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Abstract: The apparel and textile industry are known as a key sector in the structure of many
economies around the world. In particular, the influence of foreign outsourcing manufacturers on
textile supply chains has been recognized for decades. The outsourcing manufacturers are multi-
criteria selected and changed by supply chain managers from time to time in search of the most
efficient state for the entire supply chain. This is a known concern with the community and there
is large interest in studying the apparel and textile outsourcing manufacturer problems. Aiming at
reinforcing the selection methods, this study develops a three-layer fuzzy multiple criteria decision-
making approach that leverages the strengths from the original methods. In turn through the layers,
the hierarchy and weights of criteria and sub-criteria, which includes sustainability factors, are
determined by the fuzzy analytic hierarchy process (FAHP) method. Next, the results from the fuzzy
technique for order of preference by similarity to ideal solution (FTOPSIS) process determine the
outsourcing manufacturer’s performance via expert linguistics judgments. Then, data envelopment
analysis (DEA) models are applied for the purpose of evaluating the outsourcing manufacturer’s
overall performance along with other quantitative effectiveness. This approach is applied to the
problem of selecting the apparel and textile outsourcing manufacturers in Vietnam, one of the places
that makes the necessity of this problem grow. The third position in the world apparel and textile
export ranking, as well as the trend of shifting labor-intensive production systems to Southeast Asia
make the necessity of Vietnam outsourcing manufacturer selection problem grow. The results of
this study also classified manufacturers into groups as a support for selection decisions. Analysis
of quantitative uncertainties using simulation tools and forecasting techniques can strengthen the
solutions in future related studies.

Keywords: fuzzy number; sustainable supply chain; apparel and textile industry; MCDM; DEA

1. Introduction

During the COVID-19 pandemic, there are still positive signals in the apparel and
textile (A&T) industry with an expected increase in demand of over 10% from 2020 to 2021,
according to the World Bank’s global market report [1]. As a result, A&T supply chains
are believed to remain viable and contribute significantly to economies around the world.
In which, A&T outsourcing manufacturers (A&TOMs) are the key link to optimize the
efficiency of these chains. The efficiency that manufacturers offer is measured in terms of
economic benefits and capacity flexibility [2]. The advantages of low labor costs in develop-
ing countries have always been considered an important strength of foreign A&TOMs. In
addition to economic advantages, there are a few other metrics to evaluate the effectiveness
of A&TOMs, such as quality control, services, delivery processes, etc. Foreign A&TOMs
with low production costs, tariff advantages but limited logistics services or quality com-
mitments will cause risks of clogging the supply chain. Yet, the impact on the environment
also needs to be considered in this regard as a requirement of sustainable development.
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Therefore, choosing the right A&TOMs has a major influence on the viable performance of
multinational supply chains. Research on those metrics has a long tradition. A number of
studies and reviews have been undertaken to explore the criteria for the A&TOMs selection
problem [3]. These criteria include qualitative or quantitative, numerical or linguistics,
stochastic or deterministic categories. Several multiple criteria decisions making (MCDM)
methods have been successfully utilized for this purpose. The oldest and most well estab-
lished are the analytic hierarchy process (AHP), the technique for order of preference by
similarity to ideal solution (TOPSIS), and the analytic network process (ANP) [4–6]. These
methods have been used extensively for solving the problem as weighting and alterna-
tive evaluation methods. For efficiency analyses, the data envelopment analysis (DEA)
is a mature technology of popular choice [7,8]. In addition, the meta-review presented
by Daraio et al. identified gaps and overlaps in empirical surveys in more than twenty
areas [9]. In addition, fuzzy logic theory is often used for the purpose of strengthening
the above methods when applied under uncertain conditions [10–12]. However, no single
approach or methodology appears to be universally suitable for both quantitative and
qualitive criteria A&TOMs selection problem under uncertainty environment. This moti-
vates the need for an alternative approach where the mentioned methods’ strengths are
utilized in a chained manner as three-layer. At the first layer, the fuzzy analytic hierarchy
process (FAHP) method is used to determine the selection criteria and sub-criteria, as well
as their weights. Then, the expert-based linguistic performance of A&TOMs was calculated
using the fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS)
process. After defuzzied the results obtained at layer two, the overall performance is
analyzed by DEA models along with other objective arithmetic inputs and outputs, such
as cost of goods sold, total assets, and gross profit. Finally, A&TOMs are categorized into
different groups based on the results of DEA models to aid in selection decisions. This
three-layer decision support framework is our original contribution.

As the second contribution, the results of this research have been embodied in a
practical application. In the A&T outsourcing industry, Vietnam is currently ranked third in
the world after China and Bangladesh. In addition, other studies also show that Vietnam is
one of the top destinations for A&T production systems that have shifted from China [13].
Therefore, decisions to select A&TOMs for supply chains are believed to emerge drastically
in Vietnam. The three-layer framework proposed in this study has been applied to the
problem of selecting A&TOMs in Vietnam to provide a valuable reference for global A&T
supply chain managers.

The structure of this paper remaining parts includes a summary of related studies
in Section 2, a detailed presentation of the framework in Section 3, and a description
and discussion of the numerical results in Section 4. Finally, the article is closed with the
conclusions in Section 5.

2. Literature Review

This section outlines the existing selection criteria and methods available in literature
for A&TOMs selection problem. In the last decade, various studies have determined the
criteria and sub-criteria for this problem as shown in Table 1. Criteria related to cost and
quality almost always appear in studies as a mandatory requirement for the selection
of A&TOMs. In addition, the research also considers the production services, logistics
activities, business management, environmentally friendly production systems and tech-
nology of A&TOMs as the main selection criteria. Sub-criteria that are related to costs are
often referred to by scholars as cost categories and payment convenience. Although Inter-
national Organization for Standardization (ISO) certifications, quality control statistical
performance, and problem-solving support solutions are quality-related sub-criteria. As
for the main criterion related to logistics activities, studies show that the sub-criteria mainly
revolve around the ability to deliver goods accurately, in both quantity and time. Efficiency
and quality of service activities, such as customer service, professionalism, production
flexibility is considered as sub-criteria related to production and sales services. In addition,
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to assess the environmental impact of production systems, sub-criteria on emissions, certifi-
cates of environmental standards and environmentally friendly materials are introduced in
the studies.

Table 1. A&TOMs selection criteria.

No. Authors Year

Criteria

C
ost

Q
uality

Logistics
Service

Production/Sale
Service

Technology

B
usiness/B

randing
M

anagem
ent

Environm
ental

Production
System

1 Çebi and Bayraktar [14] 2003 X X X

2 Shen J. et al. [6] 2012 X X X X X X

3 Prusak et al. [15] 2013 X X X X X

4 Dursun, M. and Karsak, E.E. [16] 2013 X X X X

5 Karsak, E.E. and Dursun, M. [17] 2015 X X X X

6 Banaeian, N. et al. [18] 2015 X X X X

7 Jing, S.L. [19] 2018 X X X X

8 Nong, N.-M.T., and Ho, P.T. [3] 2019 X X X X X

9 Bakhat, R. and Rajaa, M. [20] 2019 X X X X

10 Li, Y. et al. [21] 2019 X X X X X

11 Ulutaş, A. [22] 2019 X X X X X

12 Nakiboglu, G. and Bulgurcu, B. [23] 2020 X X X X

13 Govindan, K. et al. [24] 2020 X X X

14 Yang, Y. and Wang, Y. [25] 2020 X X X X X

15 Ulutaş, A. et al. [26] 2021 X X X X

As summarized in Table 2, several methods for alternative selection problems have
been reported in the literature, almost the techniques in the literature are from the MCDM
field, such as FAHP [5,14,15,18,27–40], FANP [6,27,37,41], FTOPSIS [4,11,29,36,40,42,43],
and others [6,18,24,35,43,44]. This problem may have been partly addressed by previous
studies by DEA models [5,27,32,33,35,37] and mathematical optimization models [24,45].
These methods are mainly combined by the authors or applied at the same time to compare
results. For example, Rashidi compared the results when applying two fuzzy TOPSIS
and DEA methods when making supplier selection decisions to rank and evaluate these
suppliers from sustainability criteria. The authors want to compare and select the best
suppliers from any deviation from the predefined standards in the suppliers from the results
of the evaluation [10]. To solving the difficult problem of material selection, Mousavi-Nasab
used the MCDM model to provide an extensive assessment. The authors uses two very
effective MCDM methods, TOPSIS and the complex proportional assessment (COPRAS),
to rank materials due to their reasonable correlation and superior features compared to
other studies. On the other hand, DEA can be used on the basis of the known rule of
thumb as an aid to solving the material selection problem [43]. In the process industry,
Esmaeil Zarei develops a fuzzy coupled multi-criteria decision model to quantify and
the resilience was evaluated using the fuzzy analytical hierarchical process and the fuzzy
multi-criteria optimization and compromise solution technique (FVIKOR). The weights
of the resilience indicators were determined by the FAHP method, while the resilience
performance of different operational units was ranked via F-VIKOR method [46]. Wang
et al. used the MCDM model combined with simple additive weighting (SAW), TOPSIS,
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and gray relation analysis (GRA). Ratings that are unified by multiple MCDM methods
are more consistent than ratings that are produced by a single MCDM method. The
proposed method is demonstrated in a practical utility technique with the participation
of an integrated circuit packaging company [47]. To evaluate green suppliers, Gizem ifi
and Glin Bykzkan proposed a recent combined analysis approach based on the FTOPSIS,
FANP, and fuzzy decision making trial and evaluation laboratory (FDEMATEL) techniques
to support strategic decisions. Furthermore, the FTOPSIS method has effectively selected
an alternative to the ideal solution of this problem [48].

Table 2. Alternative selection MCDM method applications.

No. Authors Year

Methods

A
H

P

A
N

P

T
O

PSIS

O
ther

M
C

D
M

D
EA

M
athem

atical
M

odel

1 Çebi and Bayraktar [14] 2003 X

2 Ravi, V. et al. [27] 2005 X X

3 Lee et al. [28] 2010 X X

4 Chin-Nung, Liao [11] 2012 X X

5 Shen et al. [6] 2012 X X

6 Prusak et al. [15] 2013 X

7 Yu et al. [5] 2013 X X

8 Jayant, A. et al. [29] 2014 X X

9 Taylan et al. [4] 2014 X X

10 Oztaysi, B. [42] 2014 X X

11 Tavana, M. et al. [41] 2015 X X

12 Banaeian, N. et al. [18] 2015 X X

13 Mangla et al. [30] 2015 X

14 Bouzon, M. et al. [31] 2016 X

15 Li et al. [32] 2016 X X

16 Otay et al. [33] 2017 X X

17 Mousavi-Nasab et al. [43] 2017 X X X

18 Zarbakhshnia et al. [44] 2018 X

19 Mushtaq, F. et al. [34] 2018 X

20 Suganthi, L. et al. [35] 2018 X X X

21 Azimifard et al. [36] 2018 X X

22 Wang et al. [37] 2019 X X X

23 Govindan, K. et al. [24] 2019 X X

24 Rashidi et al. [10] 2019 X X

25 Wang et al. [49] 2019 X X

26 Ebrahimi et al. [50] 2020 X

27 Ghavami et al. [38] 2020 X X

28 Liu et al. [39] 2020 X X

29 Solangi et al. [40] 2021 X X

30 Carvalho et al. [51] 2021 X

31 This paper 2021 X X X
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From different methodologies used in previous studies, it can be seen that AHP, TOP-
SIS, and DEA methods are the three most prominent and used in different research fields
due to their versatility form of their application. AHP is one of the effective mathematical
weighting methods to determine the rank of dissimilar attributes with respect to the target.
TOPSIS method is one of the widely used MCDM methods in research. To strengthen the
solutions by combining the advantages of the above three methods with fuzzy theory, this
study proposes a three-layer approach structured with FAHP, FTOPSIS, and DEA models
for the A&TOM selection problems.

3. Methodology
3.1. Methodology Description

This study evaluated and selected A&TOMs in Vietnam, in addition to the criteria of
qualitive and quantitative criteria. This assessment is based on both subjective linguistic
judgment of the experts and objective arithmetic performance. As shown in Figure 1, the
study proposed a multi-layer decision making approach for A&TOMs efficiency assessment.
In layer 1, the FAHP is used to solve the complex problems of early-stage decision-making.
There are four main criteria and twelve sub-criteria are considered for A&TOMs as follows:
financial resources (Investment capital and economic ability, raw material prices, freight
costs), the quality (ISO standards geographical, technical support, reaction on problem),
service (on time delivery, production capacity, customer service), technology criteria (pro-
duction technology, environmentally friendly systems, improvement efforts). The FTOPSIS
is used for rating all alternatives in the layer 2. Through the first and second layers, the
expert-based performance (EP) of the A&TOMs were determined. However, these scores
also include the opinions and subjective linguistics assessments of experts. To strengthen
the solution, DEA models are used to measure the efficiency of DMUs through objective
arithmetic performance. In layer 3, DEA models such as the Charnes, Cooper, and Rhodes
(CCR) model [52], Banker, Charnes, and Cooper (BCC) model [53], slacks-based measure
(SBM) [54], and super SBM [55] in constraint returns-to-scale environment are applied for
rating and potential suppliers.
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3.2. Fuzzy Set Theory

To handle the uncertainty, the triangular fuzzy number (TFN) is defined as (l, m, u)
representing the most pessimistic, possible and optimistic value, as indicated in Equation (1)
and is shown in Figure 2.

µ

(
g
Ñ

)
=


(g−l)
(m−l) , ∀l < g ≤ m
(u−g)
(u−m)

, ∀m < g ≤ u
0, elsewhere

(1)
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As shown in Equation (2), the triangular fuzzy number is given as:

Ñ =
(

NL(y), NR(y)
)
= [l + (m− l)y, u + (m− u)y], y ∈ [0, 1] (2)

where NL(y), NR(y) denotes two side of the TFN.

3.3. Fuzzy Analytical Hierarchy Process (FAHP)

As an uncertainty extension of AHP method, the FAHP method uses quantified
pair comparisons with a priority scale of one-nine to establish priorities for each level of
the hierarchy as Table 3. In addition to that, FAHP also allows hierarchies and complex
relationships between their elements with six-step procedure below.

Table 3. Importance intensity and the position of TFN are distributed.

Importance Intensity Definition Triangular Fuzzy Number

1 Equal importance (1, 1, 1)
2 Lightly importance (1, 2, 3)
3 Weak importance (2, 3, 4)
4 Preferable (3, 4, 5)
5 Importance (4, 5, 6)
6 Fairly importance (5, 6, 7)
7 Highly importance (6, 7, 8)
8 Strongly importance (7, 8, 9)
9 Extremely importance (8, 9, 9)

Step 1: As shown in Equation (3), the fuzzy pairwise comparison matrix M̃k is
constructed with n criteria. In which, ũk

ij presents the importance degree of the criterion ith
over the jth criterion in the kth decision maker judgment.

M̃k =

 ũk
11 · · · ũk

1n
...

. . .
...

ũk
n1 · · · ũk

nn

 (3)
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Step 2: The aggregated fuzzy pairwise comparison matrix M̃ is calculated as Equation (4).
In which, K is the number of decision makers or experts.

M̃ =

 ũ11 · · · ũ1n
...

. . .
...

ũn1 · · · ũnn

 where ũij =
∑K

k=1 ũk
ij

K
(4)

Step 3: As shown in Equation (5), the method calculates the fuzzy geometric mean
value of each criterion (r̃i).

r̃i =

(
n

∏
j=1

ũij

)1/n

such that i = 1, 2, . . . , n (5)

Step 4. Calculating the fuzzy weight of each criterion (w̃i) as Equation (6)

w̃i = r̃i (×) ( r̃1 (+) r̃2 (+) · · · (+) r̃n )−1 (6)

Step 5: As shown in Equation (7), the average value (Qi) is used to defuzzify the fuzzy
weight of each criterion.

Qi =
w̃1(+) w̃2 (+) · · · (+) w̃n

n
(7)

Step 6: Calculating the normalized weight of each criterion (Ni) as Equation (8)

Ni =
Qi

∑N
i=1 Qi

(8)

In short, the criteria and sub-criteria were determined based on relevant research
and survey of experts in the field of A&T in Vietnam. The FAHP procedure calculates the
normalize weights of the criteria based on linguistic pairwise comparisons of experts.

3.4. Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS)

The principle of FTOPSIS is to determine the overall score of alternatives based on the
distance to the fuzzy negative ideal solution (FNIS) and the fuzzy positive ideal solution
(FPIS). Table 4 describes the linguistic evaluation levels and the corresponding TFN values.
The seven steps of the FTOPSIS process are described below.

Table 4. Assessment of linguistic levels of the alternatives in the fuzzy TOPSIS model.

Linguistic Evaluation Levels Triangular Fuzzy Number

Too poor (1, 1, 1)
Very poor (1, 2, 3)

Poor (2, 3, 4)
Bad (3, 4, 5)

Medium (4, 5, 6)
Rather (5, 6, 7)
Good (6, 7, 8)

Very good (7, 8, 9)
Perfect (8, 9, 9)

Step 1: Determine the fuzzy weight of the criteria. These fuzzy weights are the result
of calculations in the first layer—FAHP.

Step 2: As seen in Equation (9), the m × n fuzzy decision matrix, which presents
the TFN score (s̃ij) of m alternatives corresponding to n criteria, is constructed based on
linguistic evaluation of K experts. The denotation s̃k

ij presents for the TFN score of the
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ith alternative with respect to jth criterion by kth expert’s evaluation. As mentioned in
Equation (1), s̃k

ij =
(

lk
ij, hk

ij, uk
ij

)
.

s̃ =

 s̃11 · · · s̃1n
...

. . .
...

s̃m1 · · · s̃mn

 where s̃ij =
1
K

(
s̃1

ij (+) s̃2
ij (+) . . . (+) s̃K

ij

)
(9)

Step 3: The normalized fuzzy decision matrix is constructed as Equations (10)–(12).

Z̃ =

 Z̃11 · · · Z̃1n
...

. . .
...

Z̃m1 · · · Z̃mn

 (10)

Z̃ij =

(
lij
u∗j

,
hij

u∗j
,

uij

u∗j

)
, u∗j = maxi

{
uij
∣∣i = 1, 2, . . . , m

}
for benefit criteria (11)

Z̃ij =

(
l′j
uij

,
l′j
hij

,
l′j
lij

)
, l′j = mini

{
lij
∣∣i = 1, 2, . . . , m

}
for cos t criteria (12)

Step 4: As shown in Equations (13) and (14), this step develops weighted normalized
fuzzy decision matrix Ẽ. The weighted normalized fuzzy score (ẽij) is calculated as the
product of the normalized fuzzy score (z̃ij) and criteria fuzzy weight (w̃j).

Ẽ =

 ẽ11 · · · ẽ1n
...

. . .
...

ẽm1 · · · ẽmn

 where ẽij = z̃ij (×) w̃j (13)

Step 5: The fuzzy negative ideal solution (Q′) and the fuzzy positive ideal solution
(Q∗) are calculated as Equations (14) and (15).

Q∗ = (ẽ∗1 . . . , ẽ∗j , . . . , ẽ∗n) where ẽ∗j = maxi
{

ẽij
∣∣i = 1, 2, . . . , m

}
(14)

Q′ = (ẽ′1. . . , ẽ′j, . . . , ẽ′n) where ẽ′j = mini
{

ẽij
∣∣i = 1, 2, . . . , m

}
(15)

Step 6: This step estimate the distance of each alternative from FNIS and FPIS as
Equations (16) and (17).

D̃∗i =
n

∑
j=1

d(ẽij, ẽ∗j ), i = 1, 2, . . . , m (16)

D̃′i =
n

∑
j=1

d(ẽij, ẽ′j), i = 1, 2, . . . , m (17)

Step 7: Based on the distances D̃∗i and D̃′i , the relative gaps-degree of each alternative
(G̃i) is estimated as Equation (18). The better alternative is the alternative that is farther
away than FNIS and closer to FPIS. Therefore, the higher the relative gaps-degree, the
higher the alternative is rated by experts.

G̃i =
D̃′i

D̃∗i + D̃′i
, i = 1, 2, . . . , m (18)
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3.5. Data Envelopment Analysis
3.5.1. Inputs and Outputs Selection

The principal objective of DEA models is to measure the efficiency of using multiple
inputs and outputs. From the diverse blend of factors utilized in earlier studies as shown
in Table 5, this study selected cost of goods sold (CGS), total assets (TA) as an inputs factor,
while gross profit (GP) and expert-based performance (EP) are the outputs.

Table 5. Related research’s DEA inputs and outputs.

Authors Year Input Factors Output Factors

Hung and Lu [56] 2009
Equity
Assets

Employees

Profit
Revenue

EPS

Yuan et al. [57] 2010
Salary

Investments
Staff

Sales volume
Total revenue

Li, M.-D. et al. [58] 2014
Total assets

Costs
Total operating

Operating income
Earnings per share

Net profit

Chen and Li [59] 2017
Business costs

Number of workers
Total assets

Corporate income
Return on equity

Gross profit

The correlation between input and output should be isotropic, which implies that the
number of inputs and the number of outputs will increase or decrease together under the
similar conditions, as shown in Table 6.

Table 6. Correlation coefficient.

Correlation Coefficient Degree

>0.8 Very high
0.6–0.8 High
0.4–0.6 Medium
0.2–0.4 Low

<0.2 Very Low

The Pearson correlation coefficient (rtl) of two factors (t) and (l) can be calculated
as Equation (19), where, ti and li represent the values of the ith observation while t and l
presents the mean value of the factors.

rtl =
∑n

i=1(ti − t)
(
li − l

)√
∑n

i=1(ti − t)2 ∑n
i=1
(
li − l

)2
(19)

3.5.2. DEA Models

Based on ideas from the production efficiency model by Farrell, the first DEA model
proposed by Charnes, Cooper, and Rhodes (CCR) [52]. This model determines the efficiency
of decision-making units (DMUs) through maximizing the ratio of weighted outputs to
weighted inputs. Assume the efficiency of m DMUs is measured based on n inputs and s
outputs. The relative efficiency (ej) of each DMU is determined by solving the non-linear
model as described in Equations (20)–(23).

Maximize ej =
∑s

r=1 vrbrj

∑n
i=1 uiaij

(20)



Axioms 2021, 10, 262 10 of 24

subjected to

∑s
r=1 vrbrj

∑n
i=1 uiaij

≤ 1 , r = 1, 2, . . . , s; i = 1, 2, . . . , n; j = 1, 2, . . . , m (21)

ur ≥ 0, r = 1, 2, . . . , s (22)

vr ≥ 0, r = 1, 2, . . . , s (23)

where aij denotes the ith input and brj denotes rth output of jth DMU. Let ur and vr denote
the virtual variables of ith input and rth output, respectively.

In addition, the slack (δ−i ) and surplus (δ+r ) variables of the CCR model can suggest
directions for improvement as well as input and output values that can optimize efficiency.
These variables can be determined by Equations (24) and (25).

a∗ij = ejaij − δ−∗i , i = 1, 2, . . . , n; j = 1, 2, . . . , m (24)

b∗rj = brj + δ+∗i , r = 1, 2, . . . , s; j = 1, 2, . . . , m (25)

where a∗ij, b∗rj, δ−∗i , δ+∗i denotes optimal value of aij, brj, δ−i and δ+r . Accordingly, the jth
DMU reaches its optimal efficiency when ej = 1, δ−i = 0 and δ+r = 0.

In 1984, a new model was developed by Banker, Charnes, and Cooper (BCC) based on
the CCR model [53]. The BCC model allows a variable return-to-scale (RTS) instead of the
constant return-to-scale in the CCR model. The BCC model is presented in the following
Equations (26)–(29).

Maximize ej =
∑s

r=1 vrbrj − β

∑n
i=1 uiaij

(26)

subjected to

∑s
r=1 vrbrj − β

∑n
i=1 uiaij

≤ 1 , r = 1, 2, . . . , s; i = 1, 2, . . . , n; j = 1, 2, . . . , m (27)

ur ≥ 0, r = 1, 2, . . . , s (28)

vr ≥ 0, r = 1, 2, . . . , s (29)

where β denotes the intercept of production frontier. The positive and negative value of β
represent the DMU’s production frontier is decreasing RTS and increasing RTS, respectively.

Another DEA model is proposed by Tone in 2001 [54]. This model measures DMU’s
efficiency through using input and output slack measurement named lack-based mea-
surement (SBM). In constant RTS environment, the input-oriented SBM (SBM-I-C) can be
written as Equations (30)–(33).

Minimize θ∗I = 1− 1
n

n

∑
i=1

δ−i
ai0

(30)

subjected to

ai0 =
m

∑
j=1

λjaij + δ−i , i = 1, 2, . . . , n (31)

br0 =
m

∑
j=1

λjbrj + δ+r , r = 1, 2, . . . , s (32)

λj, δ−i , δ+r ≥ 0, ∀i, j, r (33)
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where θ∗I denotes input-oriented efficiency value and λj denotes the weight coefficient of jth
DMU. Meanwhile, the output-oriented SBM (SBM-O-C) are presented as Equations (34)–(37).
In which, the ratio 1

θ∗O
presents the output-oriented efficiency value.

Maximize
1

θ∗O
= 1 +

1
s

s

∑
r=1

δ+r
br0

(34)

subjected to

ai0 =
m

∑
j=1

λjaij + δ−i , i = 1, 2, . . . , n (35)

br0 =
m

∑
j=1

λjbrj + δ+r , r = 1, 2, . . . , s (36)

λj, δ−i , δ+r ≥ 0, ∀i, j, r (37)

In the non-oriented SBM model as Equations (38)–(41), the 0th DMU (a0, b0) is defined
as being SBM-efficient if θ∗ = 1, δ−∗i = 0 and δ+∗r = 0.

Minimize θ =
1− 1

n ∑n
i=1

δ−i
ai0

1 + 1
s ∑s

r=1
δ+r
br0

(38)

subjected to

ai0 =
m

∑
j=1

λjaij + δ−i , i = 1, 2, . . . , n (39)

br0 =
m

∑
j=1

λjbrj + δ+r , r = 1, 2, . . . , s (40)

λj, δ−i , δ+r ≥ 0, ∀i, j, r (41)

To ranking DMUs, Tone developed the super-SBM model [55] as the following equations:

Minimize γ =

1
n ∑n

i=1
ai
ai0

1
s ∑s

r=1
br
br0

(42)

ai ≥
m

∑
j=1

λjaij, i = 1, 2, . . . , n (43)

subjected to

br ≥
m

∑
j=1

λjbrj, r = 1, 2, . . . , s (44)

ai ≥ ai0, i = 1, 2, . . . , n (45)

br ≥ br0, r = 1, 2, . . . , s (46)

λj, ai, br ≥ 0, ∀i, j, r (47)

In case the objective function’s denominator is equal to one, the model becomes
input-oriented super-SBM model. Then, the value of the objective function cannot be less
than one.
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4. Numerical Results
4.1. Case Study Description

The reality of shifting the outsourcing production system that requires a large labor
force among developing countries is increasingly happening [60,61]. In particular, Viet-
nam is considered as one of the most potential places in Southeast Asia, as well as East
Asia [62]. Thanks to that, fashion brands are paying more and more attention to Vietnamese
A&TOMs, which have advantages in terms of labor costs and quality. Therefore, choosing
an outsourcing garment company that effectively meets multi-criteria becomes the core
problem of fashion enterprises at home and abroad in Vietnam.

In this study, the proposed fuzzy MCDM model supports to analyze the effectiveness
of A&TOMs. Accordingly, the top fifteen A&TOMs in terms of market value were selected
for this numerical analysis. Based on literature reviews along with expert survey results,
the hierarchy of criteria and sub-criteria for the analysis is depicted in Figure 3. In particular,
the criteria showing the capabilities of A&TOMs include financial ability, quality assurance,
service commitment, and technological superiority. Twenty experts, with over ten years
of experience, consulted and effectively assessed the impact of the criteria and scored the
A&TOMs on each sub-criterion in the linguistics levels as Table 4. These professionals are
heads of relevant departments from various segments of the garment supply chain.
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4.2. Fuzzy AHP Calculation Results

This methodology begins with the weighting of the criteria and sub-criteria through
the FAHP calculation procedure. As shown in Figure 4. Criteria linguistics comparison,
the results of the criteria linguistics comparison from the expert survey in the first step.
Then, the pairwise comparison matrix of the main criteria is surveyed and aggregated as in
Table 7.



Axioms 2021, 10, 262 13 of 24

Axioms 2021, 10, x FOR PEER REVIEW 13 of 25 
 

Table 7. Main criteria fuzzy pairwise comparison matrix. 

Criteria C1 C2 C3 C4 
C1 (1, 1, 1) (5, 6, 7) (7, 8, 9) (7, 8, 9) 
C2 (1/7, 1/6, 1/5) (1, 1, 1) (3, 4, 5) (3, 4, 5) 
C3 (1/9, 1/8, 1/7) (1/5, 1/4, 1/3) (1, 1, 1) (1, 2, 3) 
C4 (1/7, 1/8, 1/9) (1/5, 1/4, 1/3) (1/3, 1/2, 1) (1, 1, 1) 

Notation: Financial ability (C1), quality assurance (C2), service commitment (C3), technological 
superiority (C4). 

C1

C2 C4

C3

Very importance Strongly importance

Fairly importance

Fairly importance Lightly importance

Strongly importance

 
Figure 4. Criteria linguistics comparison. 

In order to validate the consistency of this pairwise comparison matrix, fuzzy num-
bers are defuzzied based on its pessimistic and optimistic values. The non-fuzzy compar-
ison matrix is developed and presented in Table 8. 

Table 8. Main criteria non-fuzzy comparison matrix. 

Criteria C1 C2 C3 C4 
C1 1 5.916 7.937 7.937 
C2 0.169 1 3.873 3.873 
C3 0.126 0.258 1 1.732 
C4 0.126 0.258 0.577 1 𝑺𝑼𝑴 1.421 7.433 13.388 14.542 

Notation: Authors’ calculation. 

In Table 9, the non-fuzzy score values are normalized by scaling them to the sum of 
each column. Then, the priority vector of the criteria are determined as the average value 
of each row. 

Table 9. Main criteria normalization comparison matrix and priority vector. 

Criteria C1 C2 C3 C4 Priority Vector 
C1 0.704 0.796 0.593 0.546 0.660 
C2 0.119 0.135 0.289 0.266 0.202 
C3 0.089 0.035 0.075 0.119 0.079 
C4 0.089 0.035 0.043 0.069 0.059 

Notation: Authors’ calculation. 

As the next step of the consistency determination procedure, the largest eigenvector, 
which is denoted as is 𝜆௠௔௫, is estimated as follows. 

Figure 4. Criteria linguistics comparison.

Table 7. Main criteria fuzzy pairwise comparison matrix.

Criteria C1 C2 C3 C4

C1 (1, 1, 1) (5, 6, 7) (7, 8, 9) (7, 8, 9)
C2 (1/7, 1/6, 1/5) (1, 1, 1) (3, 4, 5) (3, 4, 5)
C3 (1/9, 1/8, 1/7) (1/5, 1/4, 1/3) (1, 1, 1) (1, 2, 3)
C4 (1/7, 1/8, 1/9) (1/5, 1/4, 1/3) (1/3, 1/2, 1) (1, 1, 1)

Notation: Financial ability (C1), quality assurance (C2), service commitment (C3), technological superiority (C4).

In order to validate the consistency of this pairwise comparison matrix, fuzzy numbers
are defuzzied based on its pessimistic and optimistic values. The non-fuzzy comparison
matrix is developed and presented in Table 8.

Table 8. Main criteria non-fuzzy comparison matrix.

Criteria C1 C2 C3 C4

C1 1 5.916 7.937 7.937
C2 0.169 1 3.873 3.873
C3 0.126 0.258 1 1.732
C4 0.126 0.258 0.577 1

SUM 1.421 7.433 13.388 14.542

Notation: Authors’ calculation.

In Table 9, the non-fuzzy score values are normalized by scaling them to the sum of
each column. Then, the priority vector of the criteria are determined as the average value
of each row.

Table 9. Main criteria normalization comparison matrix and priority vector.

Criteria C1 C2 C3 C4 Priority
Vector

C1 0.704 0.796 0.593 0.546 0.660
C2 0.119 0.135 0.289 0.266 0.202
C3 0.089 0.035 0.075 0.119 0.079
C4 0.089 0.035 0.043 0.069 0.059

Notation: Authors’ calculation.
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As the next step of the consistency determination procedure, the largest eigenvector,
which is denoted as is λmax, is estimated as follows.

0.704 0.796
0.119 0.135

0.593 0.546
0.289 0.266

0.089 0.035
0.089 0.035

0.075 0.119
0.043 0.069

×


0.660
0.202
0.079
0.059

 =


2.953
0.849
0.317
0.240




2.953
0.849
0.317
0.240

 /


0.660
0.202
0.079
0.059

 =


4.476
4.196
3.991
4.079


Because the matrix under consideration is 4 × 4 in size, the value of n in the formula

that defines λmax is 4.

λmax =
4.476 + 4.196 + 3.991 + 4.079

4
= 4.185

The consistency index, CI, and consistency ratio, CR, are also determined as follows,
with the given random index, RI = 0.9 [63].

CI =
λmax − n

n− 1
=

4.185
4

= 0.062

CR =
CI
RI

=
0.062
0.9

= 0.069 ≈ 6.9%

The above results show that the coefficient of consistency is less than 10%, so it can
be assumed that the consistency of the pairwise comparison matrix is acceptable and can
be used for further calculations. This consistency determination procedure is performed
similarly for other pairwise comparison matrices. To determine the fuzzy weights of the
criteria, the next step is to compute their fuzzy geometric mean, as shown in Table 10.

Table 10. Main criteria geometric mean.

Criteria Geometric Mean

C1 (3.956, 4.427, 4.880)
C2 (1.065, 1.278, 1.495)
C3 (0.386, 0.500, 0.615)
C4 (0.293, 0.354, 0.467)

SUM (5.701, 6.558, 7.457)
SUM−1 (0.134, 0.152, 0.175)

Notation: Authors’ calculation.

Then, the study determines the sum of the geometric mean values. Based on the ratio
of the geometric mean and the inverse of the sum, the fuzzy weights of the criteria are
determined and presented in Table 11.

Table 11. Main criteria fuzzy weight.

Criteria Fuzzy Weight

C1 (0.531, 0.675, 0.856)
C2 (0.143, 0.195, 0.262)
C3 (0.052, 0.076, 0.108)
C4 (0.039, 0.054, 0.082)

Notation: Authors’ calculation.
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This weighting procedure is repeated for the pairwise comparison matrices of the
sub-criteria. The results of these fuzzy weights are presented in Table 12.

Table 12. Main criteria and sub-criteria fuzzy weight.

Criteria Fuzzy Weight Sub-Criteria Fuzzy Weight

C1 (0.531, 0.675, 0.856)
C1-1 (0.324, 0.550, 0.856)
C1-2 (0.242, 0.368, 0.625)
C1-3 (0.059, 0.082, 0.120)

C2 (0.143, 0.195, 0.262)
C2-1 (0.540, 0.707, 0.916)
C2-2 (0.165, 0.223, 0.305)
C2-3 (0.055, 0.070, 0.093)

C3 (0.052, 0.076, 0.108)
C3-1 (0.507, 0.682, 0.905)
C3-2 (0.173, 0.236, 0.328)
C3-3 (0.063, 0.082, 0.112)

C4 (0.039, 0.054, 0.082)
C4-1 (0.562, 0.709, 0.872)
C4-2 (0.181, 0.231, 0.309)
C4-3 (0.052, 0.06, 0.077)

Notation: Authors’ calculation.

In order to determine the final fuzzy weight of the sub-criteria, the next step is to
determine the product of the fuzzy weight of the related sub-criteria and the main criterion
as Table 13.

Table 13. Sub-criteria final fuzzy weight.

Sub-Criteria Direction Final Fuzzy Weight

C1-1 Minimize (0.172, 0.371, 0.733)
C1-2 Minimize (0.128, 0.248, 0.535)
C1-3 Maximize (0.031, 0.055, 0.103)
C2-1 Maximize (0.077, 0.138, 0.240)
C2-2 Maximize (0.024, 0.043, 0.080)
C2-3 Minimize (0.008, 0.014, 0.024)
C3-1 Minimize (0.026, 0.052, 0.098)
C3-2 Maximize (0.009, 0.018, 0.035)
C3-3 Minimize (0.003, 0.006, 0.012)
C4-1 Maximize (0.022, 0.038, 0.071)
C4-2 Minimize (0.007, 0.012, 0.025)
C4-3 Minimize (0.002, 0.003, 0.006)

Notation: Authors’ calculation.

Thus, the weight of the criteria has been determined and this result is also the input
parameters of this approach’s layer 2, fuzzy TOPSIS.

4.3. Fuzzy TOPSIS Calculation Results

Following the procedure of FTOPSIS presented in Section 3.4, the fuzzy scores of
the alternatives (Tables A1 and A2, Appendix A) in the decision matrix are normalized
(Tables A3 and A4, Appendix A) and multiplied by the weights in the FAHP result. Then,
the normalized weighted scores are defuzzied into real scores (Table A5, Appendix A).

Table 14 shows the distance between alternatives compared to the ideal solution,
negative ideal solution and their gap distance. This process was repeated with twenty
decision makers after which the average result of the gap distance is presented in Table 15.
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Table 14. Ideal, negative ideal and relative gaps-degree.

DMU Ideal Gap Negative Ideal Gap Relative
Gaps-Degree

A&TOM-01 0.125 0.122 0.495
A&TOM-02 0.127 0.156 0.55
A&TOM-03 0.135 0.116 0.46
A&TOM-04 0.133 0.186 0.582
A&TOM-05 0.173 0.141 0.449
A&TOM-06 0.072 0.173 0.706
A&TOM-07 0.091 0.179 0.663
A&TOM-08 0.034 0.219 0.867
A&TOM-09 0.191 0.053 0.216
A&TOM-10 0.180 0.087 0.327
A&TOM-11 0.208 0.053 0.204
A&TOM-12 0.074 0.196 0.725
A&TOM-13 0.201 0.054 0.212
A&TOM-14 0.157 0.125 0.443
A&TOM-15 0.090 0.165 0.648

Notation: Authors’ calculation.

Table 15. Relative gaps-degree average value.

DMU

Relative Gaps-Degree
Average Relative

Gaps-DegreeDecision
Maker 1

Decision
Maker 2 . . . Decision

Maker 20

A&TOM-01 0.564 0.504 . . . 0.495 0.479
A&TOM-02 0.505 0.302 . . . 0.550 0.465
A&TOM-03 0.538 0.560 . . . 0.460 0.542
A&TOM-04 0.539 0.394 . . . 0.582 0.59
A&TOM-05 0.322 0.199 . . . 0.449 0.482
A&TOM-06 0.570 0.506 . . . 0.706 0.492
A&TOM-07 0.553 0.506 . . . 0.663 0.447
A&TOM-08 0.608 0.439 . . . 0.867 0.602
A&TOM-09 0.723 0.764 . . . 0.216 0.51
A&TOM-10 0.552 0.560 . . . 0.327 0.521
A&TOM-11 0.331 0.418 . . . 0.204 0.385
A&TOM-12 0.109 0.361 . . . 0.725 0.488
A&TOM-13 0.552 0.495 . . . 0.212 0.435
A&TOM-14 0.816 0.613 . . . 0.443 0.544
A&TOM-15 0.391 0.376 . . . 0.648 0.506

Notation: Authors’ calculation.

4.4. DEA Calculation Results

The Figure 5 shows inputs and outputs for DMU efficiency analysis by DEA models.
The results of the FTOPSIS calculation proposed the expert-based performance (EP) of
A&TOMs which are used as an output in DEA models.
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 Input Output 
DMU TA CGS GP EP 
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The variance premise is applied to the input and output variables of the correlation 
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According to the definition of efficiency in Section 3.5, indicators are chosen as inputs
of the DEA model when its decrease causes the efficiency of a DMU to increase. Addition-
ally, conversely, performance metrics are considered outputs when their increase causes
the efficiency of a DMU to increase. The data are collected on the Vietnam stock market, as
shown in Table 16.

Table 16. DEA model’s inputs and outputs.

Input Output

DMU TA CGS GP EP

A&TOM-01 2,849,534 2,976,423 620,183 0.478888
A&TOM-02 751,665 548,469 103,532 0.465032
A&TOM-03 593,077 1,353,033 261,845 0.541631
A&TOM-04 2,820,761 2,708,641 63,57 0.590117
A&TOM-05 1,272,238 1,222,601 202,328 0.481764
A&TOM-06 921,297 813,050 103,377 0.492412
A&TOM-07 347,846 252,525 49,149 0.446507
A&TOM-08 2,977,976 1,585,016 469,328 0.601649
A&TOM-09 1,215,003 1,807,548 115,294 0.509697
A&TOM-10 10,013 106,533 12,670 0.520968
A&TOM-11 611,927 537,551 158,247 0.384776
A&TOM-12 13,082 217,738 859 0.487503
A&TOM-13 457,318 653,648 219,147 0.434678
A&TOM-14 195,698 394,735 75,808 0.544012
A&TOM-15 989,736 622,793 206,520 0.505728

Notation: Authors’ collection.

The variance premise is applied to the input and output variables of the correlation
coefficient matrix. Similarly, increasing or decreasing one input does not increase or
decrease the other input. The following Table 17 shows the Pearson correlation coefficient
testing results.

Table 17. The results of correlation coefficient.

TA CGS TR GP EP

TA 1 0.880857 0.997829 0.687256 0.480023
CS 0.817037 0.690424 0.820937 0.793349 0.346464

CGS 0.880857 1 0.892835 0.620686 0.40558
GP 0.687256 0.620686 0.697232 1 0.121578
EP 0.480023 0.40558 0.475781 0.121578 1

Notation: Authors’ calculation.

The results that all coefficients are positive from the results of the Pearson correlation
test. It implies that the inputs and output meet the minimal requirement of DEA model
under constant returns-of-scale environment.

The data have been collected from fifteen A&TOMs in Vietnam to be able to obtain
accurate results in the study. In addition, the hierarchical structure is used to present four
main criteria and twelve sub-criteria. We analyze the FTOPSIS model by completing a
questionnaire when interviewing experts in the Vietnam A&T industry, in addition to
surveying and taking databases from businesses. Then, several DEA models are proposed
to rank apparel companies. As a result, A&TOM-10 was determined to be the most efficient
of all nine models, as shown in Table 18. Next comes the A&TOM-13 and A&TOM-15
with maximum efficiency in all CCR, BCC, and SBM models. The A&TOM-01, A&TOM-03,
A&TOM-08, A&TOM-014 ranked first in either CCR models or BBC models. At the same
time, these A&TOMs also rank high in the SBM and super-SBM models. The remaining
DMUs are identified as non-efficiency DMUs by the models. Based on the ranking results
from the DEA models, this study classifies the A&TOMs into three groups as shown in
Figure 6.
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Table 18. A&TOMs ranks with nine DEA models.

Supplier CCR-I CCR-O BCC-I BCC-O SBM-I-C SBM-O-C Super
SBM-I-C

Super
SBM-I-V

Super
SBM-O-C

A&TOM-01 11 11 1 1 9 14 9 7 14
A&TOM-02 10 10 12 15 11 8 11 13 8
A&TOM-03 6 6 1 1 4 10 4 13 8
A&TOM-04 15 15 9 8 15 15 15 9 15
A&TOM-05 12 12 13 13 12 11 12 12 11
A&TOM-06 13 13 14 12 13 9 13 14 9
A&TOM-07 7 7 10 14 10 4 10 11 4
A&TOM-08 5 5 1 1 7 7 7 4 7
A&TOM-09 14 14 15 11 14 12 14 15 12
A&TOM-10 1 1 1 1 1 1 1 1 1
A&TOM-11 4 4 8 10 6 5 6 8 5
A&TOM-12 9 9 11 9 8 13 8 10 13
A&TOM-13 1 1 1 1 1 1 2 5 2
A&TOM-14 8 8 1 1 5 6 5 2 6
A&TOM-15 1 1 1 1 1 1 3 6 3

Notation: Authors’ calculation.
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5. Conclusions

Over the past three decades, there has been a sustained research activity in apparel
and textile supply chain management. One of the cross-cutting concerns of scholars is
the issue of selecting outsourcing manufacturers for these supply chains. These selection
decisions are influenced simultaneously by multiple criteria and conditions of uncertainty.
Combinations of MCDM methods have been introduced and applied by related studies.
In order to inherit and consolidate the published combinations of approaches, the main
contribution of this study is the proposal of a three-layer approach that effectively vertically
combines the three primitive methods. After consulting and defining the four main criteria
and twelve sub-criteria for the problem, a hierarchy and pairwise comparison matrices are
built. The FAHP procedures are then applied to determine the weighting of the criteria. At
the second layer, the expert-based performance of A&TOMs is determined by FTOPSIS
decision matrices and procedures. At the last layer, the results of the FTOPSIS method
are combined with other objective arithmetic performance to analyze the efficiency of
A&TOMs through DEA models. The efficiency rankings from DEA models are now used
as a reference for the classification A&TOMs. Second but not least, the proposed three-layer
approach is applied to a place that is a promising attraction for outsourcing manufacturer
selection decisions, Vietnam. Political stability, low labor costs, preferential tariffs are just a
few of the many reasons for Vietnam’s top ranking in the world in processing and exporting
the A&T industry. The study proposes criteria and sub-criteria for evaluating A&TOMs
from the perspective of this industry experts. In addition, A&TOMs in Vietnam are also
classified into three groups as shown in Figure 6. Based on those results, supply chain
managers or fashion brand leaders have an additional source of support for their A&TOMs
selection decisions in Vietnam. The limitation of this study is that the statistical tests are
incomplete on the assumptions of the DEA models, such as convexity, free disposability,
and additivity.
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For future studies, heuristics algorithms can be integrated to increase the number of
A&TOMs that are considered. Simultaneously, simulation and forecasting techniques can
support solutions through the development and analysis of uncertainty scenarios.
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Appendix A

Table A1. Fuzzy decision matrix.

DMU
Sub-Criteria

C1-1 C1-2 C1-3 C2-1 C2-2 C2-3

A&TOM-01 (3, 4, 5) (3, 4, 5) (3, 4, 5) (1, 1, 1) (5, 6, 7) (1, 2, 3)

A&TOM-02 (5, 6, 7) (1, 1, 1) (8, 9, 9) (7, 8, 9) (6, 7, 8) (8, 9, 9)

A&TOM-03 (5, 6, 7) (2, 3, 4) (7, 8, 9) (5, 6, 7) (2, 3, 4) (1, 1, 1)

A&TOM-04 (1, 1, 1) (7, 8, 9) (1, 2, 3) (4, 5, 6) (7, 8, 9) (1, 2, 3)

A&TOM-05 (7, 8, 9) (1, 1, 1) (2, 3, 4) (6, 7, 8) (7, 8, 9) (1, 1, 1)

A&TOM-06 (1, 2, 3) (2, 3, 4) (8, 9, 9) (2, 3, 4) (5, 6, 7) (6, 7, 8)

A&TOM-07 (2, 3, 4) (1, 1, 1) (5, 6, 7) (1, 1, 1) (1, 1, 1) (4, 5, 6)

A&TOM-08 (1, 1, 1) (1, 2, 3) (3, 4, 5) (8, 9, 9) (5, 6, 7) (5, 6, 7)

A&TOM-09 (6, 7, 8) (6, 7, 8) (8, 9, 9) (2, 3, 4) (6, 7, 8) (3, 4, 5)

A&TOM-10 (5, 6, 7) (7, 8, 9) (8, 9, 9) (6, 7, 8) (3, 4, 5) (4, 5, 6)

A&TOM-11 (8, 9, 9) (5, 6, 7) (2, 3, 4) (4, 5, 6) (6, 7, 8) (5, 6, 7)

A&TOM-12 (1, 1, 1) (3, 4, 5) (4, 5, 6) (3, 4, 5) (5, 6, 7) (3, 4, 5)

A&TOM-13 (7, 8, 9) (5, 6, 7) (1, 1, 1) (3, 4, 5) (2, 3, 4) (8, 9, 9)

A&TOM-14 (2, 3, 4) (7, 8, 9) (2, 3, 4) (1, 1, 1) (1, 1, 1) (1, 2, 3)

A&TOM-15 (1, 2, 3) (3, 4, 5) (7, 8, 9) (1, 2, 3) (2, 3, 4) (8, 9, 9)

2

√
15
∑

i=1
ũ2

ij

(17.18, 20.27,
23.07)

(20.27, 23.07,
16.49)

(23.07, 16.49,
19.65)

(16.49, 19.65,
22.89)

(19.65, 22.89,
20.66)

(22.89, 20.66,
24.02)

Notation: Authors’ calculation.
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Table A2. Fuzzy decision matrix.

DMU
Sub-Criteria

C3-1 C3-2 C3-3 C4-1 C4-2 C4-3

A&TOM-01 (7, 8, 9) (4, 5, 6) (4, 5, 6) (1, 1, 1) (5, 6, 7) (8, 9, 9)

A&TOM-02 (4, 5, 6) (1, 2, 3) (7, 8, 9) (7, 8, 9) (4, 5, 6) (5, 6, 7)

A&TOM-03 (1, 2, 3) (5, 6, 7) (6, 7, 8) (4, 5, 6) (7, 8, 9) (5, 6, 7)

A&TOM-04 (5, 6, 7) (3, 4, 5) (5, 6, 7) (6, 7, 8) (5, 6, 7) (6, 7, 8)

A&TOM-05 (4, 5, 6) (5, 6, 7) (2, 3, 4) (5, 6, 7) (7, 8, 9) (4, 5, 6)

A&TOM-06 (2, 3, 4) (3, 4, 5) (3, 4, 5) (6, 7, 8) (1, 2, 3) (6, 7, 8)

A&TOM-07 (1, 2, 3) (1, 2, 3) (5, 6, 7) (1, 2, 3) (1, 2, 3) (1, 1, 1)

A&TOM-08 (1, 2, 3) (3, 4, 5) (2, 3, 4) (1, 2, 3) (1, 2, 3) (1, 1, 1)

A&TOM-09 (3, 4, 5) (1, 2, 3) (1, 2, 3) (3, 4, 5) (1, 2, 3) (4, 5, 6)

A&TOM-10 (1, 1, 1) (5, 6, 7) (6, 7, 8) (8, 9, 9) (5, 6, 7) (4, 5, 6)

A&TOM-11 (8, 9, 9) (2, 3, 4) (1, 2, 3) (1, 1, 1) (4, 5, 6) (8, 9, 9)

A&TOM-12 (5, 6, 7) (5, 6, 7) (1, 1, 1) (3, 4, 5) (3, 4, 5) (7, 8, 9)

A&TOM-13 (1, 1, 1) (1, 1, 1) (5, 6, 7) (3, 4, 5) (6, 7, 8) (1, 2, 3)

A&TOM-14 (3, 4, 5) (1, 1, 1) (8, 9, 9) (6, 7, 8) (1, 2, 3) (1, 2, 3)

A&TOM-15 (1, 1, 1) (5, 6, 7) (5, 6, 7) (1, 2, 3) (4, 5, 6) (1, 1, 1)

2

√
15
∑

i=1
ũ2

ij

(20.66, 24.02,
26.06)

(24.02, 26.06,
16.49)

(26.06, 16.49,
19.65)

(16.49, 19.65,
22.47)

(19.65, 22.47,
18.14)

(22.47, 18.14,
21.54)

Notation: Authors’ calculation.

Table A3. Weighted normalized fuzzy decision matrix.

DMU
Sub-Criteria

C1-1 C1-2 C1-3 C2-1 C2-2 C2-3

A&TOM-01 (0.02, 0.07, 0.21) (0.07, 0.21, 0.02) (0.21, 0.02, 0.05) (0.02, 0.05, 0.16) (0.05, 0.16, 0) (0.16, 0, 0.01)

A&TOM-02 (0.04, 0.11, 0.3) (0.11, 0.3, 0.01) (0.3, 0.01, 0.01) (0.01, 0.01, 0.03) (0.01, 0.03, 0.01) (0.03, 0.01, 0.02)

A&TOM-03 (0.04, 0.11, 0.3) (0.11, 0.3, 0.01) (0.3, 0.01, 0.04) (0.01, 0.04, 0.13) (0.04, 0.13, 0.01) (0.13, 0.01, 0.02)

A&TOM-04 (0.01, 0.02, 0.04) (0.02, 0.04, 0.04) (0.04, 0.04, 0.1) (0.04, 0.1, 0.29) (0.1, 0.29, 0) (0.29, 0, 0)

A&TOM-05 (0.05, 0.15, 0.38) (0.15, 0.38, 0.01) (0.38, 0.01, 0.01) (0.01, 0.01, 0.03) (0.01, 0.03, 0) (0.03, 0, 0.01)

A&TOM-06 (0.01, 0.04, 0.13) (0.04, 0.13, 0.01) (0.13, 0.01, 0.04) (0.01, 0.04, 0.13) (0.04, 0.13, 0.01) (0.13, 0.01, 0.02)

A&TOM-07 (0.01, 0.05, 0.17) (0.05, 0.17, 0.01) (0.17, 0.01, 0.01) (0.01, 0.01, 0.03) (0.01, 0.03, 0.01) (0.03, 0.01, 0.01)

A&TOM-08 (0.01, 0.02, 0.04) (0.02, 0.04, 0.01) (0.04, 0.01, 0.03) (0.01, 0.03, 0.1) (0.03, 0.1, 0) (0.1, 0, 0.01)

A&TOM-09 (0.04, 0.13, 0.34) (0.13, 0.34, 0.03) (0.34, 0.03, 0.09) (0.03, 0.09, 0.26) (0.09, 0.26, 0.01) (0.26, 0.01, 0.02)

A&TOM-10 (0.04, 0.11, 0.3) (0.11, 0.3, 0.04) (0.3, 0.04, 0.1) (0.04, 0.1, 0.29) (0.1, 0.29, 0.01) (0.29, 0.01, 0.02)

A&TOM-11 (0.06, 0.16, 0.38) (0.16, 0.38, 0.03) (0.38, 0.03, 0.08) (0.03, 0.08, 0.23) (0.08, 0.23, 0) (0.23, 0, 0.01)

A&TOM-12 (0.01, 0.02, 0.04) (0.02, 0.04, 0.02) (0.04, 0.02, 0.05) (0.02, 0.05, 0.16) (0.05, 0.16, 0) (0.16, 0, 0.01)

A&TOM-13 (0.05, 0.15, 0.38) (0.15, 0.38, 0.03) (0.38, 0.03, 0.08) (0.03, 0.08, 0.23) (0.08, 0.23, 0) (0.23, 0, 0)

A&TOM-14 (0.01, 0.05, 0.17) (0.05, 0.17, 0.04) (0.17, 0.04, 0.1) (0.04, 0.1, 0.29) (0.1, 0.29, 0) (0.29, 0, 0.01)

A&TOM-15 (0.01, 0.04, 0.13) (0.04, 0.13, 0.02) (0.13, 0.02, 0.05) (0.02, 0.05, 0.16) (0.05, 0.16, 0.01) (0.16, 0.01, 0.02)

Notation: Authors’ calculation.
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Table A4. Weighted normalized fuzzy decision matrix.

DMU
Sub-Criteria

C3-1 C3-2 C3-3 C4-1 C4-2 C4-3

A&TOM-01 (0, 0.01, 0.02) (0.01, 0.02, 0) (0.02, 0, 0.01) (0, 0.01, 0.01) (0.01, 0.01, 0) (0.01, 0, 0.01)

A&TOM-02 (0.01, 0.02, 0.04) (0.02, 0.04, 0.02) (0.04, 0.02, 0.06) (0.02, 0.06, 0.13) (0.06, 0.13, 0.01) (0.13, 0.01, 0.01)

A&TOM-03 (0.01, 0.02, 0.04) (0.02, 0.04, 0.02) (0.04, 0.02, 0.04) (0.02, 0.04, 0.1) (0.04, 0.1, 0) (0.1, 0, 0.01)

A&TOM-04 (0, 0, 0.01) (0, 0.01, 0.01) (0.01, 0.01, 0.04) (0.01, 0.04, 0.09) (0.04, 0.09, 0.01) (0.09, 0.01, 0.02)

A&TOM-05 (0, 0.01, 0.02) (0.01, 0.02, 0.02) (0.02, 0.02, 0.05) (0.02, 0.05, 0.12) (0.05, 0.12, 0.01) (0.12, 0.01, 0.02)

A&TOM-06 (0.01, 0.02, 0.04) (0.02, 0.04, 0.01) (0.04, 0.01, 0.02) (0.01, 0.02, 0.06) (0.02, 0.06, 0) (0.06, 0, 0.01)

A&TOM-07 (0.01, 0.01, 0.03) (0.01, 0.03, 0) (0.03, 0, 0.01) (0, 0.01, 0.01) (0.01, 0.01, 0) (0.01, 0, 0)

A&TOM-08 (0, 0.01, 0.02) (0.01, 0.02, 0.03) (0.02, 0.03, 0.06) (0.03, 0.06, 0.13) (0.06, 0.13, 0) (0.13, 0, 0.01)

A&TOM-09 (0.01, 0.02, 0.04) (0.02, 0.04, 0.01) (0.04, 0.01, 0.02) (0.01, 0.02, 0.06) (0.02, 0.06, 0.01) (0.06, 0.01, 0.01)

A&TOM-10 (0.01, 0.02, 0.04) (0.02, 0.04, 0.02) (0.04, 0.02, 0.05) (0.02, 0.05, 0.12) (0.05, 0.12, 0) (0.12, 0, 0.01)

A&TOM-11 (0, 0.01, 0.02) (0.01, 0.02, 0.01) (0.02, 0.01, 0.04) (0.01, 0.04, 0.09) (0.04, 0.09, 0.01) (0.09, 0.01, 0.01)

A&TOM-12 (0, 0.01, 0.03) (0.01, 0.03, 0.01) (0.03, 0.01, 0.03) (0.01, 0.03, 0.07) (0.03, 0.07, 0) (0.07, 0, 0.01)

A&TOM-13 (0, 0, 0) (0, 0, 0.01) (0, 0.01, 0.03) (0.01, 0.03, 0.07) (0.03, 0.07, 0) (0.07, 0, 0.01)

A&TOM-14 (0, 0.01, 0.02) (0.01, 0.02, 0) (0.02, 0, 0.01) (0, 0.01, 0.01) (0.01, 0.01, 0) (0.01, 0, 0)

A&TOM-15 (0.01, 0.02, 0.04) (0.02, 0.04, 0) (0.04, 0, 0.01) (0, 0.01, 0.04) (0.01, 0.04, 0) (0.04, 0, 0.01)

Notation: Authors’ calculation.

Table A5. Weighted normalized defuzzied decision matrix.

DMU
Sub-Criteria

C1-1 C1-2 C1-3 C2-1 C2-2 C2-3 C3-1 C3-2 C3-3 C4-1 C4-2 C4-3

A&TOM-01 0.103 0.077 0.013 0.008 0.016 0.002 0.030 0.008 0.002 0.002 0.005 0.002

A&TOM-02 0.149 0.017 0.025 0.070 0.018 0.007 0.020 0.004 0.003 0.020 0.005 0.001

A&TOM-03 0.149 0.060 0.024 0.054 0.009 0.001 0.009 0.009 0.003 0.013 0.007 0.001

A&TOM-04 0.023 0.144 0.007 0.045 0.021 0.002 0.023 0.006 0.002 0.017 0.005 0.001

A&TOM-05 0.194 0.017 0.010 0.062 0.021 0.001 0.020 0.009 0.001 0.015 0.007 0.001

A&TOM-06 0.057 0.060 0.025 0.029 0.016 0.006 0.012 0.006 0.002 0.017 0.002 0.001

A&TOM-07 0.080 0.017 0.018 0.008 0.002 0.004 0.009 0.004 0.002 0.006 0.002 0.000

A&TOM-08 0.023 0.043 0.013 0.074 0.016 0.005 0.009 0.006 0.001 0.006 0.002 0.000

A&TOM-09 0.171 0.127 0.025 0.029 0.018 0.003 0.016 0.004 0.001 0.010 0.002 0.001

A&TOM-10 0.149 0.144 0.025 0.062 0.011 0.004 0.004 0.009 0.003 0.021 0.005 0.001

A&TOM-11 0.203 0.110 0.010 0.045 0.018 0.005 0.032 0.005 0.001 0.002 0.005 0.002

A&TOM-12 0.023 0.077 0.015 0.037 0.016 0.003 0.023 0.009 0.000 0.010 0.004 0.002

A&TOM-13 0.194 0.110 0.003 0.037 0.009 0.007 0.004 0.001 0.002 0.010 0.006 0.000

A&TOM-14 0.080 0.144 0.010 0.008 0.002 0.002 0.016 0.001 0.003 0.017 0.002 0.000

A&TOM-15 0.057 0.077 0.024 0.020 0.009 0.007 0.004 0.009 0.002 0.006 0.005 0.000

Direction Min Min Max Max Max Min Min Max Min Max Min Min

Idea 0.023 0.017 0.025 0.074 0.021 0.001 0.004 0.009 0.000 0.021 0.002 0.000

Negative Idea 0.203 0.144 0.003 0.008 0.002 0.007 0.032 0.001 0.003 0.002 0.007 0.002

Notation: Authors’ calculation.
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