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Abstract: In this paper, we introduce the concept of R-nonexpansive self-mappings defined on a
suitable subset K of a Banach space, wherein R stands for a transitive binary relation on K, and
utilize the same to prove a relation-theoretic variant of classical Browder–Göhde fixed point theorem.
As consequences of our newly proved results, we are able to derive several core fixed-point theorems
existing in the literature.
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1. Introduction

Metric fixed-point theory is a relatively old but still young area of research which
occupies an important place in nonlinear functional analysis. In fact, the strength of
fixed-point theory lies in it’s wide range of applications, which include optimization
theory, approximation theory, variational inequalities, economic theory, operator equations,
fractal theory, control theory, global analysis, physics, statistics, engineering, computer
science, biology, chemistry and several others. There exists extensive literature on this
topic, which includes pure as well as applied aspects. Indeed, the most popular result of
metric fixed point theory is the classical Banach contraction principle, which is essentially
due to S. Banach [1] (proved in 1922). Many authors extended the Banach contraction
principle employing relatively more general contractive conditions, e.g., see [2–12] and
references therein.

In 2004, Ran and Reurings [13] extended the Banach contraction principle to a metric
space endowed with a partial order and utilized the same for solving some special matrix
equations. Thereafter, Nieto and Rodríguez-López [14] slightly modified the Ran–Reurings
theorem and gave the application to solve boundary value problems in differential equa-
tions. Here it can be pointed out that the fixed point results of Ran and Reurings [13]
and Nieto and Rodríguez-López [14] are consequences of the results of Turinici [15,16]
proved in 1986 (for further details, we refer [17,18]). In the same continuation, Alam and
Imdad [19] obtained a variant of the Banach contraction principle under an arbitrary binary
relation (not necessarily a partial order).

On the other hand, the origin of metric fixed point theory for nonexpansive mappings
on Banach spaces can be traced back to four simultaneous articles of Browder [20,21],
Göhde [22] and Kirk [23]. In order to ascertain the existence of a fixed point of a nonexpan-
sive mapping, it is necessary for the underlying Banach space to own specific geometric
properties. Incidentally, Hilbert spaces enjoy such properties, which allows Browder [20]
to prove a natural result in Hilbert spaces.
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Theorem 1 (Browder Fixed-Point Theorem [20]). Let H be a Hilbert space, K a bounded, closed
and convex subset of H and T : K → K a nonexpansive mapping. Then T has a fixed point.

Generally speaking, all Banach spaces are not equipped with desired geometric prop-
erties which are enough to ensure the existence of fixed-point results for nonexpansive
mappings. In fact, the class of “uniformly convex Banach spaces" is adjudged suitable to
prove fixed-point results for nonexpansive mappings.

Definition 1. A Banach space (X, ‖ · ‖) is called uniformly convex if for every ε > 0 there is a
δ > 0, such that for any x, y ∈ X with

‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

=⇒ 1
2
‖(x + y)‖ ≤ 1− δ.

Example 1. Euclidean space Rn is uniformly convex with Euclidean norm ‖x‖ =
( n

∑
i=1

x2
i

)1/2
,

while under the norm ‖x‖ =
n
∑

i=1
|xi|, it is not uniformly convex.

After appearance of Theorem 1 in 1965, in the same year Browder [21] and Göhde [22]
both independently proved a result in the setting of a uniformly convex Banach space.

Theorem 2 (Browder-Göhde Fixed-Point Theorem [21,22]). Let X be a uniformly convex
Banach space, K a bounded, closed and convex subset of X and T : K → K a nonexpansive mapping.
Then T has a fixed point.

Here, it can be pointed out that Browder [21] and Göhde [22] employed different
arguments in their proofs. In a well-written monograph, Goebel and Reich [24] chose to
give three different proofs of Theorem 2; one of the proofs is based on the intersection
method, whereas the other two proofs bank on the idea of asymptotic centres. Kirk [23]
proved the same result in the setting of reflexive Banach space having a specific property
called “Normal Structure”.

Theorem 3 (Kirk Fixed-Point Theorem [23]). Let X be a reflexive Banach space and K a bounded,
closed and convex subset of X. Suppose that K has normal structure and T : K → K is a
nonexpansive mapping. Then T has a fixed point.

For a technical description of “Normal Structure", one can consult the monograph of
Goebel and Kirk [25].

Remark 1. As every Hilbert space is uniformly convex, Theorem 1 follows from Theorem 2.
Additionally, since every uniformly Banach space is reflexive and has normal structure, Theorem 2
follows from Theorem 3. Hence, out of all three above-mentioned theorems, Theorem 3 due to
Kirk [23] is most general.

In 2015, Bachar and Khamsi [26] introduced the idea of monotone nonexpansive
mapping defined on a Banach space equipped with a partial ordering. Following Bachar
and Khamsi [26], given a partially ordered Banach space (X, ‖ · ‖,�), a mapping T :
D(T) ⊆ X → X is called monotone if T(x) � T(y) for all x, y ∈ D(T) with x � y.
Additionally, if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ D(T) with x � y, then T is said to be
monotone nonexpansive. For any a, b ∈ X, the subsets [a,→) = {x ∈ X : a � x} and
(←, b] = {x ∈ X : x � b} refer to the order intervals in the partially ordered set (X,�) with
initial point a and with end point b, respectively. For further relevant details on monotone
nonexpansive mappings, one can consult [27–33]. Recently, using the Baire’s category
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approach, Reich and Zaslavski [33] established the fact that the fixed-point problem for
a monotone nonexpansive mapping is well-posed. In this continuation, Bin Dehaish and
Khamsi [29] proved an order-theoretic analog of Browder-Göhde fixed point theorem (i.e.,
Theorem 2), which runs as follows:

Theorem 4 ([29]). let (X, ‖ · ‖,�) be a partially ordered Banach space such that order intervals
are convex and closed. Assume X is uniformly convex. Let K be a bounded closed convex nonempty
subset of X. Let T : K → K be a monotone nonexpansive mapping. Assume there exists x0 ∈ K
such that x0 and T(x0) are comparable. Then T has a fixed point.

In this paper, we establish an improved version of Theorem 4. Our improvement
is four-fold:

• The partial ordering is replaced by a transitive binary relation;
• The transitivity of the relation is not needed on the whole space X, but it can be

limited on a suitable subset K of X;
• The closedness and convexity of all order intervals in X are not required, but it suffices

that merely certain relational intervals in K are closed and convex. Furthermore,
the convexity and closedness of whole set K are also relaxed;

• The boundedness of the whole set K is replaced by a relatively weaker assumption.

2. Relation-Theoretic Notions

In this section, to make our exposition self-contained, we give some definitions in re-
spect of binary relations, which are used to prove our main results. In what follows, N and
N0 denote the sets of natural numbers and whole numbers, respectively (i.e., N0 = N∪ {0}).
Recall that a binary relation on a nonempty set K is a subsetR of K2 (i.e.,R ⊆ K2). Trivially,
K2 and ∅ being subsets of K2 are binary relations on K, which are, respectively, called the
universal relation (or full relation) and empty relation.

Throughout this paper,R stands for a nonempty binary relation, but for the sake of
simplicity, we often write ‘binary relation’ instead of ‘nonempty binary relation’.

Definition 2 ([34]). Let K be a nonempty set andR a binary relation of K.

(1) The inverse or transpose or dual relation of R, denoted by R−1, is defined by R−1 :=
{(x, y) ∈ K2 : (y, x) ∈ R}.

(2) The symmetric closure of R, denoted by Rs, is defined to be the set R∪R−1 (i.e., Rs :=
R∪R−1). Indeed,Rs is the smallest symmetric relation on K containingR.

Remark 2. R−1 is transitive ifR is transitive.

Definition 3 ([19]). LetR be a binary relation on a nonempty set K and x, y ∈ K. We say that x
and y areR-comparative if either (x, y) ∈ R or (y, x) ∈ R. We denote it by [x, y] ∈ R.

Proposition 1 ([19]). For a binary relationR on a nonempty set K,

(x, y) ∈ Rs ⇐⇒ [x, y] ∈ R.

Definition 4 ([19]). Let K be a nonempty set andR a binary relation on K. A sequence {xn} ⊂ K
is calledR-preserving if

(xn, xn+1) ∈ R ∀ n ∈ N0.

Also, the sequence {xn} is calledR-reversing if

(xn+1, xn) ∈ R ∀ n ∈ N0.
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Definition 5 ([19]). Let K be a nonempty set and T : K → K a mapping. A binary relationR on
K is called T-closed if for all x, y ∈ K,

(x, y) ∈ R ⇒ (Tx, Ty) ∈ R.

Proposition 2 ([35]). Let K be a nonempty set,R a binary relation on K and T a self-mapping on
K. IfR is T-closed, then, for all n ∈ N0,R is also Tn-closed, where Tn denotes the nth iterate of T.

Now, we present the relation-theoretic variants of monotone nonexpansive mappings
and order intervals.

Definition 6. Let K be a subset of Banach space (X, ‖ · ‖) andR a binary relation of K. A mapping
T : K → K is calledR-nonexpansive if

(i) R is T-closed;
(ii) for all x, y ∈ K with (x, y) ∈ R,

‖Tx− Ty‖ ≤ ‖x− y‖.

Remark 3. The following conclusions are straightforward.

(i) T isR-nonexpansive⇐⇒ T isR−1-nonexpansive.
(ii) T isR-nonexpansive⇐⇒ T isRs-nonexpansive.
(iii) Under universal relationR = X2, the notion ofR-nonexpansive mapping reduces to that of

nonexpansive mapping.

Definition 7. Given a binary relation R on a nonempty set K, the image of an element a ∈ K
(under the binary relationR) orR-interval with initial point a ∈ K is a subset of K defined by

Im(a,R) = {x ∈ K : (a, x) ∈ R or x = a}.

Similarly, the preimage of a ∈ K orR-interval with end point a ∈ K is a subset of K defined by

PreIm(a,R) = {x ∈ K : (x, a) ∈ R or x = a}.

Remark 4. The following conclusions are immediate.

Im(a,R) = PreIm(a,R−1),

PreIm(a,R) = Im(a,R−1),

Im(a,Rs) = PreIm(a,Rs).

Remark 5. Under R :=�, a partial ordering, Im(a,R) and PreIm(a,R) coincide with order
intervals [a,→) and (←, a] respectively.

In a Banach lattice,R-intervals are closed and convex underR :=� (cf. [36]).

3. Main Results

For the sake of self-containment, we recall the following well-known results due to
Smulian [37], which characterizes the reflexivity of Banach space.

Lemma 1 ([37]). A Banach space X is reflexive if every decreasing sequence {Kn} of nonempty

bounded, closed and convex subsets of X has nonempty intersections, i.e.,
∞⋂

n=0
Kn 6= ∅.
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Definition 8 ([29]). Let (X, ‖ · ‖) be a Banach space and K ⊆ X and {xn} a bounded sequence in
K. Then, a function τ : K → [0, ∞) defined by

τ(x) = lim sup
n→∞

‖xn − x‖ ∀x ∈ K,

is called a type function generated by {xn}.

Lemma 2 ([29]). Let K be a nonempty, closed and convex subset of a uniformly convex Banach
space (X, ‖ · ‖) and τ : K → [0, ∞) a type function. Then, τ has a unique minimum point z ∈ K,
such that

τ(z) = inf{τ(x) : x ∈ K}.

Now, we present a variant of Browder-Göhde fixed-point theorem under a transitive
binary relation, which improves Theorem 4.

Theorem 5. Let (X, ‖ · ‖) be a uniformly convex Banach space and K a nonempty subset of X. Let
R be a transitive binary relation on K and T : K → K anR-nonexpansive mapping. If there exists
x0 ∈ K such that

(a) (x0, Tx0) ∈ R;
(b) Im(Tnx0,R) is nonempty, closed and convex for each n ∈ N0;
(c) {Tnx0} is bounded;

then T has a fixed point.

Proof. Based at the initial point x0 ∈ K, we can define a Picard sequence {xn} ⊂ K
as follows:

xn := Tn(x0), ∀ n ∈ N. (1)

By assumption (a), we have (x0, Tx0) ∈ R. Hence, using T-closedness of R and
Proposition 2, we obtain

(Tnx0, Tn+1x0) ∈ R,

which by using (1), reduces to

(xn, xn+1) ∈ R ∀ n ∈ N0. (2)

Thus, the sequence {xn} isR-preserving.
In view of assumption (b), for each n ∈ N0, Mn := Im(xn,R) is a closed and convex

subset of X. Then, {Mn} is bounded as {xn} is bounded (by assumption (c)). Clearly,
{Mn} is decreasing, i.e., Mn ⊇ Mn+1 for all n ∈ N0. Hence, {Mn} is a bounded decreasing
sequence of closed and convex subsets of X. Also, the Banach space X being uniformly
convex is reflexive, so using Lemma 1, we have

M :=
∞⋂

n=0
Im(xn,R) 6= ∅.

Take x ∈ M; then (xn, x) ∈ R for each n ∈ N0. Using theR-closedness of T, we have

(Txn, Tx) ∈ R,

which by using (1), reduces to

(xn+1, Tx) ∈ R ∀ n ∈ N0. (3)

Using (2), (3) and transitivity ofR, we get

(xn, Tx) ∈ R,
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which yields that
T(M) ⊆ M. (4)

In lieu of assumption (c), {xn} is bounded. Therefore, consider the type function
τ : K → [0, ∞) generated by {xn}, i.e.,

τ(x) = lim sup
n→∞

‖xn − x‖. (5)

By Lemma 2, there exists a unique minimum point z ∈ M, i.e.,

τ(z) = inf
x∈M

τ(x).

Now, using (4) and (5), we obtain

τ(Tz) = lim sup
n→∞

‖xn − Tz‖ = lim sup
n→∞

‖Txn − Tz‖. (6)

As z ∈ M, we have (xn, z) ∈ R. Hence, by the T-closeness ofR, we obtain

(Txn, Tz) ∈ R. (7)

Using (7) and theR-nonexpansiveness of T, we get

‖Txn − Tz‖ ≤ ‖xn − z‖. (8)

Using (6) and (8), we get

τ(Tz) ≤ lim sup
n→∞

‖xn − z‖ = τ(z).

By the uniqueness of the minimum point of τ, we get T(z) = z so that z is a fixed
point of T.

TakingR−1 instead ofR in Theorem 5 and using Remarks 2–4, we get the following
dual result.

Theorem 6. Let (X, ‖ · ‖) be a uniformly convex Banach space and K a nonempty subset of X. Let
R be a transitive binary relation on K and T : K → K anR-nonexpansive mapping. If there exists
x0 ∈ K such that

(a) (Tx0, x0) ∈ R;
(b) PreIm(Tnx0,R) is nonempty, closed and convex for each n ∈ N0;
(c) {Tnx0} is bounded;

then T has a fixed point.

4. Certain Consequences

In this section, we point out that several core fixed-point theorems turn out to be con-
sequences of our newly proved results. Under the universal relationR = X2, Theorem 5
(similarly, Theorem 6) reduces the classical Browder-Göhde fixed point theorem (i.e.,
Theorem 2). Observe that in the presence of universal relation, the whole set K is closed,
convex and bounded. Consequently, every arbitrary x0 ∈ K satisfies the assumptions (a),
(b) and (c).

Choosing R to a partial order � in Theorems 5 and 6, we obtain the sharpened
versions of Theorem 4 established by Bin Dehaish and Khamsi [29] in the forms of the
following two corollaries:
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Corollary 1. Let (X, ‖ · ‖) be a uniformly convex Banach space and K a nonempty subset of X.
Let � be a partial order on K and T : K → K a monotone nonexpansive mapping. If there exists
x0 ∈ K such that

(a) x0 � T(x0);
(b) for each n ∈ N0, the order interval [Tnx0,→) is nonempty, closed and convex;
(c) {Tnx0} is bounded;

then T has a fixed point.

Corollary 2. Let (X, ‖ · ‖) be a uniformly convex Banach space and K a nonempty subset of X.
Let � be a partial order on K and T : K → K a monotone nonexpansive mapping. If there exists
x0 ∈ K such that

(a) T(x0) � x0;
(b) for each n ∈ N0, the order interval (←, Tnx0] is nonempty, closed and convex;
(c) {Tnx0} is bounded;

then T has a fixed point.

Recall that a nonempty and nontrivial subset P of a real Banach space (X, ‖ · ‖) is said
to be a cone if αP ⊂ P for all α ≥ 0 and P∩ (−P) = {0}. On X, we define a partial ordering
� with respect to P as follows:

x � y⇐⇒ y− x ∈ P ∀ x, y ∈ X.

Such a Banach space (X, ‖ · ‖,�) remains an ordered Banach space induced by the
cone P.

Now, we are equipped to deduce the following two recent results of Song et al. [38]
from Corollaries 1 and 2, respectively.

Corollary 3 ([38]). Let (X, ‖ · ‖,�) be a uniformly convex ordered Banach space induced by
a closed convex cone P and K a nonempty and closed convex subset of X. Also, suppose that
T : K → K is a monotone nonexpansive mapping. If there exists x0 ∈ K such that x0 � Tx0 and
the sequence {Tnx0} is bounded, then T has a fixed point.

Proof. We show that for each n ∈ N0, the order interval [Tnx0,→) is closed and convex.
Take z1, z2 ∈ [Tnx0,→); then z1 − Tn(x0) ∈ P and z2 − Tn(x0) ∈ P. Hence, for λ ∈ (0, 1),
by convexity of P, we have

λz1 + (1− λ)z2 − Tn(x0) = λ(z1 − Tnx0) + (1− λ)(z2 − Tnx0) ∈ P

implying thereby λz1 + (1− λ)z2 ∈ [Tnx0,→). Therefore, [Tnx0,→) is convex. Now, take
{zm} ⊂ [Tnx0,→) such that lim

m→∞
zm = z. Then for each m ∈ N, we have zm − Tn(x0) ∈ P.

Hence, using the closedness of P, we have

z− Tn(x0) = lim
m→∞

(zm − Tnx0) ∈ P

which yields that z ∈ [Tnx0,→). Thus, [Tnx0,→) is closed.
Therefore, the assumption (b) of Corollary 1 holds. Consequently, our result is de-

ducible from Corollary 1.

Corollary 4 ([38]). Let (X, ‖ · ‖,�) be a uniformly convex ordered Banach space induced by
a closed convex cone P and K a nonempty and closed convex subset of X. Also, suppose that
T : K → K is a monotone nonexpansive mapping. If there exists x0 ∈ K such that Tx0 � x0,
the sequence {Tnx0} is bounded, then T has a fixed point.
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Proof. Using the arguments similar to the lines of the proof of Corollary 3, one can show
that for each n ∈ N0, the order interval (←, Tnx0] is closed and convex. Thus, all the condi-
tions of the hypotheses of Corollary 3 are satisfied and hence the conclusion is immediate.
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