation ut + ux + uy = 0 at t = 2π.

RDO-M Nx × Ny E1 Order E∞ Order E1 Order E∞ Order

Central Schemes Upwind Schemes

M = 4
10 × 10 6.76 × 10−2 - 1.04 × 10−1 - 2.64 × 10−2 - 4.08 × 10−2 -
20 × 20 1.64 × 10−2 2.04 2.59 × 10−2 2.01 3.43 × 10−3 2.95 5.36 × 10−3 2.93
30 × 30 7.34 × 10−3 1.99 1.15 × 10−2 2.01 1.01 × 10−3 3.00 1.59 × 10−3 2.99

M = 5
10 × 10 7.48 × 10−4 - 1.16 × 10−3 - 4.37 × 10−4 - 6.75 × 10−4 -
20 × 20 4.42 × 10−5 4.08 6.95 × 10−5 4.06 2.79 × 10−5 3.97 4.33 × 10−5 3.96
30 × 30 8.69 × 10−6 4.01 1.36 × 10−5 4.02 5.46 × 10−6 4.02 8.56 × 10−6 4.00

M = 6
10 × 10 3.78 × 10−5 - 5.84 × 10−5 - 1.04 × 10−4 - 1.60 × 10−4 -
20 × 20 5.60 × 10−7 6.08 8.86 × 10−7 6.04 3.35 × 10−6 4.95 5.29 × 10−6 4.92
30 × 30 4.96 × 10−8 5.98 7.78 × 10−8 6.00 4.44 × 10−7 4.98 6.97 × 10−7 5.00

M = 7
10 × 10 2.56 × 10−6 - 3.95 × 10−6 - 4.91 × 10−6 - 7.59 × 10−6 -
20 × 20 1.11 × 10−8 7.84 1.75 × 10−8 7.82 4.45 × 10−8 6.79 6.97 × 10−8 6.77
30 × 30 4.60 × 10−10 7.86 7.41 × 10−10 7.80 2.88 × 10−9 6.75 4.67 × 10−9 6.67

M = 8
5 × 5 3.74 × 10−4 - 5.78 × 10−4 - 4.13 × 10−5 - 6.38 × 10−5 -

10 × 10 6.05 × 10−6 5.95 9.34 × 10−6 5.95 3.31 × 10−7 6.96 5.12 × 10−7 6.96
15 × 15 5.21 × 10−7 6.04 8.16 × 10−7 6.01 1.93 × 10−8 7.01 3.03 × 10−8 6.97

Table 8. Accuracy results for the Burger’s equation with u(x, 0) = 0.5 + sin x at t = 0.2π.

RDO-M N E1 Order E∞ Order E1 Order E∞ Order

Central Schemes Upwind Schemes

M = 4
10 2.33 × 10−3 - 1.04 × 10−1 - 8.38 × 10−4 - 4.64 × 10−3 -
20 7.17 × 10−4 1.70 2.59 × 10−2 2.01 1.30 × 10−4 2.69 1.07 × 10−3 2.12
30 3.23 × 10−4 1.97 1.15 × 10−2 2.01 4.22 × 10−5 2.77 3.98 × 10−4 2.44

M = 5
10 3.69 × 10−4 - 1.71 × 10−3 - 2.63 × 10−5 - 9.20 × 10−5 -
20 1.95 × 10−5 4.24 1.53 × 10−4 3.48 3.41 × 10−6 2.95 1.35 × 10−5 2.77
30 2.17 × 10−6 5.42 2.47 × 10−5 4.49 7.21 × 10−7 3.83 4.70 × 10−6 2.61
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Table 8. Cont.

RDO-M N E1 Order E∞ Order E1 Order E∞ Order

Central Schemes Upwind Schemes

M = 6
10 1.68 × 10−4 - 5.82 × 10−4 - 1.78 × 10−5 - 1.05 × 10−4 -
20 5.09 × 10−6 5.04 3.08 × 10−5 4.24 1.41 × 10−6 3.66 1.67 × 10−5 2.65
30 5.46 × 10−7 5.51 5.27 × 10−6 4.36 2.48 × 10−7 4.28 3.64 × 10−6 3.76

M = 7
10 2.03 × 10−5 - 1.65 × 10−4 - 9.18 × 10−6 - 3.19 × 10−5 -
20 3.63 × 10−7 5.80 3.18 × 10−6 5.69 1.42 × 10−7 6.01 1.08 × 10−6 4.89
30 3.14 × 10−8 6.04 2.03 × 10−7 6.79 1.47 × 10−8 5.60 9.37 × 10−8 6.02

M = 8
10 2.72 × 10−5 - 1.33 × 10−4 - 1.62 × 10−7 - 9.62 × 10−7 -
20 7.96 × 10−8 8.42 1.03 × 10−6 7.02 1.42 × 10−8 3.51 1.60 × 10−7 2.59
30 7.20 × 10−9 5.93 9.95 × 10−8 5.76 2.17 × 10−9 4.63 2.60 × 10−8 4.49

M = 9
10 1.72 × 10−6 - 1.20 × 10−5 - 5.30 × 10−8 - 4.72 × 10−7 -
20 3.20 × 10−8 5.74 1.76 × 10−7 6.08 9.41 × 10−10 5.81 1.26 × 10−8 5.23
30 5.73 × 10−10 9.92 2.68 × 10−9 10.32 6.01 × 10−11 6.78 7.08 × 10−10 7.10

5.2. Advection of the Gaussian Profile

To investigate the diffusion and the dispersion of the proposed schemes and verify
the long-term stability, a Gaussian profile used in [18]

u(x, 0) = e−10x2
(65)

is set as the initial condition for the advection Equation (31) over the [−1, 1] with the
periodic boundary condition. The number of cells is N = 20 and the time step length
is ∆t = 0.005 for all schemes. The numerical solution by the central and the upwind
RDO-M with various M after 4 periods and 40 periods through the domain can be seen in
Figures 4 and 5, respectively. Overall, the maximum value and the shape can be retained
better as M increases, due to the improvement of computational accuracy. The profiles
advanced by the upwind the central RDO-8 coincide the exact solution very well.

The diffusion and the dispersion agree with the Fourier analysis results in Tables 1 and 2
well. Table 1 indicates that the error of central RDO-M schemes are dominated by disper-
sion for all M. By contrast, Table 2 reveals that the upwind RDO-M suffers from diffusion
mainly for all M with the only exception being M = 5. Correspondingly, the numerical so-
lution by central RDO-4 and RDO-5 are remarkably distorted by the dispersion, especially
in the long-term simulation. On the other hand, the upwind RDO schemes maintains a
better and meanwhile a more flat profile than the central schemes do for all choices of M
due to diffusion.

Initial

upwind

center

(a) RDO-4

Initial

upwind

center

(b) RDO-5

Figure 4. Cont.



Axioms 2021, 10, 295 19 of 21

Initial
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(c) RDO-6

Initial

upwind

center

(d) RDO-7

Figure 4. Numerical results at t = 8 (4 periods) for the advection equation with the bell function as
the initial profile.

Initial

upwind

center

(a) RDO-4

Initial

upwind

center

(b) RDO-5

Initial

upwind

center

(c) RDO-6

Initial

upwind

center

(d) RDO-7

Figure 5. Numerical results at t = 80 (40 periods) for the advection equation with the bell function as
the initial profile.

5.3. Comparison of Computational Costs

From the stability analysis, we can know that the higher-order schemes enjoy better
accuracy at the expense of decreasing the CFL number and hence the efficiency. Therefore,
it is necessary to compare the practical computational efficiency for RDO-M to achieve the
same accuracy.

Then we consider simulating the advection of the Gaussian profile in the last test.
All schemes use the fourth-order Runge–Kutta method with the temporal step length
∆t = 0.95cmax∆x for time integration, where cmax denotes the largest tolerable Courant
number. Furthermore, we take ∆t = 0.7cmax for the non-uniform mesh since the stability
condition is more stringent in the presence of mesh non-uniformness. The target accuracy
is set as E1 = 10−5. The number of cells N is increased gradually until the norm-1 error
reaches the target accuracy. The minimal required N and the corresponding CPU time for
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RDO schemes are shown in Table 9. It should be remarked that the total DOFs are not MN
since the model variables at each cell boundary are shared by two cells.

For both uniform and non-uniform meshes, the significant reduction can be easily
observed in the number of cells, the computational storage (i.e., total DOFs) and CPU time
as M and the accuracy orders increases. RDO schemes on non-uniform meshes generally
require slightly more CPU time to reach the target accuracy as shown in Table 9. Hence,
high-order schemes are more attractive in terms of computational efficiency.

Table 9. The minimal required number of cells to reach the accuracy E1 ≤ 10−5 and the corresponding resumed CPU time
for RDO-M.

RDO-M M = 4 M = 5 M = 6 M = 7 M = 4 M = 5 M = 6 M = 7

Mesh Type Central Schemes Upwind Schemes

Uniform
Minimal N 1129 67 48 27 271 62 44 22
Total DOFs 2258 201 144 108 542 186 132 88

CPU time (s) 55.8 0.46 0.25 0.14 6.31 0.48 0.37 0.14

Non-uniform
Minimal N 1187.2 73.4 51.6 30.0 292.4 71.2 49.8 27.2
Total DOFs 2374.4 220.2 154.8 120.0 584.8 213.6 149.4 108.8

CPU time (s) 70.46 0.65 0.37 0.19 7.93 0.62 0.47 0.18

6. Conclusions

A family of compact multi-moment schemes that use high-order derivative moments
have been proposed, analyzed and tested in one dimension and two dimensions. Using
the model variables at cell boundaries, the proposed schemes reconstruct the solution
polynomial within a single cell and then retrieve the temporal derivatives of model vari-
ables efficiently. The central scheme also achieves excellent performance in several tests,
although this scheme does not possess clear physical meaning as the upwind scheme does.
This indicates that one may extend the scheme to the more complicated scenarios without
considering finding the upwind direction.

The future work will focus on extending this formulation to the more generalized
unstructured triangular mesh using the Argyris polynomials [24] which also have continu-
ous gradient globally. Furthermore, designing the conservative counterpart of the current
version is also on our schedule.
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