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*

Abstract: For a Hilbert space operator T € B(H), let L and Ry € B(B(#)) denote, respectively,
the operators of left multiplication and right multiplication by T. For positive integers m and #, let
AT ¢ (I) = (Lp-Rr — I)™(I) and 6. (I) = (Lr- — R)™(I). The operator T is said to be (m,n)-
isosymmetric if A7, 1 ((S%,T(I )) = 0. Power bounded (m, n)-isosymmetric operators T € B(H)

T T
have an upper triangular matrix representation T = 01 T3) € B(H1 @ Hy) such that Ty € B(H;)

2
is a Cp -operator which satisfies (5?171 (Il3,) = 0and T, € B(H,) is a C; -operator which satisfies

ATy, = (Vi ® Vy) |, A, A = limy_oo T3 T}, V, is a unitary and Vj, is a bilateral shift. If, in particular,
T is cohyponormal, then T is the direct sum of a unitary with a Cpp-contraction.

Keywords: Hilbert space; left/right multiplication operator; (m, n)-symmetric operator; hyponormal
operator; Cop-operator; unitary operator

1. Introduction

Let B(#) denote the algebra of operators, i.e., bounded linear transformations, on an
infinite dimensional complex Hilbert space # into itself. Let C denote the complex plane
and z the conjugate of z € C. For a given polynomial f(z) = Y ;; ¢;zz on C and an
operator T € B(H), define f(T) by f(T) = }; ¢;jT*T/. Then T is said to be a (hereditary)
root of f if f(T) = 0. An operator T € B(H) is n-selfadjoint for some positive integer n if
T is a root of the polynomial f(z) = (Z — z)", equivalently, if

S (1) = Z(—1)f< ’; >T*(”j)Tf =0,
j=0

and T is m-isometric for some positive integer m if it is a root of the polynomial f(z) =
(zz —1)™, equivalently, if

m (1) = Z(_Uj( 77 )T*(mj)ij o

The classes consisting of n-selfadjoint and m-isometric operators have been studied
extensively by a large number of authors in the recent past (see list of references for
further references).

The development of the theory of m-selfadjoint operators in infinite dimensional
Hilbert spaces was motivated by the seminal work of Helton [1], who observed an unex-
pected, intimate connection with differential equations, in particular conjugate point theory
and disconjugacy. McCullough and Rodman [2] in their consideration of algebraic and spec-
tral properties of n-symmetric operators remark [2] (p. 419), that the authors of [1,3,4] were
certainly aware of the fact that every 2-symmetric operator is 1-symmetric, even though
they do not explicitly state so. More generally, McCullough and Rodman [2] (Theorem 3.1)
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state that the techniques of Helton [1] lead to a possible proof of the more general result
that “2n-symmetric operators are (2n — 1)-symmetric”. The class of m-symmetric operators
was introduced by Agler [3] and studied in a series of papers by Agler and Stankus [5-7];
properties of m-isometric operators, amongst them the spectral picture, strict m-isometries,
perturbation by commuting nilpotents and the product of m-isometries, have since been
studied by a large number of authors, amongst them Bayart [8], Bermudez et al. [9-11],
Botelho and Jamison [12], Duggal et al. [13-15], and Gu et al. [16-18]. The (hereditary) roots
of the polynomial (zz — 1)"(zZ — z)" = 0 have been called (m, n)-isosymmetric operators;
thus T is (m, n)-isosymmetric if and only if

7o (0F (1) = :o(_l)j( ’? )T*(’”—” (é(—nk( . )T*<n—k>Tk> i
= 0fr(AF 1 (D)
oy ek R [y g (M petmiypme | 7k
k:o( 1) < K )T (};( 1)]< ; >T T J)T
= 0

Examples of (m, n)-isosymmetric operators occur naturally. Thus, every isometric
operator T € B(H) is (1,1)-isosymmetric. Indeed, if T € B(H) is m-isometric, or n-
symmetric, then T is (m, n)-isosymmetric. A study of this class of operators has been
carried out by Stankus [19,20], and Gu and Stankus [18], amongst others.

For an operator T € B(H), define the operators Lt and Ry € B(B(H)) of left multipli-
cation and (respectively) right multiplication by T by

Lr(X) = TX, Rp(X) = XT.
Then T is n-symmetric, respectively, m-isometric, if and only if
(Lts — Rr)"(I) = &7+ r(I) = 0, , respectively (Lr+R — I)"(I) = A ¢(I) =0
and T is (m, n)-isosymmetric if and only if
(Ly+Ry = )"((Lr+ = Rp)" (1)) = AF. p (83 1(1)) = 0.

Trivially, 6%. 7(I) = 0 if and only if 5?T_A>*’T_A(I) =0forall A € C,and if A € Riis
such that A ¢ o(T), then

o« r(I) =0 5(}7)‘)*1%(1) =0
RffA‘SFT—A)*,T—A(D =
A;Z"*fA,(TfA)*l(I) =0
L3 0(r_pyeroa ) =
AZ’T*%),%T?A(I) =0.

rreet

In this note, we exploit relationships of this type, using little more than some basic
properties of elementary operators, to give a formal, simple proof of the result that 2n-
symmetric operators are (2n — 1)-symmetric. The case n = 1 of this result is of some interest,
more so for the reason that 2-symmetric operators are cohyponormal. Cohyponormal
(m, n)-isosymmetric operators have a particularly simple structure: they are the direct sum
of a unitary operator and a Cypg-contraction (where either of the components may be absent).
The cohyponormality condition is redundant in the case in which (7 = 2 and) 5%*,T(I ) >0;
if also m = 2, then A%. (67 +(I)) > 0 is sufficient to guarantee T is the direct sum of
a unitary operator and a Cyp-contraction. For hyponormal, more generally normaloid,
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(m, n)-isosymmetric T, T is a contraction, hence power bounded. Power bounded (m, n)-
isosymmetric operators T have an upper triangular matrix representation T € B(H1 & H2)
such that the (1,1)-entry is a Cp -operator T; satisfying 5nf“,T1 (Il,) = 0 and the (2,2)-entry
T, satisfies AT, = (Vi @ V}) |3, A for an injective positive operator A € B(H;) (defined by
A =limy_,o T}'T}), unitary V,, and a bilateral shift V.

We introduce our notation/terminology, along with some complementary results,
in the following section, Section 3 is devoted to considering 2n-symmetric and related
operators, and our Section 4 considers the structure of cohyponormal and power bounded
(m, n)-isosymmetric operators.

2. Some Complementary Results

In the following, (.,.) will denote the inner product on H. We shall denote the
approximate point spectrum and the spectrum of an operator T € B(H) by 0,(T) and
o(T), respectively. We shall denote the open unit disc in the complex plane C by I and the
boundary of the unit disc in C by dD. The operator T is power bounded if there exists a
scalar M > 0 such that

sup | T"]| < M.
neN

It is clear from the definition that if T € B() is power bounded, then T* is power
bounded, the spectral radius

r(T) = lim || T"]|7 <1

and the spectrum ¢(T) of T satisfies c(T) C D (= {A € C: |A| < 1}). The operator T is a
Co., respectively, Cy, operator if

lim ||T"x|| =0 forall x € H,
n—oo

respectively, nellfq IT"x|| >0 forall 0# x € H;
n

T € Co(resp., T € Cq)if T* € Co, (resp., T* € C1.)and T € Cupif T € Co. NCp (2, p=0,1).
It is well known [21] that every power bounded operator T € B(#) has an upper triangular
matrix representation

(T T
T—( 0 TZ)GB(Hl@HZ)

for some decomposition H = H; @& Hy of H such that T} € Cp. and T, € Cj.. Recall that
every isometry V € B(H) has a direct sum decomposition

V=V.eV, e B(Hc @HH), V.eCyp and V, € Cy

into its completely non-unitary (i.e., unilateral shift) and unitary parts [22]. Hyponormal
contractions T, i.e., contractions T € B(#H) such that TT* < T*T, are known to have Cj
cnu (=completely non-unitary) parts [23].

The following result from [24] will be used in some of our argument below.

Theorem 1. If A, B € B(H), then the following statements are pairwise equivalent.
(i) ran(A) C ran(B).

(ii) Thereisa y > 0 such that AA* < yzBB*.

(iii) There is an operator C € B(H ) such that A = BC.

Furthermore, if these conditions hold, then the operator C may be chosen so that (a) ||C||? = inf{A :
AA* < ABB*}; (b) ker(A) = ker(C); (c) ran(C) C ker(B)*.
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A pair of operators A, B € B(H) satisfies the Putnam-Fuglede (commutativity) prop-
erty if (52,13 (0) C (523, g+ (0). Itis easily seen that if A, B satisfy the Putnam-Fuglede property
and &4 p(X) = 0, then X(#) reduces A, ker" (X) reduces B, and A|m and B|keri(X) are
unitarily equivalent normal operators. Normal operators satisfy the Putnam-Fuglede prop-
erty [25]. Indeed, more is true. An asymmetric version of the Putnam-Fuglede property
holds for a variety of classes of Hilbert space operators [26], amongst them hyponormal
pairs A and B* € B(H): if A, B* are hyponormal operators, then (5;,13* (0) C (52*1,3(0). Even
more interestingly:

Theorem 2 ([26]). If A, B* € B(*H) are hyponormal operators and n is some positive integer, then
—1 _ _
Oap(0) = 5A,1B* (0) € (SA’},B(O)-

3. n-Symmetric Operators for n Even

We start by proving that n-symmetric operators for n even are (n — 1)-symmetric.
This property of n-symmetric operators is stated in [2] (Theorem 3.4) without a proof (but
with the remark that a proof can be given using the techniques of [1]). Our proof below
uses little more than some well understood properties of elementary operators of left and
right multiplication.

Theorem 3. If T € B(H) is n-symmetric for some positive even integer n, then T is (n — 1)-
symmetric.

Proof. A straightforward argument shows that 0,(T) C R for n-symmetric operator T.
Hence ¢(T) C R, and there exists a non-zero real number A ¢ ¢(T). Since

7o) =0 <= 017, (I) =0
for all real y, we have

It is easily seen (use an induction argument) that

n—1 .
(D) = (LaRs = D"(D) =0 = (LaRa)’ ()= L (")) =0

n—1 n .
< (LaRp)"(I) = (]->qu,3(1)
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for all operators A, B € B(H). Hence, given A, 5(I) =0,
1 n—1 n .
(LaRe) 1) = L () )LaRat 500
j=0
n—1 n—1
n i+1 n '
- o5 o
j=0 j=0
" TR RN
= AAB( )+ Z : AA,B(I)
=\
n —|— 1
- L ( )8l
n+1 1 n- n—+ 1
- ( D ICHIRS o (S IIWE
and by an induction argument that
; ¢ 1 n—2 t .
Lk =,y )0+ 2 (] )Ahs) 0
]:
forall A, B € B(H) and integers t > n. Translating to the operator d7.. 7 (I) = A%, AT—2)1
(I) = 0, we have
—1 \t t n—1 (STRRWY
(e 0 = () )art ];J( )8 e (0
forallt > nandreal A ¢ o(T). Trivially,
N p(I) = LaRpAY 5 (1) = A5 (1) =0 = LaRpA (1) = A5 (D)
SN
—  (LaRp) A5 (1) = AL H (D)
forall A, B € B(H) and integers t > 1. Hence
= ' )art D+ (1) WRr_)'A I
T \n-1 T*fx\,(Tf/\)—l( )+ Z(:) j (Lg_ARr-p) T*—/\,(Tf/\)*l( )
]:
t
= 0< [lx[? = ( o )<Ag*1m - (I)x,X>
+ Z( (B s (DT =25, (T =) 1)
for all x € H and integers t > 1. Letting t — oo, and observing that < " i 1 > is of the

order of "1 and ( ; ), 0 <j < mn-—2,is of the order of =2 a5t — oo,

< (A1 gy (Dxx)

for all x € H. Conclusion:
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Equivalently,

= (-D)"Lpter Tt oA (D).

Thus
—1 p—n+lsn—1 —1sn—1
Lg"*fARTﬁ;\r 5?*4\,%)\(1) = (=1)" 5?*4,%)\(1)'

Since 7., r_,(I) = Oimplies (LT*fARfE)\)nA‘S?:E/\,TfA (I) = ‘5;1"*:1A,T—A (I), and the
integer 7 is even,

ity ra (D) = =05y (D) <= 0 1, (I) = 035 1(D) = 0.
This completes the proof. DO

It is immediate from Theorem 3 that 2-symmetric B(#) operators are symmetric.
A proof of this of a different flavour and (in some respects) of interest in itself may be given
as follows.

Corollary 1 ([2]). A 2-symmetric B(#) operator is self-adjoint.
Proof. For operators T € B(H),
0 < (60« 7(1)* (b () = T*T + TT* — T? — T*2.
If also T is 2-symmetric, then
0% r(I) = T2 —2T*T+ T*> = 0.

Hence
2. (1) = 0 < (8 7(1))* (8 p(I)) = T*T < TT¥,

i.e., T* is hyponormal. Set 67+ 7(I) = X; then T is 2-symmetric if and only if
or+7(X)=T"X—-XT =0.

Applying the Putnam-Fuglede commutativity theorem for hyponormal operators,
we have
T*X - XT=0= TX — XT* =0 <= T*? —2TT* + T* = 0.

Already T*2 —2T*T + T%2 = 0. Hence T*T = TT*, i.e., T is normal. However, then
6% 1(I) = 0 <= 0= (1) = 0
(see Theorem 2). Hence T* =T. O

The argument of the proof of Corollary 1 is suggestive of an interesting proof of a well
known result on invertible 2-isometries [8].

Corollary 2. Invertible 2-isometric B(H ) operators are unitary.
Proof. The operator A7« 7(I) € B(H) being self-adjoint,

(Apor(1))? = (T*T)? —2T*T +1 > 0.
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Since AZT*’T(I) = T*2T? —2T*T + I = 0 and T is invertible, we have
T2T? < (T*T)? <= T*T < TT*,
i.e.,, T* is invertible hyponormal (with a hyponormal inverse T* 71). We have
Nfap(I) =0 <= & 14(I) = 0.

Putnam-Fuglede commutativity theorem for hyponormal operators applies and we
conclude that

G pa(D) =0 = 6p. 1 () =0 =TT = TT" = |,
i.e, T is unitary. O

A generalised version of Corollary 2 is known to hold: if AT (I) = 0 for an invertible
T € B(H) and an even positive integer m, then AT, 1(I) = 0 [8] (Proposition 2.4). Here
the pair (T*, T) may be replaced by the pair (T*, T~1).
Corollary 3. If A’;*’T,l (I) = 0 for an invertible T € B(H) and even positive integer m, then
AL (1) =0,

Proof. The proof is an application of Theorem 3. The hypothesis AT, 1(I) = 0 implies

L' AL g (D) = (=1)"67 1 (1) =0 <= 7 4 (1) =0
— o () =0
= LT (D=0
— A?{l%,l(l) = 0.

This completes the proof. O

Yet another generalisation of Corollary 2 is obtained upon considering operators
T € B(H) such that T € (m, X)-isometric, i.e., operators T € B(H) satisfying AT, 1(X) =

}":o(—l)j r]n T+" 7 XTI = 0, for some positive operator X € B(H). For such opera-

tors T, it is clear from the argument leading to equality (1) that
t t T ST AW,
0< LR ()= (1) )arieo+ T (§) ok
j=0

for all integers t > m. Letting t — oo, one obtains
0 < ARTH(X). @

Proposition 1. If T € B(H) is an invertible (m, X)-isometric operator for some positive operator
X € B(H), then T € (m — 1, X)-isometric.

Proof. T being invertible

A (X) = (LyeRy = D"(X) = (=1)"(Ly-Re)" ((Lr-Re) T = 1) (X)

m

7.1 -1 (X) = 0. Arguing as above, we have

and this since T € (m, X)-isometric implies A

0< AT (X) = (~1)" (LpRy) AT A(X) = ATH(X) <0
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Combining with inequality (2), we obtain the required equality. O

Remark 1. (i) In the presence of the hyponormality hypothesis on T (or T*), the hypothesis
that T is 2 -symmetric is not necessary. Indeed, hyponormal n-symmetric operators T
are self-adjoint. This is seen as follows. A straightforward argument shows 0,(T) C R;
hence ¢(T) C R. Since hyponormal operators with spectrum in R are self-adjoint [27], T
is self-adjoint.

(ii) It is known that hyponormal m-isometric operators are isometric [28]. The fol-
lowing argument shows that a cohyponormal m-isometric operator is unitary. If T is
m-isometric, then 0,(T) is a subset of the boundary of the unit disc in C. Hence T is a
contraction and therefore isometric [28] (Proposition 2.6). The proof now follows, since a
cohyponormal isometry is necessarily unitary.

4. Structure of (m, n)-Isosymmetric Operators

In this section, we consider the structure of power bounded (m, n)-isosymmetric
operators. We start, however, by considering cohyponormal (1, n)-isosymmetric operators.
It is seen that such operators T have a particulary simple structure: T is the direct sum of a
unitary operator with a Cpg-contraction satisfying T € (1,1)-isosymmetric.

By the definition of the approximate point spectrum of an operator, if a A € 0,(T),
then there exists a sequence of unit vectors {x;} C H such that lim;_, || (T — A)x¢|| = 0.
Hence, if T € (m, n)-isosymmetric and A € 0,(T), then

0 — lim Z ( ] ) i(_l)k( 7}’{‘1 )(T’”*jkxt, Tk

t—>oo k=0
_ v D)y k)| R0m—k)
L5 ) ()
= (A=A)"a-[Ap)"
= 04(T) CODUR and ¢(T) CDUR.

Recall that an operator T € B(#) is normaloid if ||T|| equals the spectral radius
r(T) = lim¢ 0 || Tt||% of T. Hyponormal operators are normaloid.
Theorem 4. (a)If T € B(H) is cohyponormal, then the following statements are mutually equivalent.

(i) AT r ((5¥*,T(I)) = 0 for some positive integers m, n.
(Zl) AT*,T(dT*,T(I)) = 0

(iii) T is the direct sum of a unitary with a selfadjoint Coy-contraction.

(b)IfT € B(H) is an invertible operator and m is a positive even integer such that AT, 1 ((5?*1(1)>
> 0and 5%,@(1) >0, or, ATT”*,T (5%1(1)) < 0and 5%1(1) < 0, for some positive integer n,
then A 1 (8. (1)) = 0.

Proof. (a) (iii) = (ii) = (i). f welet T = T;, ® T, € B(H1 @ H), T, unitary and T; a
Cpo-contraction such that T} = T, then

Arer(0r (1)) = Arr(T; —Ty) ©0)
= (0®&Ap)(Ty —Ty) ®0)
= 0

and

P (@ p(D) = AR [88 1A p (0 2(1))] = 0.
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(i) = (iii). In view of our observation on the spectrum of operators T € B(H)
satisfying the equality of (i), the hypothesis T* is hyponormal implies T*, hence T, is a
contraction. Decompose T into its normal and pure (i.e., completely non-normal) parts by
T=T &T, € B(H1® Hy). Then T; is a cnu (= completely non-unitary) Cy -contraction.
The hypothesis

P (@ r(D) = 0= &L A% 1 (o (1)) =0,
where I; is the identity of B(#;). Since

A, (81 1,(1)) = 0 4= 8 1 (A (D)) =0,
if we let A’%}/Ti (I;) = X; and apply Theorem 2 to (5%11, (X;) =0, then

ore,1,(Xi) = Orr 13 (A'ﬁ*,n(h)) = AT, (5T;‘,Ti(1i)) =0.
Choose i = 2. Set A’%‘l%z (572*;2(12)) = Yju—1 and consider Agy 1, (Yy—1). Since
Ars (Y1) =0 = TYy 1T =Yy 1= = T 1Th = Y1

for all positive integers ¢,

[(Y12,2)| = [ (Vo1 T3, T} < [ Yo || T
for all x € H,. Since Ty is a Co -contraction, letting t — oo, we have

[(Yiu_1x,x)| = 0forall x € Hy.

Hence Y,,_1 = A’{g%z (5@%(12)) = 0. Repeating the argument, considering
Arsr, (Yy—2) and Ay, (Yin—3) etc., it follows that

Y1 = A, (5T2*,T2(12)) =0= Yy =dr;,1,(L) =0.
Thus, T; € Cyy is a selfadjoint contraction.

Considering next the case i = 1, the normal contraction Tj is the direct sum of a
unitary and a cnu contraction. Let

T; = T11 @ Tip € B(H11 ® Hiz), Ti1 unitary and Ty, cnu.

Then
— 2 —
A’rll“l*/’]‘l <5T1*,T] (I)> - @j:1 Ag_'l*j,le ((STfj/le (11])) - 0’

where Iy is the identity of B(#1;). Since Ti; is unitary,
AV (5T1*1,T11(111)> =0 5%*11;11 (5T1*1,T11(111)) =0
= Op o <5T1*1,T11(I11)) =0

g ATﬁrTn ((STﬁ'Tn(Ill)) =0.



Axioms 2021, 10, 256 10 of 14

The operator T, being a normal cnu-contraction is a Cyp-contraction. Arguing as
above, this implies

TAY S (‘5Tf2,T12(112)) = 0= dry,1,,(I12) =0,

i.e., T1p € Cyo-contraction is selfadjoint. To complete the proof, define T, and T, by T, = T1;
and T, = Ty, @ T».

(b) We prove that either of the hypotheses implies equality (i) of part a. The proof in

both the cases being almost the same, simply substitute —X for X in the argument below,
we consider the case AT, 1(07. r(I)) > 0and 0% 1(I) > 0. Let 67, 7(I) = X; then

m—1 .
0 < AT r(X) <= 0 < (Lr+Rp)"™(X) — Z < T )AJT*IT(X)
j=0

implies
1 m—1 m .
0 < R0 - L (" )LeRea) (0
j=0

= (R0 - (] )arieo - T_ZOZ (") ok

and this (using an induction argument as in the proof of (1)) implies

o< R0~ (1,0 )arAeo+ T () sk ®

m—1 S\

for all integers t > m. Thus

<A’%1Z/%(X)x,x> < <1t> <{(LT*RT)t(X)+’;§2< ; >A9*,T(X)}x,x>]
m—1

- [l (B )encons)

(i)

) is of the order of #"~1 and (

for all x € H. Since ( . ) is of the order of "2

t
m—1 j
(for0 < j < m—2)ast — oo, letting t — co we have

(A1 1(X)x,x) < Oforall x € H — AITL(X) < 0.
The invertibility of T implies
A7 r(X) = (1) (Lr+Rr)" AL 1 11 (X)

and hence since m is even

(Lr-Rr) " 1 (X) =0 4= A 1(X) =0,
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Arguing as above, we conclude
0< AL (X)) = (LAIRZH™ (-1 1A L(X) = 0< (-1)" AT L(X)
1,11 —A\RTERT T*T T
Hence
ARTH(X) = 0= A 1(X) =0 <= AL (6% (1)) =0
and the proof is complete. O

The hypothesis T* is hyponormal is redundant in the case in which n = 2 and
62, 1(I) > 0. (For then 62. +(I) > 0 and (67« r(I)*(é7-,r(I)) > 0imply TT* > T*T.)
Furthermore, if also m = 2, then the hypothesis T is invertible may be dispensed with in
Theorem 4(b).

Theorem 5. If 52*/T(I) and AzT*/T (5%*1(1)) are both greater than or equal to 0, then
Aqx 707+ 7(1)) = 0and T is the direct sum of a unitary with a Cop-contraction.

Proof. The cohyponormality of T implies T is a contraction, hence has a direct
sum decomposition

T=T,®T. € B(H1®Hz), Ty = T|y, unitary and T. = T|y, a cnu Cp, — contraction.
If we let
X =63 1(1) = 6% 1, (h) ® 6% 1. () = X1 @ Xo € B(H1 @ Ha), Ij = I|5, i =1,2,
then X; > 0fori=1,2and

At p(X) = AL,

ur

The operator T, being unitary, Theorem 4(b) implies
A (Xl) >0 <— AT[:,TM (5TJ,TM(11)) =0.

Consider now the operator AT* (X2) = O 1.(Xa1) = 0 X = O 1 (Xo).
We have

A1 (Xo1) > 0= Ti X1 T > X1 = T2 X T2 > Xo1 = -+ = T} X TE > X
for all positive integers t. Hence
(X%, %) < (T X Thx, x) < || X ||| Thx|)?
for all x € Hy. Letting t — oo, this implies
(Xa1%,%) < Jim || X1 || T2x|* = 0
for all x € H,. Hence
X0 = Arpr, (5%;,TC(12)) = 0% 1. (A 1.(l)) = 0.
The operator T being hyponormal, it follows from an application of Theorem 2 that

o 1, (A1, (I2)) = Ope 1, (0121, (12)) = 0.
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This completes the proof. O

A result similar to that of Theorem 4 does not hold for hyponormal T. For example, if T
is the forward unilateral shift T (x1,x2, x3,- ) = (0,x1,x2,- - ), then AT, 1 ( T T(I)) =0
for all positive integers m, n. However, hyponormal T is neither unitary nor self-adjoint
nor a direct sum of the two. If T is hyponormal and satisties AT, 1 (55‘"*1(1 )) =0,thenT
is a contraction, hence power bounded. For power bounded operators T € B(#H ) satisfying
AT 1 ((5¥*,T(I )) = 0, Theorem 4 has the following analogue.

Theorem 6. If a power bounded operator T € B(H) satisfies AT. 1 ( T+ (1 )) = 0 for some
positive integers m and n, then:

W) O (6 (D) =0;

(ii)  there exist decompositions H = Hq, @& Hy = H1 ® (Hy1 & Hoap), a Hilbert space K =
Hor ® (K © Hyp) and operators Ty € B(H1), T» € B(Hp), T3 € B(Hy, Hi), Vi €
B(H21), Ve € B(Hx), V, = ( ‘(/)C i ) € B(K) (for some operators Z € B(K &

Hoo, M), Y € B(K © Hap)) such that T = ( 7& ? ) € B(H1®H,), Ty € Co,
2

satisfies 5?1*%(1 l2,) = 0, Vi is unitary, V. is a unilateral shift, V}, is a bilateral shift,
the positive operator limy_,o T3'Ts = A is injective and AT, = (V,, & V;,)| 3, A

We remark here that either of the components in Theorem 6, as also in Theorem 4,
may be missing.

Proof. If we set 67. (I) = X, then AT (X) = 0and

(Lr-Rp)!(X) = ( o )A*;:,%(X) +’:zj ( ; )A]’T*,T(m

for all integers t > m (see the proof of Theorem 4(b) above). The operator T being power
bounded, there exists a real number M > 0 such that ||T!|| < M for all integers t > 0.

We have
L} )b
j=

|2r200]| < Jim —— [H(LT*RT X)|| + —0.

)

Hence
AT (X) =0.

Repeating the argument a finite number of time, we conclude
AT*,T(X) =0 (<:> AT*,T ((5?*/]-([)) = 5%*,T<AT*,T(I)) = 0).

Recall [21], that the power bounded operator T has an upper triangular
matrix representation

T— ( f; :g ) € B(H, @ Ha), 4)

where T1 € Cyp and T, € C;.. Evidently,

Arer(X) = 0= Are g (8 1, (1)) =0, I = Ily,.
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Set (55‘-1*,T1 (I;) = Xy. Then

Ar (X1) = 0= TiX Ty = Xp = TPX0 T = X = - = T X T = X4

for all integers t > 0. Since T7 € Cy,, for every x € H;,

1 Kt 3o it < 1i el = 0.
[(Xax, x0)| = Jim [(T7" Xy Trx, x) | < Jim [ }[| Tx]| ™ = 0
Hence
Xy =07 1, () = 0.
Consider now the power bounded operator T5. Since T, € Cy, Ty is injective and
lim T5'T) = A
it 212
exists and is a positive injective operator which satisfies
T, AT, = A

Ref. [29] (Theorem 5.1). An application of Theorem 1 implies the existence of an
isometry V € B(H;) satisfying
ASTy = VAL,
Since every isometry is part of a unitary, there exists a decomposition Hy = Hy1 @ Haz,
a Hilbert space KL = Ha & (K & Hypz) and a unitary

Vu 0 0
W=[ 0 V. Y | €BHa®Hn®(KSH)),
o 0 =z

Y € B(K©Hxn, Haz) and Z € B(K & Hao) some operators, such that V, is unitary, V, is

‘(/)c )Z( ) is a bilateral shift and V = W|;,_[2 [22] (Lemma 5.7, Page 82).

Evidently A2T, = W]y, AZ. O

a unilateral shift, (

If n = 2 in the preceding theorem, then 5T1*,T1(11) = 0 and the operator Tj is a
selfadjoint Cpp-operator. Furthermore, if the normal parts of the operator T reduce T, then
T3 =0.

An operator S € B(H) is paranormal if ||Sx||? < ||S?x|| for all unit vectors x € H.
Hyponormal operators are paranormal, paranormal operators are normaloid, the restriction
of a paranormal operator to an invaraint subspace is again paranormal [25] and J4 %,* (0) C

5521,‘/(0) for paranormal S and isometric V € B(H) [30] (p. 316). Hence if the operator T*
of Theorem 4 is paranormal, then dy T, (A%) = 0 implies dy+ 1y (A%) = 0. Consequently, T,
is unitary and (since T* is necessarily a contraction and the unitary parts of a contraction
reduce the contraction) T3 = 0 in representation (4) of T. Thus, T = T; & Tp, (5}11*11 (L) =0

and T, is unitary. If we now assume n = 2 in Theorem 4, then we have the following
generalisation of a result of Stankus [19] (Proposition 5.22).

Corollary 4. If AT, 1 ((5%*1(1)) = 0 for some paranormal operator T* € B(H) and integer
m > 1, then T is the direct sum of a selfadjoint operator with a unitary.

Proof. Asseenabove T = Tj & T,, where T, is unitary and 5%]*11 (I;) = 0. Since 5%]*11 (L) =0
if and only if 1+ 1, (I1) = 0, the proof follows. O
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