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Abstract: This study discusses how to fuzzify a feedforward neural network (FNN) to generate a
fuzzy forecast that contains the actual value, while minimizing the average range of fuzzy forecasts.
This topic has rarely been investigated in past studies, but is an essential step to constructing a
precise fuzzy FNN (FFNN). Existing methods fuzzify all parameters at the same time, which re-sults
in a nonlinear programming (NLP) problem that is not easy to solve. In contrast, in this study,
the parameters of a FNN are fuzzified independently. In this way, the optimal values of fuzzy
parameters can be derived theoretically. An illustrative example is used to illustrate the ap-plicability
of the proposed methodology. According to the experimental results, fuzzifying the thresholds on
hidden-layer nodes or the connection weights between input and hidden layers may not guarantee
that all fuzzy forecasts contain the corresponding actual values. In contrast, fuzzi-fying the threshold
on the output node and the connection weights between the hidden and out-put layers is more likely
to achieve a 100% hit rate. The results lay a foundation for establishing a precise deep FFNN in
the future.

Keywords: feedforward neural network; fuzzy neural network; forecasting; precision

1. Introduction

Fuzzy feedforward neural networks (FFNNs) combines the advantages of fuzzy
logic (in uncertainty modelling) and feedforward neural networks (FNNs) (in nonlinear
approximation) [1], and have been widely applied to forecasting in many fields [2–5].
There are various types of FFNNs with fuzzy or crisp inputs, parameters, and outputs.
The numbers of layers and activation (or transformation) functions in these FFNNs are
also different [6]. A recent review on FFNNs refers to de Campos Souza [7]. At present,
the most commonly applied FFNNs are the variants of adaptive network-based fuzzy
inference system (ANFIS) [8–13]. Past studies have shown that FFNNs can improve the
forecasting accuracy, that is, each forecast is close to the actual value [14–16]. However,
the present study aims to construct an FFNN to improve the forecasting precision, that
is, every actual value is included in the narrowest possible fuzzy forecast. This topic has
rarely been discussed in the past, which constitutes the motivation of this research.

However, even if a sophisticated FFNN is applied, the network output is rarely equal
to the actual value, especially when the FFNN is applied to unlearned data. To address
this issue, an alternative is to estimate the range of the actual value [17]. In other words, a
fuzzy forecast that contains the actual value needs to be generated by an FFNN, at least
for the training data. However, it is not easy since there are no actual values of the lower
and upper bounds of the range. In addition, a fuzzy forecast needs to be as narrow as
possible to have a reference value [18]. This is also a challenging task because a narrower
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range is less likely to contain the actual value. Some of the relevant literature are reviewed
as follows.

In an ANFIS, the network output before defuzzification cannot guarantee the inclusion
of the actual value [19]. The problem is even more complicated for an FFNN in which all
parameters are fuzzy and nonlinear transformation functions (such as sigmoid or tansig
functions) are applied. For example, Chen and Wang [20] showed that the problem of
deriving the values of fuzzy parameters in an FFNN was a nonlinear programming (NLP)
problem that was difficult to solve. A branch-and-bound algorithm can be applied to find
a solution to the NLP problem [21], but the solution may be far from (global) optimal.
Instead, Chen and Wang established goals for the lower and upper bounds of the actual
value to simplify the NLP problem to a goal programming (GP) problem. However, a
number of goals needed to be tried to improve the solution, which was time-consuming. A
similar method was proposed in Chen and Lin [18], in which the membership of an actual
value in the fuzzy forecast had to be greater than a specified level. If only the threshold
on the output node was fuzzy, the optimal value of the fuzzy threshold can be derived by
solving two linear equations [22]. Similar treatments have been taken by Chen and Wu [17]
and Chen [23]. Wang et al. [24] randomized the values of fuzzy thresholds on hidden-layer
nodes and then optimized the fuzzy threshold on the output node. After a few replications,
these fuzzy thresholds could be optimized. However, connection weights in the FFNN
were still crisp.

This study considers an FFNN with a single hidden layer in which all network
parameters can be fuzzified and nonlinear transformation functions (i.e., sigmoid functions)
are adopted. We aim to optimize the values of fuzzy parameters theoretically without
solving an NLP problem, while guaranteeing that all actual values are contained in the
corresponding fuzzy forecasts. However, instead of fuzzifying all parameters at the same
time, this study follows an independent fuzzification approach in which parameters are
fuzzified independently. This study is important because it is a fundamental step towards
the construction of a precise FFNN, which lays a foundation for establishing a precise deep
FFNN with multiple or recurrent hidden layers.

The contribution of this research is to derive the formula for optimizing the value of
each fuzzy parameter in an FFNN, so as to minimize the average range of fuzzy forecasts
while ensuring a 100% hit rate. In contrast, existing methods need to solve an NLP problem
to achieve the same goal.

The remainder of this study is organized as follows. The independent fuzzification
approach is detailed in Section 2. A numerical example is given in Section 3 to illustrate the
applicability of the proposed methodology. The effects of fuzzifying various parameters
on the average range of fuzzy forecasts are also compared. This study is concluded in
Section 4. Some directions for future investigation are also provided.

2. Independent Fuzzification Approach

All parameters and variables in the proposed methodology are given in or approxi-
mated by triangular fuzzy numbers (TFNs).

2.1. FFNN Configuration

The FFNN considered in this study is an FFNN that has three layers: the input
layer, a single hidden layer, and the output layer. Inputs to the FFNN are indicated with
{zjp | p = 1~P; j = 1~n}. zjp is the normalized value of decision variable xjp:

zjp =
xjp −min

v
xvp

max
v

xvp −min
v

xvp
(1)
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To convert back to the original value,

xjp = U(zjp)
= zjp(max

v
xvp −min

v
xvp) + min

v
xvp

(2)

These inputs are propagated through the FFNN as follows. First, from the input layer
to the hidden layer, the following operations are performed:

Ĩh
jl =

P

∑
p=1

(w̃h
plzjp) (3)

ñh
jl = Ĩh

jl(−)θ̃
h
l

= (Ih
jl1 − θh

l3, Ih
jl2 − θh

l2, Ih
jl3 − θh

l1)
(4)

h̃jl =
1

1 + e−ñh
jl

(5)

where w̃h
pl is the connection weight between input node p and hidden-layer node l; l = 1~L.

θ̃h
l is the threshold on hidden-layer node l. h̃jl is the output from hidden-layer node l. (−)

denotes fuzzy subtraction. In Equation (5), the activation (or transformation) function is
the logistic sigmoid ac-tivation function that returns a value within [0, 1].

Outputs from the hidden layer are aggregated on the output node,

Ĩo
j =

L

∑
l=1

(w̃o
l (×)h̃jl) (6)

and then the network output õj =
(
oj1, oj2, oj3

)
is generated as

õj =
1

1 + e−ño
j

(7)

where
ño

j = Ĩo
j (−)θ̃o (8)

w̃o
l is the connection weight between hidden-layer node l and the output node. θ̃o is

the threshold on the output node. õj is unnormalized according to Equation (2) and then
compared with the actual value yj.

2.2. Deriving the Cores of Fuzzy Parameters

The training of the FFNN is composed of two stages. First, the cores of fuzzy param-
eters are derived by training the FFNN as a crisp FNN using the Levenberg–Marquardt
(LM) algorithm [25], so as to minimize the mean squared error (MSE). The optimal solution
is indicated with {wh∗

pl2, θh∗
l2 , wo∗

l2 , θo∗
2 | p = 1~P; l = 1~L}.

Subsequently, the lower and upper bounds of fuzzy parameters are to be determined,
so as to minimize the average range (AR) of fuzzy forecasts:

Min AR =
1
n

n

∑
j=1

(oj3 − oj1) (9)

However, deriving the optimal values of all fuzzy parameters at the same time is
a computationally intensive task [20]. As an alternative, the optimal values of fuzzy
parameters are derived independently as follows.
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2.3. Deriving the Optimal Value of θ̃o

The optimal value of θ̃o is to be derived. First, substituting Equation (8) into
Equation (7) gives

õj =
1

1 + e(θ̃
o(−) Ĩo

j )
(10)

which can be decomposed into

oj1 =
1

1 + e(θ
o
3−Io

j1)
(11)

oj3 =
1

1 + e(θ
o
1−Io

j3)
(12)

The other parameters are not fuzzified, so Io
j1 and Io

j3 are equal to Io∗
j2 that is a

fixed value:
oj1 =

1

1 + e(θ
o
3−Io∗

j2 )
(13)

oj3 =
1

1 + e(θ
o
1−Io∗

j2 )
(14)

To minimize AR, oj1 and oj3 should be maximized and minimized, respectively, which
correspond to the minimization of θo

3 and the maximization of θo
1. However, õj should

include aj (the actual value), therefore

oj1 ≤ aj ; j = 1 ∼ n (15)

oj3 ≥ aj ; j = 1 ∼ n (16)

In addition, oj1 ≤ o∗j2 ≤ oj3, so

oj1 ≤ min(o∗j2, aj) ; j = 1 ∼ n (17)

oj3 ≥ max(o∗j2, aj) ; j = 1 ∼ n (18)

Substituting Equation (13) into Constraint (17) gives

θo
3 ≥ Io∗

j2 + ln(
1

min(o∗j2, aj)
− 1) ; j = 1 ∼ n (19)

Therefore,

θo
3 ≥ max

j

(
Io∗
j2 + ln(

1
min(o∗j2, aj)

− 1)

)
(20)

To minimize θo
3,

θo∗
3 = max

j

(
Io∗
j2 + ln(

1
min(o∗j2, aj)

− 1)

)
(21)

Similarly, by substituting Equation (14) into Constraint (18), the following result can
be obtained:

θo∗
1 = min

j

(
Io∗
j2 + ln(

1
max(o∗j2, aj)

− 1)

)
(22)

Most past studies [17,22–24] stop at this step. The following discussion is new to the
body of knowledge.
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2.4. Deriving the Optimal Value of w̃o
l f

The optimal value of w̃o
l is to be derived when l = l f . Equation (6) can be decom-

posed into

Io
j1 = min

(
L

∑
l=1

(wo
l1hjl1),

L

∑
l=1

(wo
l1hjl3)

)
(23)

Io
j3 = max

(
L

∑
l=1

(wo
l3hjl1),

L

∑
l=1

(wo
l3hjl3)

)
(24)

because h̃jl is positive, while w̃o
l may be negative. Substituting Equations (23) and (24) into

Equations (13) and (14) gives

oj1 =
1

1 + e

(
θo

3−min(
L
∑

l=1
(wo

l1hjl1),
L
∑

l=1
(wo

l1hjl3))

) (25)

oj3 =
1

1 + e

(
θo

1−max(
L
∑

l=1
(wo

l3hjl1),
L
∑

l=1
(wo

l3hjl3))

) (26)

Only connection weights are fuzzified. The other fuzzy parameters are set to their
optimized cores as

oj1 = 1

1+e

(
θo∗
2 −min(

L
∑

l=1
(wo

l1h∗jl2),
L
∑

l=1
(wo

l1h∗jl2))
)

= 1

1+e

(
θo∗
2 −

L
∑

l=1
(wo

l1h∗jl2)
) (27)

oj3 = 1

1+e

(
θo∗
2 −max(

L
∑

l=1
(wo

l3h∗jl2),
L
∑

l=1
(wo

l3h∗jl2))
)

= 1

1+e

(
θo∗
2 −

L
∑

l=1
(wo

l3h∗jl2)
) (28)

Substituting Equations (27) and (28) respectively into Constraints (17) and (18), we obtain

L

∑
l=1

(wo
l1h∗jl2) ≤ θo∗

2 − ln(
1

min(o∗j2, aj)
− 1) ; j = 1 ∼ n (29)

L

∑
l=1

(wo
l3h∗jl2) ≥ θo∗

2 − ln(
1

max(o∗j2, aj)
− 1) ; j = 1 ∼ n (30)

Only wo
l f

is fuzzified, the other connection weights are equal to their optimized cores:

wo
l f 1h∗jl f 2 + ∑

l 6=l f

(wo∗
l2 h∗jl2) ≤ θo∗

2 − ln(
1

min(o∗j2, aj)
− 1) ; j = 1 ∼ n (31)

wo
l f 3h∗jl f 2 + ∑

l 6=l f

(wo∗
l2 h∗jl2) ≥ θo∗

2 − ln(
1

max(o∗j2, aj)
− 1) ; j = 1 ∼ n (32)

As a result,

wo
l f 1 ≤

θo∗
2 − ln( 1

min(o∗j2,aj)
− 1)− ∑

l 6=l f

(wo∗
l2 h∗jl2)

h∗jl f 2
; j = 1 ∼ n (33)
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wo
l f 3 ≥

θo∗
2 − ln( 1

max(o∗j2,aj)
− 1)− ∑

l 6=l f

(wo∗
l2 h∗jl2)

h∗jl f 2
; j = 1 ∼ n (34)

Therefore,

wo
l f 1 ≤ min

j


θo∗

2 − ln( 1
min(o∗j2,aj)

− 1)− ∑
l 6=l f

(wo∗
l2 h∗jl2)

h∗jl f 2

 (35)

wo
l f 3 ≥ max

j


θo∗

2 − ln( 1
max(o∗j2,aj)

− 1)− ∑
l 6=l f

(wo∗
l2 h∗jl2)

h∗jl f 2

 (36)

Increasing the fuzziness (i.e., width) of w̃o
l f

will make õj wider. Therefore, it is reason-
able to set

wo∗
l f 1 = min

j


θo∗

2 − ln( 1
min(o∗j2,aj)

− 1)− ∑
l 6=l f

(wo∗
l2 h∗jl2)

h∗jl f 2

 (37)

wo∗
l f 3 = max

j


θo∗

2 − ln( 1
max(o∗j2,aj)

− 1)− ∑
l 6=l f

(wo∗
l2 h∗jl2)

h∗jl f 2

 (38)

2.5. Deriving the Optimal Value of θ̃h
l

Substituting Equation (4) into Equation (5) gives

h̃jl =
1

1 + e(θ̃
h
l (−) Ĩh

jl)
(39)

which can be decomposed into

hjl1 =
1

1 + e(θ
h
l3−Ih

jl1)
(40)

hjl3 =
1

1 + e(θ
h
l1−Ih

jl3)
(41)

Substituting Equations (40) and (41) into Equations (23) and (24) leads to

Io
j1 = min

(
L

∑
l=1

wo
l1

1 + e(θ
h
l3−Ih

jl1)
,

L

∑
l=1

wo
l1

1 + e(θ
h
l1−Ih

jl3)

)
(42)

Io
j3 = max

(
L

∑
l=1

wo
l3

1 + e(θ
h
l3−Ih

jl1)
,

L

∑
l=1

wo
l3

1 + e(θ
h
l1−Ih

jl3)

)
(43)

that are substituted into Equations (13) and (14):

oj1 =
1

1 + e

θo
3−min(

L
∑

l=1

wo
l1

1+e
(θh

l3−Ih
jl1)

,
L
∑

l=1

wo
l1

1+e
(θh

l1−Ih
jl3)

)

 (44)
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oj3 =
1

1 + e

θo
1−max(

L
∑

l=1

wo
l3

1+e
(θh

l3−Ih
jl1)

,
L
∑

l=1

wo
l3

1+e
(θh

l1−Ih
jl3)

)

 (45)

The following requirements should be met:

1

1 + e

θo
3−min(

L
∑

l=1

wo
l1

1+e
(θh

l3−Ih
jl1)

,
L
∑

l=1

wo
l1

1+e
(θh

l1−Ih
jl3)

)

 ≤ min(o∗j2, aj) ; j = 1 ∼ n (46)

1

1 + e

θo
1−max(

L
∑

l=1

wo
l3

1+e
(θh

l3−Ih
jl1)

,
L
∑

l=1

wo
l3

1+e
(θh

l1−Ih
jl3)

)

 ≥ max(o∗j2, aj) ; j = 1 ∼ n (47)

that are equivalent to

min

(
L

∑
l=1

wo
l1

1 + e(θ
h
l3−Ih

jl1)
,

L

∑
l=1

wo
l1

1 + e(θ
h
l1−Ih

jl3)

)
≤ θo

3 − ln(
1

min(o∗j2, aj)
− 1) ; j = 1 ∼ n (48)

max

(
L

∑
l=1

wo
l3

1 + e(θ
h
l3−Ih

jl1)
,

L

∑
l=1

wo
l3

1 + e(θ
h
l1−Ih

jl3)

)
≥ θo

1 − ln(
1

max(o∗j2, aj)
− 1) ; j = 1 ∼ n (49)

Only θh
l f

is fuzzified, the other fuzzy parameters are set to their optimized cores:

min

 wo∗
l f 2

1 + e
(θh

l f 3−Ih∗
jl f 2)

+ ∑
l 6=l f

wo∗
l2

1 + e(θ
h∗
l2 −Ih∗

jl2)
,

wo∗
l f 2

1 + e
(θh

l f 1−Ih∗
jl f 2)

+ ∑
l 6=l f

wo∗
l2

1 + e(θ
h∗
l2 −Ih∗

jl2)

 ≤ θo∗
2 − ln(

1
min(o∗j2, aj)

− 1) ; j = 1 ∼ n (50)

max

 wo∗
l f 2

1 + e
(θh

l f 3−Ih∗
jl f 2)

+ ∑
l 6=l f

wo∗
l2

1 + e(θ
h∗
l2 −Ih∗

jl2)
,

wo∗
l f 2

1 + e
(θh

l f 1−Ih∗
jl f 2)

+ ∑
l 6=l f

wo∗
l2

1 + e(θ
h∗
l2 −Ih∗

jl2)

 ≥ θo∗
2 − ln(

1
max(o∗j2, aj)

− 1) ; j = 1 ∼ n (51)

If wo∗
l f 2 ≥ 0,

wo∗
l f 2

1 + e
(θh

l f 3−Ih∗
jl f 2)

+ ∑
l 6=l f

wo∗
l2

1 + e(θ
h∗
l2 −Ih∗

jl2)
≤ θo∗

2 − ln(
1

min(o∗j2, aj)
− 1) ; j = 1 ∼ n (52)

wo∗
l f 2

1 + e
(θh

l f 1−Ih∗
jl f 2)

+ ∑
l 6=l f

wo∗
l2

1 + e(θ
h∗
l2 −Ih∗

jl2)
≥ θo∗

2 − ln(
1

max(o∗j2, aj)
− 1) ; j = 1 ∼ n (53)

As a result,

θh
l f 3 ≥ ln(

wo∗
l f 2

θo∗
2 − ln( 1

min(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2 ; j = 1 ∼ n (54)

θh
l f 1 ≤ ln(

wo∗
l f 2

θo∗
2 − ln( 1

max(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2 ; j = 1 ∼ n (55)

Therefore,

θh
l f 1 ≤ min

j

ln(
wo∗

l f 2

θo∗
2 − ln( 1

max(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2

 (56)
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θh
l f 3 ≥ max

j

ln(
wo∗

l f 2

θo∗
2 − ln( 1

min(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2

 (57)

To minimize the fuzziness of θ̃h
l f

,

θh∗
l f 1 = min

j

ln(
wo∗

l f 2

θo∗
2 − ln( 1

max(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2

 (58)

θh∗
l f 3 = max

j

ln(
wo∗

l f 2

θo∗
2 − ln( 1

min(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2

 (59)

Otherwise,

wo∗
l f 2

1 + e
(θh

l f 1−Ih∗
jl f 2)

+ ∑
l 6=l f

wo∗
l2

1 + e(θ
h∗
l2 −Ih∗

jl2)
≤ θo∗

2 − ln(
1

min(o∗j2, aj)
− 1) ; j = 1 ∼ n (60)

wo∗
l f 2

1 + e
(θh

l f 3−Ih∗
jl f 2)

+ ∑
l 6=l f

wo∗
l2

1 + e(θ
h∗
l2 −Ih∗

jl2)
≥ θo∗

2 − ln(
1

max(o∗j2, aj)
− 1) ; j = 1 ∼ n (61)

As a result,

θh
l f 1 ≥ ln(

wo∗
l f 2

θo∗
2 − ln( 1

min(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2 ; j = 1 ∼ n (62)

θh
l f 3 ≤ ln(

wo∗
l f 2

θo∗
2 − ln( 1

max(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2 ; j = 1 ∼ n (63)

Therefore,

θh
l f 1 ≥ max

j

ln(
wo∗

l f 2

θo∗
2 − ln( 1

min(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2

 (64)

θh
l f 3 ≤ min

j

ln(
wo∗

l f 2

θo∗
2 − ln( 1

max(o∗j2,aj)
− 1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −Ih∗
jl2)

− 1) + Ih∗
jl f 2

 (65)

To minimize the fuzziness of θ̃h
l f

, θh∗
l f 1 and θh∗

l f 3 should be maximized and minimized,

respectively, but they are still bounded by θh∗
l f 2. Therefore,

θh∗
l f 1 = θh∗

l f 2 (66)

θh∗
l f 3 = θh∗

l f 2 (67)
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2.6. Deriving the Optimal Value of w̃h
pl

Equation (3) can be decomposed into

Ih
jl1 =

P

∑
p=1

(wh
pl1zjp) (68)

Ih
jl3 =

P

∑
p=1

(wh
pl3zjp) (69)

Substituting Equations (68) and (69) into Equations (46) and (47) gives

oj1 =
1

1 + e

θo
3−min

 L
∑

l=1

wo
l1

1+e
(θh

l3−
P
∑

p=1
(wh

pl1zjp))
,

L
∑

l=1

wo
l1

1+e
(θh

l1−
P
∑

p=1
(wh

pl3zjp))




(70)

oj3 =
1

1 + e

θo
1−max

 L
∑

l=1

wo
l3

1+e
(θh

l3−
P
∑

p=1
(wh

pl1zjp))
,

L
∑

l=1

wo
l3

1+e
(θh

l1−
P
∑

p=1
(wh

pl3zjp))




(71)

The following requirements need to be met:

1

1 + e

θo
3−min

 L
∑

l=1

wo
l1

1+e
(θh

l3−
P
∑

p=1
(wh

pl1zjp))
,

L
∑

l=1

wo
l1

1+e
(θh

l1−
P
∑

p=1
(wh

pl3zjp))



≤ min(o∗j2, aj) ; j = 1 ∼ n (72)

1

1 + e

θo
1−max

 L
∑

l=1

wo
l3

1+e
(θh

l3−
P
∑

p=1
(wh

pl1zjp))
,

L
∑

l=1

wo
l3

1+e
(θh

l1−
P
∑

p=1
(wh

pl3zjp))



≥ max(o∗j2, aj) ; j = 1 ∼ n (73)

that are equivalent to

min

 L

∑
l=1

wo
l1

1 + e
(θh

l3−
P
∑

p=1
(wh

pl1xjp))

,
L

∑
l=1

wo
l1

1 + e
(θh

l1−
P
∑

p=1
(wh

pl3xjp))

 ≤ θo
3 − ln(

1
min(o∗j2, aj)

− 1) ; j = 1 ∼ n (74)

max

 L

∑
l=1

wo
l3

1 + e
(θh

l3−
P
∑

p=1
(wh

pl1xjp))

,
L

∑
l=1

wo
l3

1 + e
(θh

l1−
P
∑

p=1
(wh

pl3xjp))

 ≥ θo
1 − ln(

1
max(o∗j2, aj)

− 1) ; j = 1 ∼ n (75)

Only wh
p f l f

is fuzzified, the other fuzzy parameters are set to their optimized cores:

min


wo∗

l f 2

1+e

(θh∗
l f 2−wh

p f l f 1xjp f
− ∑

p 6=p f
(wh∗

pl f 2xjp))
+ ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))
,

wo∗
l f 2

1+e

(θh∗
l f 2−wh

p f l f 3xjp f
− ∑

p 6=p f
(wh∗

pl f 2xjp))
+ ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

 ≤ θo∗
2 − ln(

1
min(o∗j2, aj)

− 1) ; j = 1 ∼ n (76)
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max


wo∗

l f 2

1+e

(θh∗
l f 2−wh

p f l f 1xjp f
− ∑

p 6=p f
(wh∗

pl f 2xjp))
+ ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))
,

wo∗
l f 2

1+e

(θh∗
l f 2−wh

p f l f 3xjp f
− ∑

p 6=p f
(wh∗

pl f 2xjp))
+ ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

 ≥ θo∗
2 − ln(

1
max(o∗j2, aj)

− 1) ; j = 1 ∼ n (77)

If wo∗
l f 2 ≥ 0,

wo∗
l f 2

1 + e
(θh∗

l f 2−wh
p f l f 3xjp f

− ∑
p 6=p f

(wh∗
pl f 2xjp))

+ ∑
l 6=l f

wo∗
l2

1 + e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

≥ θo∗
2 − ln(

1
max(o∗j2, aj)

− 1) ; j = 1 ∼ n (78)

As a result,

wh
p f l f 1 ≤

θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

min(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f

; j = 1 ∼ n (79)

wh
p f l f 3 ≥

θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

max(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f

; j = 1 ∼ n (80)

Therefore,

wh
p f l f 1 ≤ min

j



θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

min(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f


(81)

wh
p f l f 3 ≥ max

j



θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

max(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f


(82)

To minimize the fuzziness of w̃h
p f l f

,

wh∗
p f l f 1 = min

j



θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

min(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f


(83)
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wh∗
p f l f 3 = max

j



θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

max(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f


(84)

Otherwise,

wo∗
l f 2

1 + e
(θh∗

l f 2−wh
p f l f 3xjp f

− ∑
p 6=p f

(wh∗
pl f 2xjp))

+ ∑
l 6=l f

wo∗
l2

1 + e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

≤ θo∗
2 − ln(

1
min(o∗j2, aj)

− 1) ; j = 1 ∼ n (85)

wo∗
l f 2

1 + e
(θh∗

l f 2−wh
p f l f 1xjp f

− ∑
p 6=p f

(wh∗
pl f 2xjp))

+ ∑
l 6=l f

wo∗
l2

1 + e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

≥ θo∗
2 − ln(

1
max(o∗j2, aj)

− 1) ; j = 1 ∼ n (86)

As a result,

wo∗
l f 2

1 + e
(θh∗

l f 2−wh
p f l f 3xjp f

− ∑
p 6=p f

(wh∗
pl f 2xjp))

+ ∑
l 6=l f

wo∗
l2

1 + e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

≤ θo∗
2 − ln(

1
min(o∗j2, aj)

− 1) ; j = 1 ∼ n (87)

wo∗
l f 2

1 + e
(θh∗

l f 2−wh
p f l f 1xjp f

− ∑
p 6=p f

(wh∗
pl f 2xjp))

+ ∑
l 6=l f

wo∗
l2

1 + e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

≥ θo∗
2 − ln(

1
max(o∗j2, aj)

− 1) ; j = 1 ∼ n (88)

Therefore,

wh
p f l f 3 ≥ max

j



θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

min(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f


(89)

wh
p f l f 1 ≤ min

j



θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

max(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f


(90)

To minimize the fuzziness of w̃h
p f l f

,

wh∗
p f l f 3 = max

j



θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

min(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f


(91)
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wh∗
p f l f 1 = min

j



θh∗
l f 2 − ln(

wo∗
l f 2

θo∗
2 −ln( 1

max(o∗j2,aj)
−1)− ∑

l 6=l f

wo∗
l2

1+e
(θh∗

l2 −
P
∑

p=1
(wh∗

pl2xjp))

− 1)− ∑
p 6=p f

(wh∗
pl f 2xjp)

xjp f


(92)

3. An Illustrative Case Using FFNN(3, 6, 1)

The problem of predicting the time to replace a computer numeric control (CNC) tool
based on the monitoring results of three sensors is adopted to illustrate the ap-plicability of
the proposed methodology. Therefore, P = 3. A small-scale problem is used, so that the
constructed FFNN will not be too large, and the effect of fuzzifying each parameter can
be more obvious. The collected data in-cludes ninety records, as shown in Table 1. The
collected data are first normalized (see Table 2).

Table 1. Collected data.

j xj1 xj2 xj3 yj

1 265 30 2028 468

2 224 40 2018 507

3 173 52 2641 811

4 151 36 1837 468

5 322 55 2274 776

6 167 56 2508 926

90 311 39 2170 468

Min 125 29 1173 463

Max 364 57 3269 967

Table 2. Normalized data.

j zj1 zj2 zj3 aj

1 0.585 0.036 0.408 0.010

2 0.415 0.392 0.403 0.087

3 0.199 0.835 0.700 0.691

4 0.111 0.267 0.317 0.010

5 0.825 0.942 0.525 0.621

6 0.174 0.962 0.637 0.919

90 0.780 0.340 0.476 0.010

The FFNN has a hidden layer with six nodes. Therefore, it is indicated with FFNN(3,
6, 1) afterwards. There is no absolute rule for determining the optimal num-ber of nodes
in the hidden layer. In many studies, it has been shown that a hidden layer with twice
the number of inputs is sufficient to fit a complex nonlinear relationship [26–28]. The first
sixty records are used to train the FFNN, while the rest records are left for evaluating the
forecasting performance.

First, the FFNN(3, 6, 1) is regarded as a crisp FNN(3, 6, 1) and trained using the LM
algorithm to derive the cores of fuzzy parameters. Other training algorithms, such as
the gradient descent (GD) algorithm, the Broyden−Fletcher−Goldfarb−Shanno (BFGS)
quasi-Newton algorithm, the GD algorithm with momentum and adaptive learning rate
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(GDX), and the resilient backpropagation (RP) algorithm [25], are also applicable. However,
this research aims to improve the forecasting precision, rather than the forecasting accu-
racy. The choice of the training algorithm does not affect the application of the proposed
methodology.

The optimal values of cores are summarized in Table 3. The crisp forecasts for the
training data based on the cores of fuzzy parameters are shown in Figure 1. The forecasting
accuracy, measured in terms of root mean squared error (RMSE), is 0.084 (normalized
value). Although the forecasting accuracy is satisfactory, there are many records with
considerable deviations between actual values and crisp forecasts, showing the necessity
of estimating the range of the actual value. To this end, the ef-fects of fuzzifying four
parameters, θo, wo

1, θh
1 , and wh

11, are compared. There are four types of parameters in the
FNN(3, 6, 1): the connection weights between the input layer and the hidden layer, the
thresholds on the nodes of the hidden layer, the connection weights between the hidden
layer and the output lay-er, and the threshold on the node of the output layer. In this way,
the effects of fuzzi-fying all types of parameters can be observed and compared.

Table 3. Optimized cores of fuzzy parameters.

wh∗
112 wh∗

122 wh∗
132 wh∗

142 wh∗
152 wh∗

162 wh∗
212 wh∗

222 wh∗
232 wh∗

242

2.034 3.410 −0.349 −2.615 −2.557 1.213 3.912 −1.746 1.813 3.187

wh∗
252 wh∗

262 wh∗
312 wh∗

322 wh∗
332 wh∗

342 wh∗
352 wh∗

362 θh∗
12 θh∗

22

−2.090 3.082 3.733 −0.424 3.964 3.831 −4.754 4.911 3.222 5.251

θh∗
32 θh∗

42 θh∗
52 θh∗

62 wo∗
12 wo∗

22 wo∗
32 wo∗

42 wo∗
52 wo∗

62

9.183 2.293 2.569 4.785 4.844 4.740 −2.641 3.727 −4.905 3.668

θo∗
2

9.475

Figure 1. Crisp forecasts based on the cores of fuzzy parameters.

First, θo is fuzzified to minimize the average range of fuzzy forecasts. To this end, the
lower and upper bounds of θ̃o are to be derived. For this purpose, Equations (21) and (22)
are applied. As a result, θo∗

1 = 4.646 and θo∗
3 = 11.690. Therefore, θ̃o = (4.646, 9.475, 11.690).

The estimated ranges by fuzzifying this parameter are shown in Figure 2. In this case, all
ranges contain the corresponding actual values for the training data by fuzzifying θo. The
average range of fuzzy forecasts is 303.9 (unnormalized value).
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Figure 2. Estimated ranges by fuzzifying θo.

The second fuzzified network parameter is wo
1. To this end, Equations (37) and (38)

are applied to derive the lower and upper bounds of w̃o
1. The result is w̃o

1 = (1.892, 4.844,
66.88). The ranges estimated by fuzzifying wo

1 are shown in Figure 3. All actual values in
the training data are contained in the corresponding fuzzy forecasts. However, the average
range widens to 455.4.

Subsequently, θh
1 is fuzzified by deriving its lower and upper bounds according to

Equations (58) and (59), since wo∗
12 is positive. The optimal solution is θ̃h

1 = (−6.477, 3.222,
5.798). The estimated ranges of actual values are shown in Figure 4. However, it is
not possible for all fuzzy forecasts to contain the corresponding actual values solely by
fuzzifying θh

1 . The hit rate is only 67%. With such a low hit rate, the average range is
narrowed to only 93.5.

Figure 3. Ranges estimated by fuzzifying wo
1.
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Figure 4. Estimated ranges after fuzzifying θh
1 .

The last parameter fuzzified in the experiment is wh
11. Since wo∗

12 ≥ 0, Equations (84)
and (85) are applied to derive the lower and upper bounds of w̃h

11. The result is w̃h
11 = (−84.42,

2.034, 247.4). The ranges of actual values estimated by fuzzifying this parameter are sum-
marized in Figure 5. The hit rate is only 65%, accompanied by an average range of 160.4.

Figure 5. Ranges of actual values estimated by fuzzifying wh
11.

From the experimental results, the following discussion is made:

1. Fuzzifying some network parameters may not guarantee that all actual values are
contained in the estimated ranges.

2. In contrast, fuzzifying a network parameter closer to the output node is more like to
ensure a 100% hit rate.

3. Both the ranges estimated by fuzzifying θo and wo
1 contain the actual value. Therefore,

the fuzzy intersection (FI) of the ranges also contain the actual value, which further
narrows the range of the actual value.

4. After applying the trained FFNN(3, 6, 1) to the test/unlearned data, the fore-casting
precision levels achieved by fuzzifying various network parameters are evaluated and
compared in Table 4. As expected, the hit rate has decreased compared to the results
when applied to the training data, but is still acceptable. Fuzzifying wo

1 achieves the
highest hit rate, while fuzzifying θh

1 minimizes the average range of fuzzy forecasts.
5. The effectiveness (i.e., forecasting precision) and efficiency of the proposed method-

ology is compared with those of some existing methods in Table 5. All methods are
implemented using MATLAB 2017a on a PC with an i7-7700 CPU of 3.6 GHz and 8
GB of RAM. Obviously, the proposed methodology maximized the hit rate for the test
data without considerably widening the average range. In addition, the proposed
methodology is also the most effi-cient method.
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Table 4. Forecasting precision levels achieved by fuzzifying various network parameters.

Fuzzifying θo Fuzzifying wo
1 Fuzzifying θh

1 Fuzzifying wh
11

Hit Rate 97% 100% 63% 63%

Average Range 367.3 457.9 122.7 228.5

Table 5. Comparing the effectiveness and efficiency of the proposed methodology with those of
existing methods.

Method Hit Rate Average Range Execution Time (sec)

FFNN-NLP [18] 82% 407 168

FFNN-GP [20] 76% 482 46

FFNN (only θ̃o fuzzified) [22] 97% 367 <1

The proposed methodology wo
1 fuzzified) 100% 458 <1

4. Conclusions and Future Research Directions

Many complex FFNNs have been constructed to improve the forecasting accuracy.
Even so, a forecast is rarely equal to the actual value. In addition, the range of a fuzzy
forecast generated by prevalent FFNNs does not necessarily include the actual value. In
order to solve these problems, this research explores how to fuzzify the parameters of a FNN
so that every fuzzy forecast generated by the FFNN contains the actual value. To achieve
this goal, most previous studies have solved an NLP problem, which was computationally
challenging. In contrast, this research proposes an independent fuzzification approach to
fuzzify the parameters of a FNN independently. In this way, the optimal value of each
fuzzy parameter can be derived theoretically, thereby enabling the construction of a precise
FFNN.

After applying the proposed methodology to an illustrative case FFNN(3, 6, 1), the
following conclusions are drawn:

1. Fuzzifying θh
1 and wh

11 alone cannot guarantee that all fuzzy forecasts contain corre-
sponding actual values.

2. Fuzzifying θo and wo
1 has a higher chance of achieving a 100% hit rate.

3. Parameters closer to the output node have a greater impact on the forecast-ing preci-
sion, and should be fuzzified earlier.

4. Fuzzifying parameters far away from the output node cannot guarantee a 100% hit
rate. Therefore, multiple such parameters should be fuzzified at the same time.

The FFNN discussed in this study is an FFNN with a single hidden layer. The pro-
posed methodology can be extended to deal with a deep FFNN with multiple hidden
layers [29–31] or recurrent layers [32]. In this case, the parameters of the output layer will
be fuzzified first, then the parameters of the hidden layer closest to the output layer, and
so on. In addition, FI can also be applied to aggregate the estimated ranges by fuzzifying
various parameters (with 100% hit rates) to further enhance the fore-casting precision.
These constitute some direction for future research.
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