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Abstract: For a Hilbert space operator T ∈ B(H), let LT and RT ∈ B(B(H)) denote, respectively,
the operators of left multiplication and right multiplication by T. For positive integers m and n, let
4m

T∗ ,T(I) = (LT∗RT − I)m(I) and δn
T∗ ,T(I) = (LT∗ − RT)

m(I). The operator T is said to be (m, n)-

isosymmetric if 4m
T∗ ,T

(
δn

T∗ ,T(I)
)
= 0. Power bounded (m, n)-isosymmetric operators T ∈ B(H)

have an upper triangular matrix representation T =

(
T1 T3

0 T2

)
∈ B(H1 ⊕H2) such that T1 ∈ B(H1)

is a C0.-operator which satisfies δn
T∗1 ,T1

(I|H1 ) = 0 and T2 ∈ B(H2) is a C1.-operator which satisfies

AT2 = (Vu ⊕Vb)|H2 A, A = limt→∞ T∗t2 Tt
2, Vu is a unitary and Vb is a bilateral shift. If, in particular,

T is cohyponormal, then T is the direct sum of a unitary with a C00-contraction.

Keywords: Hilbert space; left/right multiplication operator; (m, n)-symmetric operator; hyponormal
operator; C00-operator; unitary operator

1. Introduction

Let B(H) denote the algebra of operators, i.e., bounded linear transformations, on an
infinite dimensional complex Hilbert spaceH into itself. Let C denote the complex plane
and z the conjugate of z ∈ C. For a given polynomial f (z) = ∑i,j cijzizj on C and an
operator T ∈ B(H), define f (T) by f (T) = ∑i,j cijT∗iT j. Then T is said to be a (hereditary)
root of f if f (T) = 0. An operator T ∈ B(H) is n-selfadjoint for some positive integer n if
T is a root of the polynomial f (z) = (z− z)n, equivalently, if

δn
T∗ ,T(I) =

n

∑
j=0

(−1)j
(

n
j

)
T∗(n−j)T j = 0,

and T is m-isometric for some positive integer m if it is a root of the polynomial f (z) =
(zz− 1)m, equivalently, if

4m
T∗ ,T(I) =

m

∑
j=0

(−1)j
(

m
j

)
T∗(m−j)Tm−j = 0.

The classes consisting of n-selfadjoint and m-isometric operators have been studied
extensively by a large number of authors in the recent past (see list of references for
further references).

The development of the theory of m-selfadjoint operators in infinite dimensional
Hilbert spaces was motivated by the seminal work of Helton [1], who observed an unex-
pected, intimate connection with differential equations, in particular conjugate point theory
and disconjugacy. McCullough and Rodman [2] in their consideration of algebraic and spec-
tral properties of n-symmetric operators remark [2] (p. 419), that the authors of [1,3,4] were
certainly aware of the fact that every 2-symmetric operator is 1-symmetric, even though
they do not explicitly state so. More generally, McCullough and Rodman [2] (Theorem 3.1)
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state that the techniques of Helton [1] lead to a possible proof of the more general result
that “2n-symmetric operators are (2n− 1)-symmetric”. The class of m-symmetric operators
was introduced by Agler [3] and studied in a series of papers by Agler and Stankus [5–7];
properties of m-isometric operators, amongst them the spectral picture, strict m-isometries,
perturbation by commuting nilpotents and the product of m-isometries, have since been
studied by a large number of authors, amongst them Bayart [8], Bermudez et al. [9–11],
Botelho and Jamison [12], Duggal et al. [13–15], and Gu et al. [16–18]. The (hereditary) roots
of the polynomial (zz− 1)m(z− z)n = 0 have been called (m, n)-isosymmetric operators;
thus T is (m, n)-isosymmetric if and only if

4m
T∗ ,T

(
δn

T∗ ,T(I)
)

=
m

∑
j=0

(−1)j
(

m
j

)
T∗(m−j)

(
n

∑
k=0

(−1)k
(

n
k

)
T∗(n−k)Tk

)
Tm−j

= δn
T∗ ,T

(
4m

T∗ ,T(I)
)

=
n

∑
k=0

(−1)k
(

n
k

)
T∗(n−k)

(
m

∑
j=0

(−1)j
(

m
j

)
T∗(m−j)Tm−j

)
Tk

= 0.

Examples of (m, n)-isosymmetric operators occur naturally. Thus, every isometric
operator T ∈ B(H) is (1, 1)-isosymmetric. Indeed, if T ∈ B(H) is m-isometric, or n-
symmetric, then T is (m, n)-isosymmetric. A study of this class of operators has been
carried out by Stankus [19,20], and Gu and Stankus [18], amongst others.

For an operator T ∈ B(H), define the operators LT and RT ∈ B(B(H)) of left multipli-
cation and (respectively) right multiplication by T by

LT(X) = TX, RT(X) = XT.

Then T is n-symmetric, respectively, m-isometric, if and only if

(LT∗ − RT)
n(I) = δn

T∗ ,T(I) = 0, , respectively (LT∗RT − I)m(I) = 4m
T∗ ,T(I) = 0

and T is (m, n)-isosymmetric if and only if

(LT∗RT − I)m((LT∗ − RT)
n(I)) = 4m

T∗ ,T
(
δn

T∗ ,T(I)
)
= 0.

Trivially, δn
T∗ ,T(I) = 0 if and only if δn

(T−λ)∗ ,T−λ
(I) = 0 for all λ ∈ C, and if λ ∈ R is

such that λ /∈ σ(T), then

δn
T∗ ,T(I) = 0 ⇐⇒ δn

(T−λ)∗ ,T−λ(I) = 0

⇐⇒ R−n
T−λδn

(T−λ)∗ ,T−λ(I) = 0

⇐⇒ 4n
T∗−λ,(T−λ)−1(I) = 0

⇐⇒ L−n
T∗−λδn

(T−λ)∗ ,T−λ(I) = 0

⇐⇒ 4n
(T∗−λ)−1,T−λ

(I) = 0.

In this note, we exploit relationships of this type, using little more than some basic
properties of elementary operators, to give a formal, simple proof of the result that 2n-
symmetric operators are (2n− 1)-symmetric. The case n = 1 of this result is of some interest,
more so for the reason that 2-symmetric operators are cohyponormal. Cohyponormal
(m, n)-isosymmetric operators have a particularly simple structure: they are the direct sum
of a unitary operator and a C00-contraction (where either of the components may be absent).
The cohyponormality condition is redundant in the case in which (n = 2 and) δ2

T∗ ,T(I) ≥ 0;
if also m = 2, then 42

T∗ ,T(δ
2
T∗ ,T(I)) ≥ 0 is sufficient to guarantee T is the direct sum of

a unitary operator and a C00-contraction. For hyponormal, more generally normaloid,
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(m, n)-isosymmetric T, T is a contraction, hence power bounded. Power bounded (m, n)-
isosymmetric operators T have an upper triangular matrix representation T ∈ B(H1 ⊕H2)
such that the (1, 1)-entry is a C0.-operator T1 satisfying δn

T∗1 ,T1
(I|H1) = 0 and the (2, 2)-entry

T2 satisfies AT2 = (Vu ⊕Vb)|H2 A for an injective positive operator A ∈ B(H2) (defined by
A = limt−→∞ T∗t2 Tt

2), unitary Vu and a bilateral shift Vb.
We introduce our notation/terminology, along with some complementary results,

in the following section, Section 3 is devoted to considering 2n-symmetric and related
operators, and our Section 4 considers the structure of cohyponormal and power bounded
(m, n)-isosymmetric operators.

2. Some Complementary Results

In the following, 〈., .〉 will denote the inner product on H. We shall denote the
approximate point spectrum and the spectrum of an operator T ∈ B(H) by σa(T) and
σ(T), respectively. We shall denote the open unit disc in the complex plane C by D and the
boundary of the unit disc in C by ∂D. The operator T is power bounded if there exists a
scalar M > 0 such that

sup
n∈N
‖Tn‖ ≤ M.

It is clear from the definition that if T ∈ B(H) is power bounded, then T∗ is power
bounded, the spectral radius

r(T) = lim
n→∞

‖Tn‖
1
n ≤ 1

and the spectrum σ(T) of T satisfies σ(T) ⊆ D (= {λ ∈ C : |λ| ≤ 1}). The operator T is a
C0., respectively, C1., operator if

lim
n→∞

‖Tnx‖ = 0 for all x ∈ H,

respectively, inf
n∈N
‖Tnx‖ > 0 for all 0 6= x ∈ H;

T ∈ C.0 (resp., T ∈ C.1) if T∗ ∈ C0. (resp., T∗ ∈ C1.) and T ∈ Cαβ if T ∈ Cα. ∩C.β (α, β = 0, 1).
It is well known [21] that every power bounded operator T ∈ B(H) has an upper triangular
matrix representation

T =

(
T1 T3
0 T2

)
∈ B(H1 ⊕H2)

for some decomposition H = H1 ⊕H2 of H such that T1 ∈ C0. and T2 ∈ C1.. Recall that
every isometry V ∈ B(H) has a direct sum decomposition

V = Vc ⊕Vu ∈ B(Hc ⊕Hu), Vc ∈ C10 and Vu ∈ C11

into its completely non-unitary (i.e., unilateral shift) and unitary parts [22]. Hyponormal
contractions T, i.e., contractions T ∈ B(H) such that TT∗ ≤ T∗T, are known to have C.0
cnu (=completely non-unitary) parts [23].

The following result from [24] will be used in some of our argument below.

Theorem 1. If A, B ∈ B(H), then the following statements are pairwise equivalent.

(i) ran(A) ⊆ ran(B).
(ii) There is a µ ≥ 0 such that AA∗ ≤ µ2BB∗.
(iii) There is an operator C ∈ B(H) such that A = BC.

Furthermore, if these conditions hold, then the operator C may be chosen so that (a) ‖C‖2 = inf{λ :
AA∗ ≤ λBB∗}; (b) ker(A) = ker(C); (c) ran(C) ⊆ ker(B)⊥.
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A pair of operators A, B ∈ B(H) satisfies the Putnam–Fuglede (commutativity) prop-
erty if δ−1

A,B(0) ⊆ δ−1
A∗ ,B∗(0). It is easily seen that if A, B satisfy the Putnam–Fuglede property

and δA,B(X) = 0, then X(H) reduces A, ker⊥(X) reduces B, and A|X(H)
and B|ker⊥(X)

are
unitarily equivalent normal operators. Normal operators satisfy the Putnam–Fuglede prop-
erty [25]. Indeed, more is true. An asymmetric version of the Putnam–Fuglede property
holds for a variety of classes of Hilbert space operators [26], amongst them hyponormal
pairs A and B∗ ∈ B(H): if A, B∗ are hyponormal operators, then δ−1

A,B∗(0) ⊆ δ−1
A∗ ,B(0). Even

more interestingly:

Theorem 2 ([26]). If A, B∗ ∈ B(H) are hyponormal operators and n is some positive integer, then

δn−1

A,B∗(0) = δ−1
A,B∗(0) ⊆ δ−1

A∗ ,B(0).

3. n-Symmetric Operators for n Even

We start by proving that n-symmetric operators for n even are (n − 1)-symmetric.
This property of n-symmetric operators is stated in [2] (Theorem 3.4) without a proof (but
with the remark that a proof can be given using the techniques of [1]). Our proof below
uses little more than some well understood properties of elementary operators of left and
right multiplication.

Theorem 3. If T ∈ B(H) is n-symmetric for some positive even integer n, then T is (n− 1)-
symmetric.

Proof. A straightforward argument shows that σa(T) ⊂ R for n-symmetric operator T.
Hence σ(T) ⊂ R, and there exists a non-zero real number λ /∈ σ(T). Since

δn
T∗ ,T(I) = 0⇐⇒ δn

T∗−µ,T−µ(I) = 0

for all real µ, we have

δn
T∗ ,T(I) = 0⇐⇒ R−n

T−λδn
T∗−λ,T−λ(I) = 0⇐⇒ 4n

T∗−λ,(T−λ)−1(I) = 0.

It is easily seen (use an induction argument) that

4n
A,B(I) = (LARB − I)n(I) = 0 ⇐⇒ (LARB)

n(I)−
n−1

∑
j=0

(
n
j

)
4j

A,B(I) = 0

⇐⇒ (LARB)
n(I) =

n−1

∑
j=0

(
n
j

)
4j

A,B(I)
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for all operators A, B ∈ B(H). Hence, given4n
A,B(I) = 0,

(LARB)
n+1(I) =

n−1

∑
j=0

(
n
j

)
LARB4

j
A,B(I)

=
n−1

∑
j=0

(
n
j

)
4j+1

A,B(I) +
n−1

∑
j=0

(
n
j

)
4j

A,B(I)

=

(
n

n− 1

)
4n

A,B(I) +
n−1

∑
j=0

(
n + 1

j

)
4j

A,B(I)

=
n−1

∑
j=0

(
n + 1

j

)
4j

A,B(I)

=

(
n + 1
n− 1

)
4n−1

A,B (I) +
n−2

∑
j=0

(
n + 1

j

)
4j

A,B(I),

and by an induction argument that

(LARB)
t(I) =

(
t

n− 1

)
4n−1

A,B (I) +
n−2

∑
j=0

(
t
j

)
4j

A,B(I) (1)

for all A, B ∈ B(H) and integers t ≥ n. Translating to the operator δn
T∗ ,T(I) = 4n

T∗−λ,(T−λ)−1

(I) = 0, we have

(LT∗−λR−1
T−λ)

t(I) =
(

t
n− 1

)
4n−1

T∗−λ,(T−λ)−1(I) +
n−2

∑
j=0

(
t
j

)
4j

T∗−λ,(T−λ)−1(I)

for all t ≥ n and real λ /∈ σ(T). Trivially,

4n
A,B(I) = LARB4n−1

A,B (I)−4n−1
A,B (I) = 0 =⇒ LARB4n−1

A,B (I) = 4n−1
A,B (I)

=⇒ · · ·
=⇒ (LARB)

t4n−1
A,B (I) = 4n−1

A,B (I)

for all A, B ∈ B(H) and integers t ≥ 1. Hence

I =
(

t
n− 1

)
4n−1

T∗−λ,(T−λ)−1(I) +
n−2

∑
j=0

(
t
j

)
(L−1

T∗−λRT−λ)
t4j

T∗−λ,(T−λ)−1(I)

=⇒ 0 ≤ ‖x‖2 =

(
t

n− 1

)〈
4n−1

T∗−λ,(T−λ)−1(I)x, x
〉

+
n−2

∑
j=0

(
t
j

)〈
4j

T∗−λ,(T−λ)−1(I)(T − λ)tx, (T − λ)−tx
〉

for all x ∈ H and integers t ≥ 1. Letting t → ∞, and observing that
(

t
n− 1

)
is of the

order of tn−1 and
(

t
j

)
, 0 ≤ j ≤ n− 2, is of the order of tn−2 as t→ ∞,

0 ≤
〈
4n−1

T∗−λ,(T−λ)−1(I)x, x
〉

for all x ∈ H. Conclusion:
4n−1

T∗−λ,(T−λ)−1(I) ≥ 0.



Axioms 2021, 10, 256 6 of 14

Equivalently,

0 ≤ 4n−1
T∗−λ,(T−λ)−1(I)

= R−n+1
T−λ δn−1

T∗−λ,T−λ(I)

= (4n−1
T∗−λ,(T−λ)−1(I))∗

= 4n−1
(T∗−λ)−1,T−λ

(I)

= (−1)n−1L−n+1
T∗−λ δn−1

T∗−λ,T−λ(I).

Thus
Ln−1

T∗−λR−n+1
T−λ δn−1

T∗−λ,T−λ(I) = (−1)n−1δn−1
T∗−λ,T−λ(I).

Since δn
T∗−λ,T−λ(I) = 0 implies (LT∗−λR−1

T−λ)
n−1δn−1

T∗−λ,T−λ(I) = δn−1
T∗−λ,T−λ(I), and the

integer n is even,

δn−1
T∗−λ,T−λ(I) = −δn−1

T∗−λ,T−λ(I)⇐⇒ δn−1
T∗−λ,T−λ(I) = δn−1

T∗ ,T(I) = 0.

This completes the proof.

It is immediate from Theorem 3 that 2-symmetric B(H) operators are symmetric.
A proof of this of a different flavour and (in some respects) of interest in itself may be given
as follows.

Corollary 1 ([2]). A 2-symmetric B(H) operator is self-adjoint.

Proof. For operators T ∈ B(H),

0 ≤ (δT∗ ,T(I))∗(δT∗ ,T(I)) = T∗T + TT∗ − T2 − T∗2.

If also T is 2-symmetric, then

δ2
T∗ ,T(I) = T∗2 − 2T∗T + T2 = 0.

Hence
δ2

T∗ ,T(I) = 0 ≤ (δT∗ ,T(I))∗(δT∗ ,T(I)) =⇒ T∗T ≤ TT∗,

i.e., T∗ is hyponormal. Set δT∗ ,T(I) = X; then T is 2-symmetric if and only if

δT∗ ,T(X) = T∗X− XT = 0.

Applying the Putnam–Fuglede commutativity theorem for hyponormal operators,
we have

T∗X− XT = 0 =⇒ TX− XT∗ = 0⇐⇒ T∗2 − 2TT∗ + T2 = 0.

Already T∗2 − 2T∗T + T2 = 0. Hence T∗T = TT∗, i.e., T is normal. However, then

δ2
T∗ ,T(I) = 0⇐⇒ δT∗ ,T(I) = 0

(see Theorem 2). Hence T∗ = T.

The argument of the proof of Corollary 1 is suggestive of an interesting proof of a well
known result on invertible 2-isometries [8].

Corollary 2. Invertible 2-isometric B(H) operators are unitary.

Proof. The operator4T∗ ,T(I) ∈ B(H) being self-adjoint,

(4T∗,T(I))2 = (T∗T)2 − 2T∗T + I ≥ 0.
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Since42
T∗ ,T(I) = T∗2T2 − 2T∗T + I = 0 and T is invertible, we have

T∗2T2 ≤ (T∗T)2 ⇐⇒ T∗T ≤ TT∗,

i.e., T∗ is invertible hyponormal (with a hyponormal inverse T∗−1). We have

42
T∗ ,T(I) = 0⇐⇒ δ2

T∗ ,T−1(I) = 0.

Putnam–Fuglede commutativity theorem for hyponormal operators applies and we
conclude that

δ2
T∗ ,T−1(I) = 0⇐⇒ δT∗ ,T−1(I) = 0⇐⇒ T∗T = TT∗ = I,

i.e., T is unitary.

A generalised version of Corollary 2 is known to hold: if4m
T∗ ,T(I) = 0 for an invertible

T ∈ B(H) and an even positive integer m, then 4m−1
T∗ ,T (I) = 0 [8] (Proposition 2.4). Here

the pair (T∗, T) may be replaced by the pair (T∗, T−1).

Corollary 3. If 4m
T∗ ,T−1(I) = 0 for an invertible T ∈ B(H) and even positive integer m, then

4m−1
T∗ ,T−1(I) = 0.

Proof. The proof is an application of Theorem 3. The hypothesis4m
T∗ ,T(I) = 0 implies

L−m
T∗ 4

m
T∗ ,T−1(I) = (−1)mδm

T∗−1,T−1(I) = 0 ⇐⇒ δm
T∗−1,T−1(I) = 0

=⇒ δm−1
T∗−1,T−1(I) = 0

⇐⇒ Lm−1
T∗ δm−1

T∗−1,T−1(I) = 0

⇐⇒ 4m−1
T∗ ,T−1(I) = 0.

This completes the proof.

Yet another generalisation of Corollary 2 is obtained upon considering operators
T ∈ B(H) such that T ∈ (m, X)-isometric, i.e., operators T ∈ B(H) satisfying4m

T∗ ,T(X) =

∑m
j=0(−1)j

(
m
j

)
T∗

m−j
XTm−j = 0, for some positive operator X ∈ B(H). For such opera-

tors T, it is clear from the argument leading to equality (1) that

0 ≤ (LT∗RT)
t(X) =

(
t

m− 1

)
4m−1

T∗ ,T (X) +
m−2

∑
j=0

(
t
j

)
4j

T∗ ,T(X)

for all integers t ≥ m. Letting t→ ∞, one obtains

0 ≤ 4m−1
T∗ ,T (X). (2)

Proposition 1. If T ∈ B(H) is an invertible (m, X)-isometric operator for some positive operator
X ∈ B(H), then T ∈ (m− 1, X)-isometric.

Proof. T being invertible

4m
T∗ ,T(X) = (LT∗RT − I)m(X) = (−1)m(LT∗RT)

m
(
(LT∗RT)

−1 − I
)m

(X)

and this since T ∈ (m, X)-isometric implies4m
T∗−1,T−1(X) = 0. Arguing as above, we have

0 ≤ 4m−1
T∗−1,T−1(X) = (−1)m−1(LT∗RT)

−m+14m−1
T∗ ,T (X) =⇒ 4m−1

T∗ ,T (X) ≤ 0.
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Combining with inequality (2), we obtain the required equality.

Remark 1. (i) In the presence of the hyponormality hypothesis on T (or T∗), the hypothesis
that T is 2 -symmetric is not necessary. Indeed, hyponormal n-symmetric operators T
are self-adjoint. This is seen as follows. A straightforward argument shows σa(T) ⊂ R;
hence σ(T) ⊂ R. Since hyponormal operators with spectrum in R are self-adjoint [27], T
is self-adjoint.

(ii) It is known that hyponormal m-isometric operators are isometric [28]. The fol-
lowing argument shows that a cohyponormal m-isometric operator is unitary. If T is
m-isometric, then σa(T) is a subset of the boundary of the unit disc in C. Hence T is a
contraction and therefore isometric [28] (Proposition 2.6). The proof now follows, since a
cohyponormal isometry is necessarily unitary.

4. Structure of (m, n)-Isosymmetric Operators

In this section, we consider the structure of power bounded (m, n)-isosymmetric
operators. We start, however, by considering cohyponormal (m, n)-isosymmetric operators.
It is seen that such operators T have a particulary simple structure: T is the direct sum of a
unitary operator with a C00-contraction satisfying T ∈ (1, 1)-isosymmetric.

By the definition of the approximate point spectrum of an operator, if a λ ∈ σa(T),
then there exists a sequence of unit vectors {xt} ⊆ H such that limt→∞ ‖(T − λ)xt‖ = 0.
Hence, if T ∈ (m, n)-isosymmetric and λ ∈ σa(T), then

0 = lim
t→∞

n

∑
j=0

(−1)j
(

n
j

) m

∑
k=0

(−1)k
(

m
k

)
〈Tm+j−kxt, Tm+n−j−kxt〉

=
n

∑
j=0

(−1)j
(

n
j

)
λ
(n−j)

λj
m

∑
k=0

(−1)k
(

m
k

)
|λ|2(m−k)

= (λ− λ)n(1− |λ|2)m

=⇒ σa(T) ⊆ ∂D∪R and σ(T) ⊆ D∪R.

Recall that an operator T ∈ B(H) is normaloid if ‖T‖ equals the spectral radius
r(T) = limt→∞ ‖Tt‖ 1

t of T. Hyponormal operators are normaloid.

Theorem 4. (a) If T ∈ B(H) is cohyponormal, then the following statements are mutually equivalent.

(i) 4m
T∗ ,T

(
δn

T∗ ,T(I)
)
= 0 for some positive integers m, n.

(ii) 4T∗ ,T(δT∗ ,T(I)) = 0.
(iii) T is the direct sum of a unitary with a selfadjoint C00-contraction.

(b) If T ∈ B(H) is an invertible operator and m is a positive even integer such that4m
T∗ ,T

(
δn

T∗ ,T(I)
)

≥ 0 and δn
T∗ ,T(I) ≥ 0, or, 4m

T∗ ,T

(
δn

T∗ ,T(I)
)
≤ 0 and δn

T∗ ,T(I) ≤ 0, for some positive integer n,

then4m
T∗ ,T

(
δn

T∗ ,T(I)
)
= 0.

Proof. (a) (iii) =⇒ (ii) =⇒ (i). If we let T = Tu ⊕ Tc ∈ B(H1 ⊕H2), Tu unitary and Tc a
C00-contraction such that T∗c = Tc, then

4T∗ ,T(δT∗ ,T(I)) = 4T∗ ,T((T∗u − Tu)⊕ 0)

=
(
0⊕4T∗c ,Tc

)
((T∗u − Tu)⊕ 0)

= 0

and
4m

T∗ ,T
(
δn

T∗ ,T(I)
)
= 4m−1

T∗ ,T

[
δn−1

T∗ ,T(4T∗ ,T(δT∗ ,T(I)))
]
= 0.
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(i) =⇒ (iii). In view of our observation on the spectrum of operators T ∈ B(H)
satisfying the equality of (i), the hypothesis T∗ is hyponormal implies T∗, hence T, is a
contraction. Decompose T into its normal and pure (i.e., completely non-normal) parts by
T = T1 ⊕ T2 ∈ B(H1 ⊕H2). Then T2 is a cnu (= completely non-unitary) C0.-contraction.
The hypothesis

4m
T∗ ,T

(
δn

T∗ ,T(I)
)
= 0⇐⇒ ⊕2

i=14m
T∗i ,Ti

(
δn

T∗i ,Ti
(Ii)
)
= 0,

where Ii is the identity of B(Hi). Since

4m
T∗i ,Ti

(
δn

T∗i ,Ti
(Ii)
)
= 0⇐⇒ δn

T∗i ,Ti

(
4m

T∗i ,Ti
(I)
)
= 0,

if we let4m
T∗i ,Ti

(Ii) = Xi and apply Theorem 2 to δn
T∗i ,Ti

(Xi) = 0, then

δT∗i ,Ti (Xi) = δT∗i ,Ti

(
4m

T∗i ,Ti
(Ii)
)
= 4m

T∗i ,Ti

(
δT∗i ,Ti (Ii)

)
= 0.

Choose i = 2. Set4m−1
T∗2 ,T2

(
δT∗2 ,T2(I2)

)
= Ym−1 and consider4T∗2 ,T2(Ym−1). Since

4T∗2 ,T2(Ym−1) = 0 =⇒ T∗2 Ym−1T2 = Ym−1 =⇒ · · · =⇒ T∗t2 Ym−1Tt
2 = Ym−1

for all positive integers t,

|〈Ym−1x, x〉| =
∣∣〈Ym−1Tt

2x, Tt
2x〉
∣∣ ≤ ‖Ym−1‖

∥∥Tt
2x
∥∥2

for all x ∈ H2. Since T2 is a C0.-contraction, letting t→ ∞, we have

|〈Ym−1x, x〉| = 0 for all x ∈ H2.

Hence Ym−1 = 4m−1
T∗2 ,T2

(
δT∗, T2(I2)

)
= 0. Repeating the argument, considering

4T∗2 ,T2(Ym−2) and4T∗2 ,T2(Ym−3) etc., it follows that

Y1 = 4T∗2 ,T2

(
δT∗2 ,T2(I2)

)
= 0 =⇒ Y0 = δT∗2 ,T2(I2) = 0.

Thus, T2 ∈ C00 is a selfadjoint contraction.

Considering next the case i = 1, the normal contraction T1 is the direct sum of a
unitary and a cnu contraction. Let

T1 = T11 ⊕ T12 ∈ B(H11 ⊕H12), T11 unitary and T12 cnu.

Then
4n

T∗1 ,T1

(
δT∗1 ,T1(I)

)
= ⊕2

j=14n
T∗1j ,T1j

(
δT∗1j ,T1j(I1j)

)
= 0,

where I1j is the identity of B(H1j). Since T11 is unitary,

4n
T∗11,T11

(
δT∗11,T11(I11)

)
= 0 ⇐⇒ δn

T∗11,T−1
11

(
δT∗11,T11(I11)

)
= 0

⇐⇒ δT∗11,T−1
11

(
δT∗11,T11(I11)

)
= 0

⇐⇒ 4T∗11,T11

(
δT∗11,T11(I11)

)
= 0.
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The operator T12 being a normal cnu-contraction is a C00-contraction. Arguing as
above, this implies

4n
T∗12,T12

(
δT∗12,T12(I12)

)
= 0 =⇒ δT∗12,T12(I12) = 0,

i.e., T12 ∈ C00-contraction is selfadjoint. To complete the proof, define Tu and Tc by Tu = T11
and Tc = T12 ⊕ T2.

(b) We prove that either of the hypotheses implies equality (i) of part a. The proof in
both the cases being almost the same, simply substitute −X for X in the argument below,
we consider the case4m

T∗ ,T(δ
n
T∗ ,T(I)) ≥ 0 and δn

T∗ ,T(I) ≥ 0. Let δn
T∗ ,T(I) = X; then

0 ≤ 4m
T∗ ,T(X)⇐⇒ 0 ≤ (LT∗RT)

m(X)−
m−1

∑
j=0

(
m
j

)
4j

T∗ ,T(X)

implies

0 ≤ (LT∗RT)
m+1(X)−

m−1

∑
j=0

(
m
j

)
LT∗RT4

j
T∗ ,T(X)

= (LT∗RT)
m+1(X)−

(
m + 1
m− 1

)
4m−1

T∗ ,T (X)−
m−2

∑
j=0

(
m + 1

j

)
4j

T∗ ,T(X)

and this (using an induction argument as in the proof of (1)) implies

0 ≤ (LT∗RT)
t(X)−

(
t

m− 1

)
4m−1

T∗ ,T (X) +
m−2

∑
j=0

(
t
j

)
4j

T∗ ,T(X) (3)

for all integers t ≥ m. Thus

〈
4m−1

T∗ ,T (X)x, x
〉
≤ 1(

t
m− 1

)[〈{(LT∗RT)
t(X) +

m−2

∑
j=0

(
t
j

)
4j

T∗ ,T(X)

}
x, x

〉]

=
1(
t

m− 1

)[∥∥∥X
1
2 Ttx

∥∥∥2
+

〈
m−2

∑
j=0

(
t
j

)
4j

T∗ ,T(X)x, x

〉]

for all x ∈ H. Since
(

t
m− 1

)
is of the order of tm−1 and

(
t
j

)
is of the order of tm−2

(for 0 ≤ j ≤ m− 2) as t→ ∞, letting t→ ∞ we have〈
4m−1

T∗ ,T (X)x, x
〉
≤ 0 for all x ∈ H =⇒ 4m−1

T∗ ,T (X) ≤ 0.

The invertibility of T implies

4m
T∗ ,T(X) = (−1)m(LT∗RT)

m4m
T∗−1,T−1(X)

and hence since m is even

(LT∗RT)
m4m

T∗−1,T−1(X) = 0⇐⇒ 4m
T∗−1,T−1(X) = 0.
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Arguing as above, we conclude

0 ≤ 4m−1
T∗−1,T−1(X) = (L−1

T∗ R−1
T )m−1(−1)m−14m−1

T∗ ,T (X) =⇒ 0 ≤ (−1)m−14m−1
T∗ ,T (X)

⇐⇒ 0 ≥ 4m−1
T∗ ,T (X).

Hence

4m−1
T∗ ,T (X) = 0 =⇒ 4m

T∗ ,T(X) = 0⇐⇒ 4m
T∗ ,T(δ

n
T∗ ,T(I)) = 0

and the proof is complete.

The hypothesis T∗ is hyponormal is redundant in the case in which n = 2 and
δ2

T∗ ,T(I) ≥ 0. (For then δ2
T∗ ,T(I) ≥ 0 and (δT∗ ,T(I)∗(δT∗ ,T(I)) ≥ 0 imply TT∗ ≥ T∗T.)

Furthermore, if also m = 2, then the hypothesis T is invertible may be dispensed with in
Theorem 4(b).

Theorem 5. If δ2
T∗ ,T(I) and 42

T∗ ,T

(
δ2

T∗ ,T(I)
)

are both greater than or equal to 0, then
4T∗ ,T(δT∗ ,T(I)) = 0 and T is the direct sum of a unitary with a C00-contraction.

Proof. The cohyponormality of T implies T is a contraction, hence has a direct
sum decomposition

T = Tu ⊕ Tc ∈ B(H1 ⊕H2), Tu = T|H1 unitary and Tc = T|H2 a cnu C0. − contraction.

If we let

X = δ2
T∗ ,T(I) = δ2

T∗u ,Tu
(I1)⊕ δ2

T∗c ,Tc
(I2) = X1 ⊕ X2 ∈ B(H1 ⊕H2), Ii = I|Hi , i = 1, 2,

then Xi ≥ 0 for i = 1, 2 and

42
T∗ ,T(X) = 42

T∗u ,Tu
(X1)⊕42

T∗c ,Tc
(X2) ≥ 0⇐⇒ 42

T∗u ,Tu
(X1) ≥ 0, 42

T∗c ,Tc
(X2) ≥ 0.

The operator Tu being unitary, Theorem 4(b) implies

42
T∗u ,Tu

(X1) ≥ 0⇐⇒ 4T∗u ,Tu

(
δT∗u ,Tu(I1)

)
= 0.

Consider now the operator 42
T∗c ,Tc

(X2) = 4T∗c ,Tc(X21) ≥ 0; X21 = 4T∗c ,Tc(X2).
We have

4T∗c ,Tc(X21) ≥ 0 =⇒ T∗c X21Tc ≥ X21 =⇒ T∗2c X21T2
c ≥ X21 =⇒ · · · =⇒ T∗tc X21Tt

c ≥ X21

for all positive integers t. Hence

〈X21x, x〉 ≤
〈

T∗tc X21Tt
c x, x

〉
≤ ‖X21‖

∥∥Tt
c x
∥∥2

for all x ∈ H2. Letting t→ ∞, this implies

〈X21x, x〉 ≤ lim
t→∞
‖X21‖

∥∥Tt
c x
∥∥2

= 0

for all x ∈ H2. Hence

X21 = 4T∗c ,Tc

(
δ2

T∗c ,Tc
(I2)

)
= δ2

T∗c ,Tc

(
4T∗c ,Tc(I2)

)
= 0.

The operator T∗C being hyponormal, it follows from an application of Theorem 2 that

δT∗c ,Tc

(
4T∗c ,Tc(I2)

)
= 4T∗c ,Tc

(
δT∗c ,Tc(I2)

)
= 0.
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This completes the proof.

A result similar to that of Theorem 4 does not hold for hyponormal T. For example, if T
is the forward unilateral shift T(x1, x2, x3, · · · ) = (0, x1, x2, · · · ), then4m

T∗ ,T

(
δn

T∗ ,T(I)
)
= 0

for all positive integers m, n. However, hyponormal T is neither unitary nor self-adjoint
nor a direct sum of the two. If T is hyponormal and satisfies4m

T∗ ,T

(
δn

T∗ ,T(I)
)
= 0, then T

is a contraction, hence power bounded. For power bounded operators T ∈ B(H) satisfying
4m

T∗ ,T

(
δn

T∗ ,T(I)
)
= 0, Theorem 4 has the following analogue.

Theorem 6. If a power bounded operator T ∈ B(H) satisfies 4m
T∗ ,T

(
δn

T∗ ,T(I)
)
= 0 for some

positive integers m and n, then:

(i) 4T∗ ,T

(
δn

T∗ ,T(I)
)
= 0;

(ii) there exist decompositions H = H1 ⊕ H2 = H1 ⊕ (H21 ⊕ H22), a Hilbert space K =
H22 ⊕ (K 	 H22) and operators T1 ∈ B(H1), T2 ∈ B(H2), T3 ∈ B(H2,H1), Vu ∈

B(H21), Vc ∈ B(H22), Vb =

(
Vc Z
0 Y

)
∈ B(K) (for some operators Z ∈ B(K 	

H22,H22), Y ∈ B(K 	 H22)) such that T =

(
T1 T3
0 T2

)
∈ B(H1 ⊕ H2), T1 ∈ C0.

satisfies δn
T∗1 ,T1

(I|H1) = 0, Vu is unitary, Vc is a unilateral shift, Vb is a bilateral shift,

the positive operator limt→∞ T∗t2 Tt
2 = A is injective and AT2 = (Vu ⊕Vb)|H2 A.

We remark here that either of the components in Theorem 6, as also in Theorem 4,
may be missing.

Proof. If we set δn
T∗ ,T(I) = X, then4m

T∗ ,T(X) = 0 and

(LT∗RT)
t(X) =

(
t

m− 1

)
4m−1

T∗ ,T (X) +
m−2

∑
j=0

(
t
j

)
4j

T∗ ,T(X)

for all integers t ≥ m (see the proof of Theorem 4(b) above). The operator T being power
bounded, there exists a real number M > 0 such that ||Tt|| ≤ M for all integers t > 0.
We have∥∥∥4m−1

T∗ ,T (X)
∥∥∥ ≤ lim

t→∞

1(
t

m− 1

)[∥∥(LT∗RT)
t(X)

∥∥+ ∥∥∥∥∥m−2

∑
j=0

(
t
j

)
4j

T∗ ,T(X)

∥∥∥∥∥
]
= 0.

Hence
4m−1

T∗ ,T (X) = 0.

Repeating the argument a finite number of time, we conclude

4T∗ ,T(X) = 0
(
⇐⇒ 4T∗ ,T

(
δn

T∗ ,T(I)
)
= δn

T∗ ,T(4T∗ ,T(I)) = 0
)
.

Recall [21], that the power bounded operator T has an upper triangular
matrix representation

T =

(
T1 T3
0 T2

)
∈ B(H1 ⊕H2), (4)

where T1 ∈ C0. and T2 ∈ C1.. Evidently,

4T∗ ,T(X) = 0 =⇒ 4T∗1 ,T1

(
δn

T∗1 ,T1
(I1)

)
= 0, I1 = I|H1 .
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Set δn
T∗1 ,T1

(I1) = X1. Then

4T∗1 ,T1(X1) = 0⇐⇒ T∗1 X1T1 = X1 =⇒ T∗21 X1T2
1 = X1 =⇒ · · · =⇒ T∗t1 X1Tt

1 = X1

for all integers t ≥ 0. Since T1 ∈ C0., for every x ∈ H1,

|〈X1x, x〉| = lim
t→∞

∣∣〈T∗t1 X1Tt
1x, x

〉∣∣ ≤ lim
t→∞
‖X1‖

∥∥Tt
1x
∥∥2

= 0.

Hence
X1 = δn

T∗1 ,T1
(I1) = 0.

Consider now the power bounded operator T2. Since T2 ∈ C1., T2 is injective and

lim
t→∞

T∗t2 Tt
2 = A

exists and is a positive injective operator which satisfies

T∗2 AT2 = A

Ref. [29] (Theorem 5.1). An application of Theorem 1 implies the existence of an
isometry V ∈ B(H2) satisfying

A
1
2 T2 = VA

1
2 .

Since every isometry is part of a unitary, there exists a decompositionH2 = H21⊕H22,
a Hilbert space K = H22 ⊕ (K	H22) and a unitary

W =

 Vu 0 0
0 Vc Y
0 0 Z

 ∈ B(H21 ⊕H22 ⊕ (K	H22)),

Y ∈ B(K 	H22,H22) and Z ∈ B(K 	H22) some operators, such that Vu is unitary, Vc is

a unilateral shift,
(

Vc Y
0 Z

)
is a bilateral shift and V = W|H2 [22] (Lemma 5.7, Page 82).

Evidently A
1
2 T2 = W|H2 A

1
2 .

If n = 2 in the preceding theorem, then δT∗1 ,T1(I1) = 0 and the operator T1 is a
selfadjoint C00-operator. Furthermore, if the normal parts of the operator T reduce T, then
T3 = 0.

An operator S ∈ B(H) is paranormal if ‖Sx‖2 ≤ ‖S2x‖ for all unit vectors x ∈ H.
Hyponormal operators are paranormal, paranormal operators are normaloid, the restriction
of a paranormal operator to an invaraint subspace is again paranormal [25] and δ−1

S,V∗(0) ⊆
δ−1

S∗ ,V(0) for paranormal S and isometric V ∈ B(H) [30] (p. 316). Hence if the operator T∗

of Theorem 4 is paranormal, then δV,T2(A
1
2 ) = 0 implies δV∗ ,T∗2

(A
1
2 ) = 0. Consequently, T2

is unitary and (since T∗ is necessarily a contraction and the unitary parts of a contraction
reduce the contraction) T3 = 0 in representation (4) of T. Thus, T = T1 ⊕ T2, δn

T∗1 ,T1
(I1) = 0

and T2 is unitary. If we now assume n = 2 in Theorem 4, then we have the following
generalisation of a result of Stankus [19] (Proposition 5.22).

Corollary 4. If 4m
T∗ ,T

(
δ2

T∗ ,T(I)
)
= 0 for some paranormal operator T∗ ∈ B(H) and integer

m ≥ 1, then T is the direct sum of a selfadjoint operator with a unitary.

Proof. As seen above T = T1⊕ T2, where T2 is unitary and δ2
T∗1 ,T1

(I1) = 0. Since δ2
T∗1 ,T1

(I1) = 0
if and only if δT∗1 ,T1(I1) = 0, the proof follows.
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