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Abstract: Utilizing gauge symmetries, the Geometric Arbitrage Theory reformulates any asset
model, allowing for arbitrage by means of a stochastic principal fibre bundle with a connection
whose curvature measures the “instantaneous arbitrage capability”. The cash flow bundle is the
associated vector bundle. The zero eigenspace of its connection Laplacian parameterizes all risk-
neutral measures equivalent to the statistical one. A market satisfies the No-Free-Lunch-with-
Vanishing-Risk (NFLVR) condition if and only if 0 is in the discrete spectrum of the Laplacian. The
Jarrow–Protter–Shimbo theory of asset bubbles and their classification and decomposition extend to
markets not satisfying the NFLVR. Euler’s characteristic of the asset nominal space and non-vanishing
of the homology group of the cash flow bundle are both topological obstructions to NFLVR.

Keywords: arbitrage markets; stochastic differential geometry; spectral theory; topological obstruc-
tions to arbitrage; asset bubbles
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1. Introduction

This paper develops a conceptual structure—called Geometric Arbitrage Theory
(GAT)—to link arbitrage modeling in generic markets with spectral theory.

GAT rephrases classical stochastic finance in stochastic differential geometric terms
in order to characterize arbitrage. The main idea of the GAT approach consists of mod-
eling markets made of basic financial instruments together with their term structures as
principal fibre bundles. The financial features of this market—such as no-arbitrage and
equilibrium—are then characterized in terms of standard differential geometric
constructions—such as curvature—associated with a natural connection in this fibre bun-
dle. Principal fibre bundle theory has been heavily exploited in theoretical physics as
the language in which laws of nature can be best formulated by providing an invariant
framework to describe physical systems and their dynamics. These ideas can be carried
over to mathematical finance and economics. A market is a financial-economic system that
can be described by an appropriate principal fibre bundle. A principle as the invariance of
market laws under a change of numéraire can be seen then as gauge invariance. Concepts
such as No-Free-Lunch-with-Vanishing-Risk (NFLVR) and No-Unbounded-Profit-with-
Bounded-Risk (NUPBR) have a geometric characterization, which have the Capital Asset
Pricing Model (CAPM) as a consequence.

The idea that gauge theories are the natural language for describing economics was
first proposed by Malaney and Weinstein in the context of the economic index problem [1,2].
Ilinski [3,4] and Young [5] proposed to view arbitrage as the curvature of a gauge con-
nection, in analogy to some physical theories. Independently, Cliff and Speed [6] further
developed Flesaker and Hughston’s seminal work [7] and utilized techniques from differ-
ential geometry to reduce the complexity of asset models before stochastic modeling.
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In recent years, the research on market models admitting arbitrage has started to
receive some well-deserved attention, see [8,9]. With this paper, we aim to show that by
means of the stochastic differential geometric approach, we can obtain true new results
that were not accessible with classical methods.

This paper is structured as follows. Section 2 reviews classical stochastic finance and
the Geometric Arbitrage Theory. Arbitrage is seen as the curvature of a principal fibre
bundle representing the market which defines the quantity of arbitrage associated with it.
Proofs are omitted and can be found in [10] and in [11], where the Geometric Arbitrage
Theory has been given a rigorous mathematical foundation utilizing the formal back-
ground of stochastic differential geometry as in Elworthy [12], Eméry[13], Hackenbroch
and Thalmaier [14], Hsu [15], Schwartz [16] and Stroock [17].

In Section 3 the relationship between arbitrage and spectral theory is investigated.
The vector bundle associated with the principal fibre bundle represents the cash flow
streams corresponding to the assets and carries a covariant differentiation induced by
the connection. The connection Laplacian under the Neumann boundary condition is a
self-adjoint operator whose spectrum contains 0 if and only if the market model satisfies
the NFLVR condition. If 0 has simple multiplicity, then the market is complete, and vice
versa. The eigenspace of the eigenvalue 0 contains all candidates for the Radon–Nikodym
derivative of a possible risk-neutral measure with respect to the statistical measure.

The Jarrow–Protter–Shimbo theory of asset bubbles for complete no-arbitrage markets
is extended to markets allowing for arbitrage opportunities. The classification of bubbles
and their decomposition results are proved for models not necessarily satisfying the NFLVR
condition. The connections with Platen–Heath real-world pricing are highlighted.

In Section 4 the cash flow bundle twisted with the exterior algebra of the asset nom-
inal space is a Dirac bundle on which we can apply the Atiyah–Singer index theorem,
which takes the form of the Gauss–Bonnet–Chern theorem for manifolds with boundary,
from which we can infer a topological obstruction to the NFLVR condition, the non-
vanishing of the Euler characteristic of the asset nominal space. By means of the Bochner-
Weitzenböck formula, we obtain another characterization of NFLVR, namely the presence
of 0 in the discrete spectrum of the Dirac Laplacian for the twisted cash flow bundle.
Moreover, we obtain another topological obstruction to NFLVR, namely the non-vanishing
of the homology group of the cash flow bundle.

Section 5 concludes and Appendix A reviews Nelson’s stochastic derivatives.

2. Geometric Arbitrage Theory Background

In this section, we explain the main concepts of the Geometric Arbitrage Theory
introduced in [10], to which we refer for proofs and examples.

2.1. The Classical Market Model

In this subsection, we summarize the classical set up, which will be rephrased in
Section 2.4 in differential geometric terms. We basically follow [18] and the ultimate
reference [19].

We assume continuous-time trading and that the set of trading dates is [0,+∞[. This
assumption is general enough to embed the cases of finite and infinite discrete times as well
as one with a finite horizon in continuous time. Note that while it is true that in the real
world trading occurs only at discrete times, these are not known a priori and can virtually
be any point in the time continuum. This motivates the technical effort of continuous-time
stochastic finance.

The uncertainty is modelled by a filtered probability space (Ω,A,P), where P is the
statistical (physical) probability measure, A = {At}t∈[0,+∞[ an increasing family of sub-σ-
algebras ofA∞, and (Ω,A∞,P) is a probability space. The filtrationA is assumed to satisfy
the usual conditions, that is:

• right continuity: At =
⋂

s>tAs for all t ∈ [0,+∞[;
• A0 contains all null sets of A∞.
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The market consists of finitely many assets indexed by j = 1, . . . , N, whose nominal
prices are given by the vector valued semimartingale S : [0,+∞[×Ω → RN , denoted by
(St)t∈[0,+∞[ and adapted to the filtration A. The stochastic process (Sj

t)t∈[0,+∞[ describes
the price at time t of the jth asset in terms of unit of cash at time t = 0. More precisely,
we assume the existence of a 0th asset—the cash, a strictly positive semimartingale that
evolves according to S0

t = exp(
∫ t

0 du r0
u), where the integrable semimartingale (r0

t )t∈[0,+∞[

represents the continuous interest rate provided by the cash account. One always knows
in advance what the interest rate on one’s own bank account is, but this can change from
time to time. The cash account is therefore considered the locally riskless asset in contrast
to the other assets, the risky ones. Subsequently, we will mainly utilize discounted prices,
defined as Ŝj

t := Sj
t/S0

t , representing the asset prices in terms of a current unit of cash.
We remark that there is no need to assume that asset prices are positive. However,

there must be at least one strictly positive asset, which in our case is the cash. If we
want to renormalize the prices by choosing another asset instead of the cash as reference,
i.e., by making it our numéraire, then this asset must have a strictly positive price process.
More precisely, a generic numéraire is a portfolio of the original assets j = 0, 1, 2, . . . , N,
whose nominal price is represented by a strictly positive stochastic process (Bt)t∈[0,+∞[.
The discounted prices of the original assets are then represented in terms of the numéraire
by the semimartingales Ŝj

t := Sj
t/Bt.

We assume that there are no transaction costs and that short sales are allowed. Remark
that the absence of transaction costs can be a serious limitation for a realistic model.
The filtration A is not necessarily generated by the price process (St)t∈[0,+∞[; sources of
information other than prices are allowed. All agents have access to the same information
structure, that is, to the filtration A.

Let v be a positive real number. A v-admissible strategy x = (xt)t∈[0,+∞[ is a pre-

dictable S-integrable process for which the Itô integral
∫ t

0 x · dS ≥ −v a.s. for all t ≥ 0 with
x0 = 0. A strategy is admissible if it is v-admissible for some v ≥ 0.

Definition 1 (Arbitrage). Let the process (St)[0,+∞[ be a semimartingale and (xt)t∈[0,+∞[ be an
admissible self-financing strategy. Let us consider trading up to time T ≤ ∞. The portfolio wealth
at time t is given by Vt(x) := V0 +

∫ t
0 xu · dSu, and we denote as K0 the subset of L0(Ω,AT , P)

containing all such VT(x), where x is any admissible self-financing strategy. We define the following:

• C0 := K0 − L0
+(Ω,AT , P);

• C := C0 ∩ L∞(Ω,AT , P);
• C̄: the closure of C in L∞ with respect to the norm topology;

• VV0 :=
{
(Vt)t∈[0,+∞[

∣∣Vt = Vt(x), where x is V0-admissible
}

;

• VV0
T :=

{
VT
∣∣ (Vt)t∈[0,+∞[ ∈ VV0

}
;

terminal wealth for V0-admissible self-financing strategies.

And let L∞
+(Ω,AT , P) be the set of positive random variables in L∞(Ω,AT , P). We say that S

satisfies:

• (NA) no-arbitrage if and only if C ∩ L∞
+(Ω,AT , P) = {0};

• (NFLVR) no-free-lunch-with-vanishing-risk if and only if C̄ ∩ L∞
+(Ω,AT , P) = {0};

• (NUPBR) no-unbounded-profit-with-bounded-risk if and only if VV0
T is

bounded in L0 for some V0 > 0.

The relationship between these three different types of arbitrage has been elucidated
in [20,21], with the proof of the following result.

Theorem 1.
(NFLVR)⇔ (NA) + (NUPBR). (1)
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Theorem 2 (First fundamental theorem of asset pricing). The market (S,A) satisfies the
NFLVR condition if and only if there exists an equivalent local martingale measure P∗.

Remark 1. In the first fundamental theorem of asset pricing, we just assumed that the price process
S is locally bounded. If S is bounded, then NFLVR is equivalent to the existence of a martingale
measure. But without this additional assumption, NFLVR only implies the existence of a local
martingale measure, i.e., a local martingale which is not a martingale. This distinction is important
because the difference between a security price process being a strict local martingale versus a
martingale under a probability P∗ is related to the existence of asset price bubbles.

Definition 2 (Complete market). The market (S,A) is complete on [0, T] if for all contingent
claims C ∈ L+(P∗,AT) := {C : Ω → [0,+∞[|C is AT −measurable, and EP∗

0 [|C|] < +∞}
there exists an admissible self-financing strategy x such that C = VT(x).

Theorem 3 (Second fundamental theorem of asset pricing). Given that (S,A) satisfies the
NFLVR condition, the market is complete on [0, T] if and only if the equivalent local martingale P∗

is unique.

Definition 3 (Dominance). The j-th security Sj = (Sj
t)t∈[0.T] is undominated on [0, T] if there

is no admissible strategy (xt)t∈[0,T] such that:

Sj
0 + (x · S)T ≥ Sj

T a.s. and P[Sj
0 + (x · S)T > Sj

T ] > 0. (2)

We say that S satisfies the no dominance condition (ND) on [0, T] if and only if each Sj,
j = 0, 1, . . . , N is undominated on [0, T].

Definition 4 (Economy). An economy consists of a market given by (S,A) and a finite number
of investors k = 1, . . . , K characterized by their beliefs, information, preferences, and endowment.
Moreover, there is a single consumption good that is perishable. The price of the consumption good
in units of the cash account is denoted as Ψ = (Ψt)t∈[0,T]. We assume that Ψ is strictly positive.
The k-th investor is characterized by the following quantities:

• Beliefs and information: (Pk,A). We assume that the investor’s beliefs Pk are equivalent
to P. All investors have the same information filtration A.

• Utility function: Uk : [0, T] × [0,+∞[→ R and µ is a probability measure on [0, T]
with µ({T}) > 0 such that for every t in the support of µ, the function Uk(t, ·) is strictly
increasing. We also assume limv→+∞ Uk(T, v) = +∞. The utility that agent k derives from
consuming ctµ(dt) at each time t ≤ T is as follows:

Uk(c) = Ek
0

[∫ T

0
Uk(t, ct)µ(dt)

]
, (3)

where Ek is the expectation with respect to Pk. Since µ({T}) > 0, the utility is strictly
increasing in the final consumption cT .

• Initial wealth: vk. Given a trading strategy x = (x1, · · · , xN), the investor will be required
to choose his initial holding x0

0 in the cash account such that:

vk = x0
0 +

N

∑
j=1

xj
0Si

0. (4)

• Stochastic endowment stream: εk
t , t < T of the commodity. This means that the investors

receive εk
t µ(dt) units of the commodity at time t ≤ T. The cumulative endowment of the k-th

investor in units of the cash account is given by the following equation:

E k
t :=

∫ t

0
Ψsεk

s µ(ds). (5)
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Definition 5 (Consumption plan and strategy). A pair (ck
t , xk

t )t∈[0,T] is called admissible if
(ck

t )t∈[0,T] is progressively measurable with respect to the filtration A, (xk
t )t∈[0,T] is admissible in

the usual sense, and it generates a wealth process Vk = (VK
t )t∈[0,T] with non-negative terminal

wealth Vk
T ≥ 0.

Definition 6 (Equilibrium). Given an economy ({Pk}k=1,...,K, (At)t∈[0,T],
{εk}k=1,...,K, {Uk}k=1,...,K), a consumption good price index Ψ, financial assets S = [S0, S1, . . . , SN ]†,
and investor consumption-investment plans (ĉk, x̂k) for k = 1, . . . K, the pair (Ψ, S) is an equilib-
rium price process if for all t ≤ T P−a.s. the following conditions are satisfied:

• Securities markets clear:

K

∑
k=1

x̂k,j
t = αj (j = 0, 1, . . . , N), (6)

where αj is the aggregate net supply of the j-th security. It is assumed that each αj is non-
random and constant over time, with α0 = 0 and αj > 0 for j = 1, . . . , N.

• Commodity markets clear:
K

∑
k=1

ĉk
t =

K

∑
k=1

εk
t . (7)

• Investors’ choices are optimal: (ĉk, x̂k) solves the k-th investor’s utility maximization
problem

uk(x) := sup{Uk(c)| c admissible consumption plan, xk = x}, (8)

and the optimal value is finite.

Definition 7 (Efficiency). A market model given by S is called efficient on [0, T] with re-
spect to (At)t∈[0,T], i.e., (E), if there exists a consumption good price index Ψ and an economy
({Pk}k=1,...,K, (At)t∈[0,T], {εk}k=1,...,K, {Uk}k=1,...,K), for which (Ψ, S) is an equilibrium price
process on [0, T].

In [22,23] we find the proof of the following result.

Theorem 4 (Third fundamental theorem of asset pricing, characterization of efficiency).
Let (S,A) be a market. The following statements are equivalent:

(i) (E): (S,A) is efficient in [0, T];
(ii) (S,A) satisfies both (NFLVR) and (ND) on [0, T];
(iii) (EMM): There exists a probability P∗ equivalent to P such that S is a (P∗,A) martingale on

[0, T].

2.2. Geometric Reformulation of the Market Model: Primitives

We are going to introduce a more general representation of the market model intro-
duced in Section 2.1, which better suits the arbitrage modeling task.

Definition 8. A gauge is an ordered pair of two A-adapted real valued semimartingales (D, P),
where D = (Dt)t≥0 : [0,+∞[×Ω → R is called a deflator and P = (Pt,s)t,s : T ×Ω → R,
which is called a term structure, is considered a stochastic process with respect to the time t, termed
valuation date, and T := {(t, s) ∈ [0,+∞[2 | s ≥ t}. The parameter s ≥ t is referred to as
maturity date. The following properties must be satisfied a.s. for all t, s such that s ≥ t ≥ 0:

(i) Pt,s > 0;
(ii) Pt,t = 1.

Remark 2. Deflators and term structures can be considered outside the context of fixed income. An
arbitrary financial instrument is mapped to a gauge (D, P) with the following economic interpretation:
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• Deflator: Dt is the value of the financial instrument at time t expressed in terms of some
numéraire. If we choose the cash account, the 0-th asset, as numéraire, then we can set

Dj
t := Ŝj

t =
Sj

t
S0

t
(j = 1, . . . N).

• Term structure: Pt,s is the value at time t (expressed in units of deflator at time t) of a synthetic
zero coupon bond with maturity s delivering one unit of financial instrument at time s. It
represents a term structure of forward prices with respect to the chosen numéraire.

We point out that there is no unique choice for deflators and term structures describing an asset
model. For example, if a set of deflators qualifies, then we can multiply every deflator by the same
positive semimartingale to obtain another suitable set of deflators. Of course, term structures have
to be modified accordingly. The term “deflator” is clearly inspired by actuarial mathematics. In the
present context, it refers to a nominal asset value division by a strictly positive semimartingale
(which can be the state price deflator, if this exists, and it is made the numéraire). There is no need
to assume that a deflator is a positive process. However, if we want to make an asset our numéraire,
then we have to make sure that the corresponding deflator is a strictly positive stochastic process.

2.3. Geometric Reformulation of the Market Model: Portfolios

We would now like to introduce transforms of deflators and term structures in order
to group gauges containing the same (or less) stochastic information. In this regard, we
will consider deterministic linear combinations of assets modelled by the same gauge (e.g.,
zero bonds of the same credit quality with different maturities).

Definition 9. Let π : [0,+∞[−→ R be a deterministic cash flow intensity (possibly generalized)
function. It induces a gauge transform (D, P) 7→ π(D, P) := (D, P)π := (Dπ , Pπ) by the
following formula:

Dπ
t := Dt

∫ +∞

0
dh πhPt,t+h Pπ

t,s :=

∫ +∞
0 dh πhPt,s+h∫ +∞
0 dh πhPt,t+h

. (9)

Proposition 1. Gauge transforms induced by cash flow vectors have the following property:

((D, P)π)ν = ((D, P)ν)π = (D, P)π∗ν, (10)

where ∗ denotes the convolution product of two cash flow vectors or intensities respectively:

(π ∗ ν)t :=
∫ t

0
dh πhνt−h. (11)

The convolution of two non-invertible gauge transforms is non-invertible. The convo-
lution of a non-invertible with an invertible gauge transform is non-invertible.

Definition 10. If the term structure is differentiable with respect to the maturity date, it can be
written as a functional of the instantaneous forward rate f defined as follows:

ft,s := − ∂

∂s
log Pt,s, Pt,s = exp

(
−
∫ s

t
dh ft,h

)
, (12)

and
rt := lim

s→t+
ft,s (13)

is termed short rate.

Remark 3. The special choice of vanishing interest rate r ≡ 0 or flat term structure P ≡ 1 for all
assets corresponds to the classical model, where only asset prices and their dynamics are relevant.
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2.4. Arbitrage Theory in a Differential Geometric Framework

Now we are in the position to rephrase the asset model presented in Section 2.1
in terms of a natural geometric language. Given N base assets, we want to construct a
portfolio theory and study arbitrage, and thus we cannot a priori assume the existence of
a risk-neutral measure or a state price deflator. In terms of differential geometry, we will
adopt the mathematician’s and not the physicist’s approach. The market model is seen
as a principal fibre bundle of the (deflator, term structure) pairs, discounting and foreign
exchange as a parallel transport, numéraire as the global section of the gauge bundle, and
arbitrage as curvature. The no-free-lunch-with-vanishing-risk condition is proved to be
equivalent to a zero-curvature condition.

2.4.1. Market Model as Principal Fibre Bundle

Let us consider, in continuous time, a market with N assets and a numéraire. A general
portfolio at time t is described by the vector of nominals x ∈ X, for an open set X ⊂ RN .
By nominals x1, . . . , xN we mean the number of assets that we hold in our portfolio.
Following Definition 8, the asset model consisting in N synthetic zero bonds is described
by means of the following gauges:

(Dj, Pj) = ((Dj
t)t∈[0,+∞[, (Pj

t,s)s≥t), (14)

where Dj denotes the deflator and Pj the term structure. This can be written as follows:

Pj
t,s = exp

(
−
∫ s

t
f j
t,udu

)
, (15)

where f j is the instantaneous forward rate process for the j-th asset and the corresponding
short rate is given by rj

t := limu→0+ f j
t,u. For a portfolio with nominals x ∈ X ⊂ RN ,

we define:

Dx
t :=

N

∑
j=1

xjD
j
t f x

t,u :=
N

∑
j=1

xjD
j
t

∑N
j=1 xjD

j
t

f j
t,u Px

t,s := exp
(
−
∫ s

t
f x
t,udu

)
. (16)

The short rate writes as follows:

rx
t := lim

u→0+
f x
t,u =

N

∑
j=1

xjD
j
t

∑N
j=1 xjD

j
t

rj
t. (17)

The image space of all possible strategies reads as follows:

M := {(t, x) ∈ [0,+∞[×X}. (18)

In Section 2.3, cash flow intensities and the corresponding gauge transforms were
introduced. They have the structure of an Abelian semigroup:

H := E ′([0,+∞[,R) = {F ∈ D′([0,+∞[) | supp(F) ⊂ [0,+∞[ is compact}, (19)

where the semigroup operation on distributions with compact support is the convolution
(see [24], Chapter IV), which extends the convolution of regular functions as defined by
Formula (11).

Definition 11. The Market Fibre Bundle is defined as the fibre bundle of the following gauges:

B := {(Dx
t , Px

t, ·)
π | (t, x) ∈ M, π ∈ G}. (20)
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The cash flow intensities defining invertible transforms constitute an Abelian group:

G := {π ∈ H| it exists ν ∈ H such that π ∗ ν = δ} ⊂ E ′([0,+∞[,R). (21)

From Proposition 1, we obtain the following theorem.

Theorem 5. The market fibre bundle B has the structure of a G-principal fibre bundle given by the
action:

B × G −→ B
((D, P), π) 7→ (D, P)π = (Dπ , Pπ)

(22)

The group G acts freely and differentiably on B to the right.

2.4.2. Nelson DWeak Differentiable Market Model

We continue to reformulate the classic asset model introduced in Section 2.1 in terms
of stochastic differential geometry.

Definition 12. A Nelson D weak differentiable market model for N assets is described by N
gauges, which are Nelson D weak differentiable with respect to the time variable. More exactly,
for all t ∈ [0,+∞[ and s ≥ t, there is an open time interval I 3 t such that for the deflators
Dt := [D1

t , . . . , DN
t ]† and the term structures Pt,s := [P1

t,s, . . . , PN
t,s]

†, the latter seen as processes
in t and parameter s, there exists aD weak t-derivative (see Appendix A). The short rates are defined
by rt := lims→t−

∂
∂s log Pts.

A strategy is a curve γ : I → X in the portfolio space parameterized by the time. This means
that the allocation at time t is given by the vector of nominals xt := γ(t). We denote as γ̄ the lift of
γ to M, that is γ̄(t) := (γ(t), t). A strategy is said to be closed if it represented by a closed curve.
A weak D-admissible strategy is predictable and D- weak differentiable.

Remark 4. We require weak D-differentiability and not strong D-differentiability because impos-
ing a priori regularity properties on the trading strategies corresponds to restricting the class of
admissible strategies with respect to the classical notion of Delbaen and Schachermayer. Every
(no-)arbitrage consideration depends crucially on the chosen definition of admissibility. Therefore,
restricting the class of admissible strategies may lead to the automatic exclusion of potential arbitrage
opportunities, leading to vacuous statements of FTAP-like results. An admissibile strategy in the
classic sense (see Section 2) is weak D-differentiable.

In general the allocation can depend on the state of the nature, i.e., xt = xt(ω) for
ω ∈ Ω.

Proposition 2. A weak D-admissible strategy is self-financing if and only if:

D(xt · Dt) = xt · DDt −
1
2
D∗〈x, D〉t or Dxt · Dt = −

1
2
D∗〈x, D〉t or Dxt · Dt = 0, (23)

almost surely. The bracket 〈·, ·〉 denotes the continuous part of the quadratic covariation.

For the remainder of this paper, unless otherwise stated, we will only deal with weak
D differentiable market models, weak D differentiable strategies, and, when necessary,
with weak D differentiable state price deflators. All Itô processes are weak D differentiable,
so that the class of considered admissible strategies is very large.

2.4.3. Arbitrage as Curvature

The Lie algebra of G is the function space of all real valued functions on [0,+∞[
denoted as:

g = R[0,+∞[ (24)
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and therefore commutative. Following Ilinski’s idea [4], we motivate the choice of a
particular g-valued connection 1-form by the fact that it allows us to encode portfolio
rebalancing (or foreign exchange) and discounting as parallel transport.

Theorem 6. With the choice of connection

χ(x, t, g).(δx, δt) :=

(
Dδx

t
Dx

t
− rx

t δt

)
g, (25)

the stochastic parallel transport in B has the following financial interpretations:

• Parallel transport along the nominal directions (x-lines) corresponds to a multiplication by an
exchange rate;

• Parallel transport along the time direction (t-line) corresponds to a division by a stochastic
discount factor.

Proof. We refer to Theorem 28 in [10].

Recall that the time derivatives needed to define the parallel transport along the time
lines have to be understood in Stratonovich’s sense. We see that the bundle is trivial,
because it has a global trivialization, but the connection is not trivial. The connection χ
writes as a linear combination of basis differential forms:

χ(x, t, g) =

(
1

Dx
t

N

∑
j=1

Dj
tdxj − rx

t dt

)
g. (26)

The g-valued curvature 2-form is defined as follows:

R := dχ + [χ, χ], (27)

which means that by this, for all (x, t, g) ∈ B and for all ξ, η ∈ T(x,t)M,

R(x, t, g)(ξ, η) := dχ(x, t, g)(ξ, η) + [χ(x, t, g)(ξ), χ(x, t, g)(η)]. (28)

Note that the Lie algebra being commutative, the Lie bracket [·, ·] vanishes. After some
calculations, we obtain the following:

R(x, t, g) =
g

Dx
t

N

∑
j=1

Dj
t

(
rx

t +D log(Dx
t )− rj

t −D log(Dj
t)
)

dxj ∧ dt, (29)

summarized as the following proposition.

Proposition 3 (Curvature Formula). Let R be the curvature. Then, the following quality holds:

R(t, x, g) = gdt ∧ dx[D log(Dx
t ) + rx

t ]. (30)

The following result characterizes arbitrage as curvature.

Theorem 7 (No-Arbitrage). The following assertions are equivalent:

(i) The market model (with base assets and futures with discounted prices D and P) satisfies the
no-free-lunch-with-vanishing-risk condition;

(ii) There exists a positive martingale β = (βt)t≥0 such that deflators and short rates satisfy, for
all portfolio nominals and all times, the condition

rx
t = −D log(βtDx

t ); (31)
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(iii) There exists a positive martingale β = (βt)t≥0 such that deflators and term structures satisfy,
for all portfolio nominals and all times, the condition

Px
t,s =

Et[βsDx
s ]

βtDx
t

. (32)

This motivates the following definition.

Definition 13. The market model satisfies the zero curvature (ZC) if and only if the curvature
vanishes a.s.

Therefore, we have following implications relying on two different definitions of
no-arbitrage:

Corollary 1.
(NFLVR)⇒ (ZC). (33)

As proved in [11], the two weaker notions of arbitrage—the zero curvature and the
no-unbounded-profit-with-bounded-risk—are satisfied.

Theorem 8.
(NUPBR)⇒ (ZC). (34)

The converse is true for special cases of Itô’s dynamics for asset values and term
structures (see [11]).

Remark 5. Let us consider some special cases of Theorem 7.

1. The components of r are equal: For example, in the classical model, where there are no
term structures (i.e., r ≡ 0),

(a) D and r are constant over time: NFLVR is satisfied;
(b) D and r are deterministic and not constant over time: NFLVR is never satisfied.

2. The components of r are not equal:

(a) D and r are constant over time: NFLVR is never satisfied;
(b) D and r are deterministic and not constant over time: NFLVR can be satisfied if

(ii) or (iii) hold true.

2.4.4. Expected Utility Maximization and the CAPM Formula

Definition 14 (EUM). The expected utility maximization problem for the final wealth over
the period [0, t] for a given utility function u reads as follows:

max
(xu)u∈[0,t]

(xu)u is self-financing and admissible
x0·D0=1

E0[u(xt · Dt)]. (35)

We denote as (EUM) the existence of a solution and its uniqueness for (35).

As proved in [11], e.g., the existence of a solution for an expected utility maximization
problem and the no-unbounded-profit-with-bounded-risk is satisfied.

Theorem 9.
(NUPBR)⇒ (EUM) (36)

Asset returns and the market portfolio return are related at the expected value level
by means of sensitivities. The relationship is the following equilibrium result.
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Theorem 10 (CAPM). Let

R[0,t] :=
Dt

D0
− 1 RM

[0,t] :=
DxM

t
t

D
xM

0
0

− 1 (37)

be the discounted assets total returns and the discounted market portfolio total return. If we assume
that the expected utility of the final wealth of every portfolio is maximized, then

E0[R[0,t]] =
Cov0

(
R[0,t], RM

[0,t]

)
Var0

(
RM
[0,t]

) E0[RM
[0,t]]. (38)

Proof. If we choose a quadratic utility function

u(v) := v− λ

2
v2, (39)

where λ denotes the risk aversion parameter, and we assume that only at times {0, t}
rebalancing during the interval [0, t] is allowed, then the expected utility maximization
problem becomes

max
x0

x0·D0=1

E0

[
(xt · Dt)−

λ

2
(xt · Dt)

2
]

, (40)

which is equivalent to

max
x0

x0·D0=1

E0

[
(xt · Dt)−

λ

2

(
(xt · Dt)

2 −E0[xt · Dt]
)]

, (41)

and to
max

w0
w0·e=1

w†
0E0[R[0,t]]−

λ

2
w†

0 VCM0(R[0,t])w0, (42)

where w0 := x0D0
x0·D0

are the portfolio weights. The solution is the market portfolio

wM
0 =

ŵM
0√

(ŵM
0 )†ŵM

0

, where ŵM
0 :=

1
λ

VCM0(R[0,t])
−1E0[R[0,t]]. (43)

Therefore, we have by (43)

E0[R[0,t]] = λ VCM0(R[0,t])ŵ
M
0 =

λ

|ŵM
0 |

VCM0(R[0,t])w
M
0 =

=
λ

|ŵM
0 |

Cov0

(
R[0,t], RM

[0,t]

)
,

(44)

and by multiplication with wM
0

E0[RM
[0,t]] =

λ

|ŵM
0 |2

(wM
0 )† VCM0(R[0,t])w

M
0 =

λ

|ŵM
0 |2

Var0

(
RM
[0,t]

)
, (45)

from which we infer that
λ

|ŵM
0 |2

=
E0[RM

[0,t]]

Var0

(
RM
[0,t]

) , (46)
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which, inserted into (45), leads to

E0[R[0,t]] =
Cov0

(
R[0,t], RM

[0,t]

)
Var0

(
RM
[0,t]

) E0[R[0,t]], (47)

and the proof is completed.

Remark 6. The vector

β0 :=
Cov0

(
R[0,t], RM

[0,t]

)
Var0

(
RM
[0,t]

) (48)

contains the sensitivities of the expected asset returns with respect to the expected market portfolio
return. We can compute the CAPM in its classical form for the returns of the asset as follows:

r[0,t] :=
St

S0
− 1 =

(
1 + R[0,t]

)
exp

(
+
∫ t

0
du r0

u

)
− 1 (49)

obtaining

E0[r[0,t]]− r f
[0,t] =

Cov0

(
r[0,t], rM

[0,t]

)
Var0

(
rM
[0,t]

) (
E0[r[0,t]]− r f

[0,t]

)
, (50)

where r f
[0,t] := exp

(
+
∫ t

0 du r0
u

)
− 1 is the risk-free return.

Remark 7. The different arbitrage concepts and the Capital Asset Pricing Model are related in the
following logical representation:

(EMM)⇔ (E)⇔


(NFLVR)⇔

 (NUPBR)⇒
{

(EUM)
(ZC)

}
⇒ (CAPM)

(NA)
(ND)

(51)

3. Spectral Theory
3.1. Cash Flows as Sections of the Associated Vector Bundle

Definition 15 (Cash Flow Bundle). By choosing the fiber V := R[0,+∞[ and the representation
ρ : G → GL(V) induced by the gauge transform definition, and therefore satisfying the homomor-
phism relation ρ(g1 ∗ g2) = ρ(g1)ρ(g2), we obtain the associated vector bundle V . Its sections
represent cash flow streams—expressed in terms of the deflators—generated by portfolios of the base
assets. If v = (vx

t )(t,x)∈M is the deterministic cash flow stream, then its value at time t is equal to:

• the deterministic quantity vx
t , if the value is measured in terms of the deflator Dx

t ;
• the stochastic quantity vx

t Dx
t , if the value is measured in terms of the numéraire (e.g., the cash

account for the choice Dj
t := Ŝj

t for all j = 1, . . . , N).

The bundle V over the time-nominals-space M = [0, T]×X is called the Cash Flow Bundle.

In the general theory of principal fibre bundles, gauge transforms are bundle auto-
morphisms preserving the group action and equal to the identity on the base space. Gauge
transforms of B are naturally isomorphic to the sections of the bundle B (See Theorem 3.2.2
in [25]). Since G is Abelian, right multiplications are gauge transforms. Hence, there is a
bijective correspondence between gauge transforms and cash flow intensities admitting an
inverse. This justifies the terminology introduced in Definition 9.
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3.2. The Connection Laplacian associated with the Market Model

The connection χ on the market principal fibre bundle B defined in Theorem 6 induces
a covariant differentiation ∇V on the associated vector bundle V , with the same interpreta-
tion for the corresponding parallel transport as that in Theorem 6 for the principal fibre
bundle, i.e., portfolio rebalancing along the asset nominal dimensions and discounting
along the time dimension. More exactly, we have the following proposition.

Proposition 4. Let us extend the coordinate vector x ∈ RN with a 0th component given by the
time t. Let X = ∑N

j=0 Xj
∂

∂xj
be a vector field over M and f = ( fs)s a section of the cash flow bundle

V . Then

∇VX ft =
N

∑
j=0

(
∂ ft

∂xj
+ Kj ft

)
Xj, (52)

where

K0(x) = −rx
t

Kj(x) =
Dj

t
Dx

t
(1 ≤ j ≤ N).

(53)

Proof. The construction of a covariant differentiation on the associated vector bundle
starting from a connection on a principal fibre bundle is a generic procedure in differential
geometry. The connection χ is a Lie algebra g = R[0,+∞[ valued 1-form on B, and we can
decompose the connection as χ(x, g) = gK(x), where K(x) := ∑N

j=0 Kj(x)dxj. The differen-

tial map Teρ : g → L(R[0,+∞[) of the representation ρ : G → GL(R[0,+∞[) maps elements
of the Lie algebra on endomorphisms for the bundle V . Given a local cash flow section
ft =

∫ +∞
0 ds fsδs−t, in V|U and a local vector field X in TM|U , the connection ∇V has the

following local representation:

∇VX ft =
∫ +∞

0
ds(d fs(X).vs + fsω(X).vs), (54)

where vs := δs−t and ω is an element of T∗U|U
⊗L(V|U), i.e., an endomorphism valued

1−form defined as follows:

ω(x)(X) := (Teρ.χ(x, e)).X =
d
dε

∣∣∣∣
ε=0

ρ(exp(εχ(x, e).X)e). (55)

Since the derivative of the exponential map is the identity and

ρ(π) = π ∗ · ∈ GL(Vx)⇒ Teρ.t = t ∗ · ∈ L(Vx), (56)

it follows that
ω(x) = χ(x, e) ∗ · = K(x)⊗ δ ∗ ·, (57)

and therefore,

∇VX ft =
∫ +∞

0
ds[d fs(X)vs + fsK.Xδ ∗ vs]

=
∫ +∞

0
ds[d fs(X) + fsK.X]vs

= d ft(X) + ftK.X

=
N

∑
j=0

(
∂ ft

∂xj
+ Kj ft

)
Xj.

(58)
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Proposition 5. The curvature of the connection ∇V is

RV (X, Y) := ∇VX∇VY −∇VY∇VX −∇V[X,Y] = [p] ◦ (R(X∗, Y∗, e) ∗ ·) ◦ [p]−1, (59)

where R is the curvature on the principal fibre bundle B, X∗, Y∗ ∈ TpB the horizontal lifts of
X, Y ∈ T(t,x)M, and

[p] : V = R[0,+∞[ −→ V(t,x) := B(t,x) ×G V

v 7−→ [p](v) = [p, v]
(60)

is the fibre isomorphism between B and V . In particular, the curvature on the principal fibre bundle
vanishes if and only if the curvature on the associated vector bundle vanishes.

Proof. Equation (59) follows from the definition of the curvature on a vector bundle and
utilizes Satz 3.21 in [26] with ρ(π) = π ∗ · .

We now continue by introducing the connection Laplacian on an appropriate Hilbert
space.

Definition 16. The space of the sections of the cash flow bundle can be turned into a scalar
product space by introducing, for stochastic sections f = f (t, x, ω) = ( fs(t, x, ω))s∈[0,+∞[ and
g = g(t, x, ω) = (gs(t, x, ω))s∈[0,+∞[, the following:

( f , g) :=
∫

Ω
dP
∫

X
dN x

∫ +∞

0
dt〈 f , g〉(t, x, ω) = E0

[
( f , g)L2(M,R[0,+∞[)

]
= ( f , g)L2(Ω,V ,A0,dP), (61)

where
〈 f , g〉(x, t, ω) :=

∫ +∞

0
ds fs(t, x, ω)gs(t, x, ω).

The Hilbert space of integrable sections reads as follows:

H := L2(Ω,V ,A0, dP)

=
{

f = f (t, x, ω) = ( fs(t, x, ω))s∈[0,+∞[

∣∣∣ ( f , f )L2(Ω,V ,A0,dP) < +∞
}

. (62)

When considering the connection Laplacian, there are two standard choices for a local
elliptic boundary condition which guarantees self-adjointness:

• Dirichlet boundary condition:

BD( f ) := f |∂M. (63)

• Neumann boundary condition:

BN( f ) := (∇Vν f )|∂M, (64)

where ν denotes the normal unit vector field to ∂M.

By considering the ω a parameter dependence, we can apply a standard result func-
tional analysis to obtain the following proposition.

Proposition 6. The connection Laplacian ∆V := ∇V ∗∇V with a domain definition given by the
Neumann boundary condition,

dom
(

∆VBN

)
:=
{

f ∈ H| f (ω, ·, ·) ∈ H2(M,R[0,+∞[), BN( f (ω, ·, ·)) = 0 ∀ω ∈ Ω
}

, (65)
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is a self-adjoint operator onH. Its spectrum consists in the disjoint union of the discrete spectrum
(eigenvalues) and the continuous spectrum (approximate eigenvalues) lying in [0,+∞[:

spec(∆VBN
) = specd(∆

V
BN

) ∪̇specc(∆
V
BN

). (66)

If M is compact, for example, by setting M := [0, T]×X, X ⊂ RN compact and T < +∞,
then the continuous spectrum is empty and the eigenvalues can be ordered in a monotone increasing
sequence converging to +∞.

Remark 8. When we choose M = [0, T]×X with T < +∞, we have to adapt the construction
of the principal fibre bundle and the associated vector bundle accordingly. Note that the structure
group of B and its Lie Algebra remain G and R[0,+∞[, respectively, and the fibre of V is still R[0,+∞[.
Only the integration over the time dimension in the base space M is performed until T.

Remark 9. For a fixed ω ∈ Ω, the definition domain of ∆VBN
is a subset of the Sobolev space

H2(M,R[0,+∞[). If M is compact, then the eigenvectors of ∆VBN
lie in C∞(M,R[0,+∞[) and satisfy

the Neumann boundary condition. Proposition 6 follows from standard elliptic spectral theory by
means of an integration over Ω.

The spectrum of the connection Laplacian under the Neumann boundary condition
contains information about arbitrage possibilities in the market.

Theorem 11. The market model satisfies the NFLVR condition if and only if 0 ∈ specd

(
∆VBN

)
.

The harmonic sections parameterize the Radon–Nikodym derivative for the change of measure from
the statistical to the risk-neutral measures.

Proof. The spectrum of the Laplacian under Neumann boundary conditions contains 0 if
and only if there exists a section f such that

∇V f = 0. (67)

According to Proposition 4, this is equivalent to

∂ ft

∂xj
+ Kj ft = 0, (68)

for all j = 0, 1, . . . , N. This means that for j = 0

D log( ft(x))− rx
t = 0, (69)

and for j = 1, . . . , N,
∂ log( ft(x))

∂xj
= − Dj

t
Dx

t
, (70)
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for all x ∈ X. Equation (70) becomes

∂ log( ft(x))
∂xj

= −∂ log(Dx
t )

∂xj

∂ log( ft(x))Dx
t

∂xj
= 0

log( ft(x))Dx
t ) ≡ Ct

ft(x)Dx
t ≡ exp(Ct),

(71)

for a process (Ct)t∈[0,+∞[. Therefore, the positive process β = (βt)t∈[0,+∞[ := (exp(−Ct))

t∈[0,+∞[ satisfies

ft(x) =
1

βtDx
t

, (72)

which, when inserted into Equation (69), leads to

D log(βtDx
t ) + rx

t = 0, (73)

for all t and x.
For fixed ω ∈ Ω, the Laplace operator has an elliptic symbol and by Weyl’s theorem,

any harmonic f = f (ω, t, x) is a smooth function of (t, x). In particular, any path of
f is càdlàg with bounded variation, and hence ( ft)t is a semimartingale. According to
Equation (72), (Dt)t being a semimartingale, it follows that (βt)t is a semimartingale as
well. Based on Theorem 7 this is equivalent to the NFLVR condition.

Remark 10. Note that if f = f (ω, t, x) ≡ f (ω), and at least one of the components of r or D does
not vanish, then f = 0, 0 /∈ spec

(
∆VBN

)
, confirming and extending Remark 5.

Remark 11. Any harmonic f = ft(x) defines a risk-neutral measure by means of the Radon–
Nikodym derivative:

dP∗

dP
=

βt

β0
=

Dx
0

Dx
t

f0(x)
ft(x)

, (74)

which does not depend on x.

From Formula (74), we derive the following corollary.

Corollary 2. The market model is complete if and only if 0 ∈ spec(∆V )BN is an eigenvalue with
simple multiplicity.

Remark 12. The situation for the Dirichlet boundary condition is similar. The proposition and
remark analogous to Proposition 6 and Remark 9 hold true. But because of the unique continuation
property for elliptic operators, 0 never lies in specd

(
∆VBD

)
whether the NFLVR property is satisfied

or not.
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3.3. Arbitrage Bubbles

Definition 17 (Spectral Lower Bound). The highest spectral lower bound of the connection
Laplacian on the cash flow bundle V is given by the following:

λ0 := inf
ϕ∈C∞(M,V)

ϕ 6=0
BN(ϕ)=0

(∇V ϕ,∇V ϕ)H
(ϕ, ϕ)H

, (75)

and it is assumed on the subspace

Eλ0 :=
{

ϕ
∣∣∣ ϕ ∈ C∞(M,V) ∩H, BN(ϕ) = 0, (∇V ϕ, ∇V ϕ)H ≥ λ0(ϕ, ϕ)H

}
. (76)

The space
Kλ0 := {ϕ ∈ Eλ0 | ϕ ≥ 0, E[ϕ] = 1} (77)

contains all candidates for the Radon–Nikodym derivative

dP∗

dP
= ϕ, (78)

for a probability measure P∗ absolutely continuous with respect to the statistical measure P.

By reformulating Theorem 11 and Corollary 2, we obtain following statement.

Proposition 7. The market model satisfies the NFLVR condition if and only if λ0 = 0. Therefore,
there exist risk-neutral probability measures defined by (78) with the corresponding ϕ ∈ Kλ0 such
that (Dt)t∈[0,T] is a vector valued martingale with respect to P∗, i.e.,

E∗t [Ds] = Dt for all s ≥ t in [0, T]. (79)

The market is complete if and only if λ0 = 0 and dim E0 = 1.

For arbitrage markets we have λ0 > 0, and there exist no risk-neutral probability
measures. Nevertheless, it is possible to define a fundamental value, although not in a
unique way.

Definition 18 (Basic Assets’ Arbitrage Fundamental Prices and Bubbles). Let (Ct)t∈[0,T]

be the RN cash flow stream stochastic process associated with the N assets of the market model
with a given spectral lower bound λ0 and the Radon–Nikodym subspace Kλ0 . For a given choice
of ϕ ∈ Kλ0 , the approximated fundamental value of the assets with a stochastic RN-valued price
process (St)t∈[0,T] is defined as follows:

S∗,ϕt := Et

[
ϕ

(∫ τ

t
dCu exp

(
−
∫ u

t
r0

s ds
)
+ Sτ exp

(
−
∫ τ

t
r0

s ds
)

1{τ<+∞}

)]
1{t<τ}, (80)

where τ denotes the maturity time of all risky assets in the market model, and the approximated
bubble is defined as follows:

Bϕ
t := St − S∗,ϕt . (81)
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The fundamental price vector for the assets and their asset bubble prices are defined as:

S∗t := S̃∗,ϕ0
t

Bt := Bϕ0
t

ϕ0 := arg min
ϕ∈Kλ0

E0

[∫ T

0
ds |Bϕ

s |2
]

.

(82)

The probability measure P∗ with the Radon–Nikodym derivative

dP∗

dP
= ϕ0 (83)

is termed minimal arbitrage measure.

Proposition 8. The assets’ fundamental values can be expressed as conditional expectation with
respect to the minimal arbitrage measure using the following formula:

S∗t := E∗t
[∫ τ

t
dCu exp

(
−
∫ u

t
r0

s ds
)
+ Sτ exp

(
−
∫ τ

t
r0

s ds
)

1{τ<+∞}

]
1{t<τ}. (84)

Definition 19 (Scalar curvature). The market integral scalar curvature at time t for the port-
folio x is defined as follows:

K(t, x) := D log Dx
t + rx

t . (85)

A strategy x = (xt)t∈[0,T] is a free lunch / no-arbitrage / rip-off strategy if and only if

K(t, xt)


> 0 (free lunch)
= 0 (no-arbitrage)
< 0 (rip off)

for all t ∈ [0, T]. (86)

The vector valued integral curvature of the portfolio is defined as the vector of integral
scalar curvatures for the portfolio single asset components:

−→K (t, x) :=
N

∑
j=1

(
D log D

xjej
t + r

xjej
t

)
ej. (87)

Remark 13. The curvature R defined in (29) can be written as follows:

R(t, x, g) = gdt ∧ dxK(t, x), (88)

therefore justifying the nomenclature of the integral scalar curvature K.

We can now extend Jarrow–Protter–Shimbo’s result in [27] to obtain the following
bubble decomposition theorem.

Theorem 12 (Bubble decomposition). Let τ denote the maturity time of all risky assets in
the market model. St admits a unique (up to the P-evanescent set) decomposition into a sum of
fundamental and bubble values:

St = S∗t + Bt, (89)
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where (Bt)t∈[0,T] is a càdlàg process satisfying

Bt = St+

−Et

[
ϕ0

{∫ τ

t
dCu exp

(
−
∫ u

t
dsr0

s

)
+

+St exp
(∫ τ

t
ds(
−→K (s, e)− r0

s )

)
1{τ<+∞}

}]
1{t<τ},

(90)

where e = [1, . . . , 1]† or, equivalently, for all j = 1, . . . , N

Bj
t = Sj

t −E∗t
[∫ τ

t
dCj

u exp
(
−
∫ u

t
ds r0

s

)
+ exp

(
−
∫ τ

t
ds r0

s

)
Sj

τ1{τ<+∞}

]
1{t<τ}. (91)

If all asset maturities are finite, i.e., τ = T < +∞, then

−→K · > r0
· and C· > 0 =⇒ Bt ↑ 0− (t→ T−)

−→K · < r0
· and C· < 0 =⇒ Bt ↓ 0+ (t→ T−)

−→K · = r0
· and C· = 0 =⇒ Bt ≡ 0,

(92)

where the inequalities and the limits are meant componentwise.

Proof. By developing the expression for the bubbles’ values and utilizing the definition of
deflators for all t ≥ 0

Dt = exp
(
−
∫ t

0
ds r0

s

)
St, (93)

since the curvature is the instantaneous asset portfolio log return (see [11])

Dτ = Dt exp
(∫ τ

t
ds (D log Ds + rs)

)
, (94)

we obtain

Sτ = St exp
(∫ τ

t
ds
(
D log Ds + rs − r0

s

))
, (95)

and hence,

Bt = St −Et

[
ϕ0

{∫ τ

t
dCu exp

(
−
∫ u

t
ds r0

s

)
+

+Sτ exp
(
−
∫ τ

t
ds r0

s

)
1{τ<+∞}

}]
1{t<τ} =

= St −Et

[
ϕ0

{∫ τ

t
dCu exp

(
−
∫ u

t
ds r0

s

)
+

+ St exp
(∫ τ

t
ds (
−→K (s, e)− r0

s )

)
1{τ<+∞}

}]
1{t<τ},

(96)

which is (90), and for finite T, it becomes
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Bt = St −Et

[
ϕ0

(∫ T

t
dCu exp

(
−
∫ u

t
ds r0

s

)
+

+St exp
(∫ T

t
ds (
−→K (s, e)− r0

s )

))]
=

= St − St Et

[
ϕ0 exp

(∫ T

t
ds (
−→K (s, e)− r0

s )

)]
︸ ︷︷ ︸

=:A1(t,T)

+

−Et

[
ϕ0

(∫ T

t
dCu exp

(
−
∫ u

t
ds r0

s

))]
︸ ︷︷ ︸

=:A2(t,T)

.

(97)

Now, since E0[ϕ0] = 1, we observe that
−→K · − r0

· > 0, C· > 0 =⇒A1(t, T) > 0, A2(t, T) > 0,

A1(t, T) ↓ 1+, A2(t, T) ↓ 0+ (t→ T−)
−→K · − r0

· < 0, C· < 0 =⇒A1(t, T) > 0, A2(t, T) < 0,

A1(t, T) ↑ 1+, A2(t, T) ↑ 0+ (t→ T−),

(98)

from which we conclude according to (97) that

−→K t − r0
t > 0 for t ∈ [0, T], C· > 0 =⇒ Bt ↑ 0− (t→ T−)

−→K t − r0
t < 0 for t ∈ [0, T], C· < 0 =⇒ Bt ↓ 0+ (t→ T−),

(99)

and hence, −→K t − rt ≡ 0 and C = 0 =⇒ Bt ≡ 0. (100)

Inserting the definition (87) of
−→K into (90) leads to (91). The proof is now completed.

We can now extend Jarrow–Protter–Shimbo’s result in [27] to obtain the following
bubble classification theorem.

Theorem 13 (Bubble types). Let T = +∞, and denote as τ the maturity time of all risky assets
in the market model. If there exists a non-trivial bubble Bj

t in an asset’s price for j = 1, . . . , N, then
there exists at least one probability measure P∗ equivalent to P, for which we have three and only
three possibilities:

• Type1: Bj
t is local super- or submartingale with respect to both P and P∗, if P[τ = +∞] > 0;

• Type2: Bj
t is local super- or submartingale with respect to both P and P∗, but not uniformly

integrable super- or submartingale, if Bj
t is unbounded but with P[τ < +∞] = 1;

• Type3: Bj
t is a strict local super- or sub- P- and P∗-martingale, if τ is a bounded stopping time.

Proof. This theorem is a direct consequence of a local application of Equation (97), ap-
plied on time subintervals of [0, T] on which the signs of K(t, ej) + r0

t and of Ct remain

constant. On the subintervals with non-negative K(t, ej) and Ct, the bubble price Bj
t is a

sub-martingale for both P and P∗, because for t ≤ s that is near enough, Bt ≤ Bs holds
true; thus,

Bt ≤ Et[Bs] and Bt ≤ E∗t [Bs]. (101)

On the subintervals with non-positive K(t, ej) and Ct, the bubble price Bj
t is a super-

martingale for both P and P∗, because for t ≤ s that is near enough, Bt ≥ Bs holds
true; thus,

Bt ≥ Et[Bs] and Bt ≥ E∗t [Bs]. (102)
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In the case of type 1, there is a non-evanescent set of elementary events for which the
maturity time of the assets is not finite, and without further information, we do not know
whether the stochastic integral until infinite converges. In the case of type 2, the set of
elementary events for which the maturity time of the assets τ is not finite vanishes a.s., but if
Bj

t is unbounded, we do not know if the stochastic integral over [t, τ] converges uniformly
in τ. In the case of type 3, the stochastic integral converges. The proof is completed.

Remark 14. Note that if the NFLVR is satisfied, then the curvature vanishes, and so do the bubbles
of type 3, these being trivial martingales for both the statistical and the risk-neutral probability
measures.

Definition 20 (Contingent Claim’s Arbitrage Fundamental Price and Bubble). Let us
consider in the context of Definition (18) a European option given by the contingent claim with a
unique payoff H(ST) at time T for an appropriate real-valued function H of N real variables. The
fundamental price of the contingent claim and its corresponding arbitrage bubble is defined in the
case of base assets paying no dividends:

V∗t (H) := Et

[
ϕ0 exp

(
−
∫ T

t
r0

s ds
)

H(ST) 1{T<+∞}

]
1{t<T}

= E∗
[

exp
(
−
∫ T

t
r0

s ds
)

H(ST) 1{T<+∞}

]
1{t<T}

Bt(H) := Vt(H)−V∗t (H),

(103)

where ϕ0 is the minimizer for the basic assets bubbled defined in (82), P∗ the minimal arbitrage
measure, and (Vt(H))t∈[0,T] is the price process of the European option.

In the case of base assets paying dividends, the definition becomes the following:

V∗t (H) := Et

[
ϕ0 exp

(
−
∫ T

t
r0

s ds
)

H
(

ST exp
(

CT
ST

(T − t)
))

1{T<+∞}

]
1{t<T}

= E∗
[

exp
(
−
∫ T

t
r0

s ds
)

H
(

ST exp
(

CT
ST

(T − t)
))

1{T<+∞}

]
1{t<T}

Bt(H) := Vt(H)−V∗t (H),

(104)

where Cj
t

Sj
t

is the instantaneous dividend rate for the j-th asset.

Remark 15. If the market is complete, then λ0 = 0 and Kλ0 = {ϕ0}, where ϕ0 is the Radon–
Nikodym derivative of the unique risk-neutral probability measure with respect to the statistical
probability measure. The definitions in (18) and in (12) for the complete market coincide with the
definitions of fundamental value and asset bubble price for both base asset and contingent claim
as introduced by Jarrow, Protter, and Shimbo in [27], proving that they are a natural extension to
markets allowing for arbitrage opportunities.

Remark 16. We see that the fundamental price of an asset defined via minimal arbitrage measure
does share common characteristics with the real world pricing in the benchmark approach by Platen
and Heath (see chapters 9 and 10 of [28]).

We now prove the put-call parity of fundamental prices.

Proposition 9 (Put-Call Parity for Fundamental Prices). Let us consider the market model
with N = 1 for the base assets (i.e., cash and one risky asset). Then, the fundamental price processes:

• (C∗t )t∈[0,T] of a call option on (St)t∈[0,T] with strike price K > 0 at time T;
• (P∗t )t∈[0,T] of a put option on (St)t∈[0,T] with strike price K > 0 at time T;
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• (F∗t )t∈[0,T] of a forward on (St)t∈[0,T] with forward price K > 0 at time T;

satisfy the put-call-parity relation if the base asset pays no dividends.

C∗t − P∗t = F∗t . (105)

Proof. For a positive strike price K > 0, we can decompose the forward payoff as:

ST − K = (ST − K)+ − (K− ST)
+. (106)

Formula (103), in the case of no dividends (C ≡ 0), reads as:

V∗t (H) = Et

[
ϕ0 exp

(
−
∫ T

t
r0

s ds
)

H(ST) 1{T<+∞}

]
1{t<T}, (107)

which, applied to (106), leads to

V∗t ((ST − K)+)−V∗t ((K− ST)
+) = V∗t ((ST − K)), (108)

which is Equation (105). The proof is completed.

Remark 17. The put-call parity for market prices may be violated even under the NFLVR assump-
tion (see [29]).

Finally, a short direct computation shows the corollary below.

Corollary 3. The bubble discounted values for the base assets in Definition 18 and for the contingent
claim on the base assets paying dividends in Definition 12

B̂t := exp
(
−
∫ t

0
r0

s ds
)

Bt, B̂(H)t := exp
(
−
∫ t

0
r0

s ds
)

B(H)t (109)

satisfy the equalities

B̂j
t = Dj

t −
(
E∗t
[

Dj
τ1{τ<+∞}

]
+E∗t

[
Ĉj

τ1{τ<+∞}

]
− Ĉj

t

)
1{t<τ}

B̂t(H) = V̂t(H)−E∗t
[

Ĥ
(

ST exp
(

CT
ST

(T − t)
))

1{T<+∞}

]
1{t<T}.

(110)

where

Ĉj
t := exp

(
−
∫ t

0
r0

s ds
)

Cj
t (111)

Ĥ := exp
(
−
∫ T

0
r0

s ds
)

H (112)

V̂t(H) := exp
(
−
∫ t

0
r0

s ds
)

Vt(H) (113)

are the discounted cash flow for the j-th asset, the discounted contingent claim payoff, and the
discounted value of the derivative.

4. Topological Obstructions to Arbitrage
4.1. Topological Obstruction to Arbitrage Induced by the Gauss-Bonnet-Chern Theorem

We want to show that the exterior algebra bundle twisted with the cash flow bundle
defined in Section 3.1 can be given the structure of a Dirac bundle. Then, we apply the
version of the Atiyah–Singer index theorem for this bundle, called the Gauss–Bonnet–Chern
theorem, which relates the integral of the Euler form (i.e., the Pfaffian of the curvature of
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the connection) with a topological invariant of the bundle, the Euler characteristic. First,
we recall some basic definitions and examples about Dirac operators.

Definition 21. The quadruple (W, 〈·, ·〉,∇, γ), where

(i) W is a complex (real) vector bundle over the oriented Riemannian manifold (M, g) with a
Hermitian (Riemannian) structure 〈·, ·〉;

(ii) ∇ : C∞(M, W)→ C∞(M, T∗M⊗W) is a connection on M;
(iii) γ : Cl(M, g)→ Hom(W) is a real algebra bundle homomorphism from the Clifford bundle

over M to the real bundle of complex (real) endomorphisms of W, i.e., W is a bundle of Clifford
modules;

is said to be a Dirac bundle if the following conditions are satisfied:

(iv) γ(v)∗ = −γ(v), ∀v ∈ TM, i.e., the Clifford multiplication by tangent vectors is fiberwise
skew-adjoint with respect to the Hermitian (Riemannian) structure 〈·, ·〉;

(v) ∇〈·, ·〉 = 0, i.e., the connection is Leibnizian (Riemannian). In other words, it satisfies the
product rule:

d〈ϕ, ψ〉 = 〈∇ϕ, ψ〉+ 〈ϕ,∇ψ〉, ∀ϕ, ψ ∈ C∞(M, W); (114)

(vi) ∇γ = 0, i.e., the connection is a module derivation. In other words, it satisfies the product rule:

∇(γ(w)ϕ) = γ(∇gw)ϕ + γ(w)∇ϕ, ∀ϕ, ψ ∈ C∞(M, W),

∀w ∈ C∞(M, Cl(M, g)).
(115)

Example 1. (Exterior algebra bundle as a Dirac Bundle). Let (M, g) be a C∞ Riemannian
manifold of dimension m. The tangent and the cotangent bundles are identified by the [-map defined
by v[(w) := g(v, w). Its inverse is denoted as ]. The exterior algebra can be seen as a Dirac bundle
after the following choices:

• W := Λ(T∗M) =
⊕m

j=0 Λj(T∗M): exterior algebra over M;
• 〈·, ·〉: Riemannian structure induced by g;
• ∇: lift of the Levi Civita connection;
• By means of interior and exterior multiplication, int(v)ϕ := ϕ(v, ·) and ext(v)ϕ := v[ ∧ ϕ,

we can define the following:

γ :
TM −→ Hom(W)
v 7−→ γ(v) := ext(v)− int(v).

(116)

Recall that, since γ2(v) = −g(v, v)1, based on the universal property, the map γ extends
uniquely to a real algebra bundle endomorphism γ : Cl(M, g) −→ Hom(W).

Definition 22. Let (W, 〈·, ·〉,∇, γ) be a Dirac bundle over the Riemannian manifold (M, g).
The Dirac operator Q : C∞(M, W)→ C∞(M, W) is defined by Q := γ ◦ (]⊗1) ◦ ∇

C∞(M, W)
∇−−−−→ C∞(M, T∗M⊗W)

Q:=γ◦(]⊗1)◦∇
y y]⊗1

C∞(M, W)
γ←−−−− C∞(M, TM⊗W)

(117)

The square of the Dirac operator P := Q2 : C∞(M, W) → C∞(M, W) is called the Dirac
Laplacian.
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Definition 23 (Dirac Complex). Let Q be the Dirac operator for the Dirac bundle W over the
Riemannian manifold (M, g) and T ∈ Hom(W). (Q, T) is called a Dirac complex if and only if
T2 = 1 and QT = −TQ. We introduce the following notation:

Π± :=
1∓ T

2
W± := Π±(W) Q± := Q|C∞(M,W±). (118)

Remark 18. The terminology introduced in Definition 23 is justified by the following properties:

• Q± : C∞(M, W±) −→ C∞(M, W∓);

• Q =

[
0 Q−

Q+ 0

]
: C∞(M, W+ ⊕W−︸ ︷︷ ︸

W

) −→ C∞(M, W+ ⊕W−︸ ︷︷ ︸
W

);

• the sequence

0 −−−−→ C∞(M, W+)
Q+−−−−→ C∞(M, W−)

Q−−−−−→ C∞(M, W+) −−−−→ 0

is a complex, i.e., Q−Q+ = 0.

Example 2. (Exterior algebra bundle as a Dirac Bundle—Continuation). The Dirac opera-
tor Q = d + δ is termed a Euler operator. We define the vector bundle isomorphism on the exterior
algebra bundle T as Tη := (−1)jη for η ∈ Λj(T∗M) and extend it by linearity to Λ(T∗M) in
order to obtain the Dirac complex (Q, T), termed the rolled-up De Rham complex.

The Dirac operator Q is elliptic and symmetric as an operator on the Hilbert space
L2(M, W), with the appropriate choice of domain of definition.

Definition 24 (Analytical Index). Let (Q, T) be a Dirac complex over a compact manifold.
If ∂M = ∅, then the analytical index of the complex is defined as follows:

Indexa(Q, T) := dim ker(Q+)− dim ker(Q−). (119)

If ∂M 6= ∅, and there exists an elliptic boundary condition B for which QB is symmetric, then
the analytical index of the complex with respect to this boundary condition is defined as follows:

Indexa(Q, T, B) := dim ker((Q+)B)− dim ker((Q−)B). (120)

Theorem 14 (Atiyah–Patodi–Singer). Let (Q, T) be a Dirac complex over a compact manifold.
If ∂M = ∅, then

Indexa(Q, T) = Indext(Q, T), (121)

where Indext(Q, T) is a topological index, i.e., depending only on the topology of M and W.
If ∂M 6= ∅ and B is an elliptic boundary condition, then

Indexa(Q, T, B) = Indext(Q, T) + Boundary Term(B). (122)

For generic Dirac bundles, the existence of local elliptic boundary conditions is not
guaranteed. But for the exterior algebra bundle, the absolute and relative boundary
conditions are always local elliptic boundary conditions for the Euler operator. In this case,
the Atiyah–Singer index theorem takes the form of the Gauss–Bonnet–Chern theorem:

Example 3. (Exterior algebra bundle as a Dirac Bundle—Continuation). In the boundary-
less case we have (see [30] page 179 and [31] page 59)

(2π)
m
2

∫
M

Pf(−RΛ(T∗M)) = χ(M), (123)
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where Pf(−RΛ(T∗M)), termed a Euler form, is the Pfaffian of the exterior algebra curvature and
χ(M) is the Euler characteristic, which is a topological invariant of the manifold defined as:

χ(M) :=
m

∑
j=0

bj(M), (124)

where bj(M) := dim H j(M) is the j-th Betti number of M, the dimension of the j-the De Rham
absolute cohomology group, which is isomorphic to the j-th homology group. In the boundaryless
case, absolute and relative cohomology coincide, the Hodge star operator defines an isomorphism
between the j-th and the m− j-th De Rham cohomology, and hence, the Euler characteristic always
vanishes if m is odd.

If the manifold M has a boundary on which we impose the absolute (or relative) boundary
condition, the equality (122) becomes

(2π)
m
2

∫
M

Pf(−RΛ(T∗M)) = χ(M) +
∫

∂M
Φ(RΛ(T∗M), L(∂M, M)))dvol∂M, (125)

where Φ is a function of the curvature RΛ(T∗M) and of the second fundamental form L of the
embedding ∂M→ M (see [30] page 201). Note that in the case of a manifold with a boundary case,
the Euler characteristic does not have to vanish if m is odd.

Next, we can apply the definitions above to recognize a Dirac bundle containing
all the information required by the market model. In the space of all possible strategies
M := [0, T] × X ⊂ RN+1, now we introduce the Riemannian structure induced by the
Euclidean metric in RN+1. The cash flow bundle V has infinite rank and is therefore an
unfavourable candidate for the Atiyah–Singer/Gauss–Bonnet–Chern theorem. Therefore,
we choose a partition t0 := 0 < t1 < · · · < tn−1 < tn := T of the interval [0, t] such
that its mesh max1≤i≤n(ti − ti−1)→ 0 (n → +∞) holds true. We repeat the construction
of the market fibre bundle Bn in Definition 11, choosing as structure group Gn := {π ∈
G | supp(π) ⊂ {t0, . . . , tn}} with Lie algebra gn = Rn+1, and the construction of the
cash flow bundle Vn in Section 3.1, choosing as fibre Vn := Rn+1. Note that in this case,
by standard elliptic theory, the eigenspaces of the connection Laplacian under the Neumann
boundary condition are all finite dimensional. In particular, there are finitely many linear,
independent Radon–Nikodym derivatives that can perform a change of measure from the
statistical to a risk-neutral one.

The exterior algebra bundle over M twisted with the cash flow bundle Vn is given the
structure of a Dirac bundle with the following choices:

• g: restriction of the Euclidean metric;
• Wn := Λ(T∗M)⊗ Vn: twisted bundle of finite rank (n + 1)2N+1;
• 〈η1 ⊗ v1, η2 ⊗ v2〉Wn := 〈η1, η2〉Λ(T∗M)〈v1, v2〉Vn : Riemannian structure;
• ∇Wn := ∇Λ(T∗M) ⊗ 1Vn + 1Λ(T∗M) ⊗∇Vn : connection;
• γWn := γΛ(T∗M)⊗ 1Vn : real algebra bundle endomorphism γ : Cl(M, g) −→ Hom(Wn);
• TWn := TΛ(T∗M) ⊗ 1Vn ∈ Hom(Wn): a symmetry anticommuting with the Dirac opera-

tor.

Properties (iv)–(vi) of Definition 21 are satisfied, as highlighted on page 226 of [30],
and TWn defines via Definition 23 a Dirac complex. Since for the curvature we have the
following:

RWn = RΛ(T∗M) ⊗ 1Vn + 1Λ(T∗M) ⊗ RVn = 1Λ(T∗M) ⊗ RVn , (126)
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because M carries the flat Euclidean metric (RΛ(T∗M) = 0), the Gauss–Bonnet–Chern
theorem reads as follows:

(2π)
N+1

2

∫
M

Pf(−1Λ(T∗M) ⊗ RVn)

= Rank(Vn)

[
χ(M) +

∫
∂M

Φ(RΛ(T∗M), L(∂M, M)))dvol∂M

]
. (127)

The integrand of the boundary term vanishes because the Riemannian curvature is
zero, as one can see in [30] page 199. Therefore,

(2π)
N+1

2

∫
M

Pf(−1Λ(T∗M) ⊗ RVn) = Rank(Vn)χ(M). (128)

Utilizing the fact that

χ(M) = χ([0, T]×X) = χ(X), (129)

and inserting the value for the cash flow bundle rank, we obtain for all n ∈ N1

1
n + 1

(π

2

) N+1
2
∫

M
Pf(−1Λ(T∗M) ⊗ RVn) = χ(X), (130)

from which we see that a non-vanishing Euler characteristic of the space of all possible
nominals is a topological obstruction for the market model to be arbitrage-free. To summarize:

Theorem 15. If a market model has a bounded space of asset nominals X, whose Euler characteristic
χ(X) does not vanish, then the zero curvature condition (ZC), or equivalently the (NUPBR)
condition, and a fortiori the NFLVR condition, cannot be satisfied:

(NFLVR)⇒ (NUPBR)⇒ χ(X) = 0. (131)

Remark 19. Formula (130) says that the total quantity of arbitrage allowed by a market over all
asset strategies is a topological invariant of the asset nominal space.

Remark 20. The Euler characteristic of the nominal space χ(X) as topological obstruction to
NFLVR is consistent with the results in [10], where the first homotopy group Π1(X, D) must be
trivial if NFLVR holds true.

Remark 21. There is a more general version of the index theorem which holds true for any elliptic
operator on a vector bundle over a manifold with boundary that has an elliptic boundary condition,
which is a generalization of the Atiyah–Singer–Patodi index theorem. For the connection Laplacian
P := ∇V ∗∇V over the cash flow bundle V under the Neumann boundary condition BN , it has the
following form:

Indexa(P, BN) = Indext(P) + Boundary Term(P, BN). (132)

Do we expect from (132) another topological obstruction to arbitrage than the one induced
by the Gauss–Bonnet–Chern theorem? We want to answer this question by means of qualitative
reasoning. We observe that:

• Indexa(P, BN) is an integral over M of an expression depending on the derivatives of Christof-
fel’s symbols for the connection ∇V ;

• Indext(P, BN) is a topological invariant of the manifold M;
• Boundary Term(P, BN) = 0, because of the choice of the boundary condition and Green’s formula.

Therefore, the information contained in (132) is essentially the same as that in (125), and thus,
we expect no additional insights.
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4.2. Topological Obstruction to Arbitrage Induced by the Bochner–Weitzenböck Theorem

Let us now introduce two local elliptic boundary condition which guarantee self-
adjointness to the Dirac operator and the Dirac Laplacian on Λ(T∗M):

• Absolute boundary condition:

B0
abs( f ) := (int(ν)( f ))|∂M

B1
abs( f ) := B0

abs( f )⊕ B0
abs(Q

Λ(T∗M) f ),
(133)

where the operation int is the interior multiplication in Λ(T∗M), defined as

int(v)( f ) := f (v, ·). (134)

• Relative boundary condition:

B0
rel( f ) := (ext(ν)( f ))|∂M

B1
rel( f ) := B0

rel( f )⊕ B0
rel(Q

Λ(T∗M) f ),
(135)

where the operation ext is the exterior multiplication in Λ(T∗M), defined as

ext(v)( f ) := v# ∧ f , (136)

and # is the isomorphism between TM and T∗M.

Theorem 16. The following equations hold:

(QW
B0

abs⊗BN
)2 = (∇W∗∇W)B1

abs⊗BN
. (137)

Moreover, the no-free-lunch-with-vanishing-risk condition is satisfied if and only if the Dirac
Laplacian admits harmonic sections of the cash flow bundle:

(NFLVR)⇐⇒ 0 ∈ specd

(
(QW)2

B1
abs⊗BN

)
. (138)

Proof. The first equation in (137) follows from the Bochner–Weitzenböck formula, which
holds true for any Dirac bundle (cf. [32] page 155):

(QW
B0

abs⊗BN
)2 = (∇W∗∇W)B1

abs⊗BN
+RW , (139)

where

RW :=
N

∑
µ,ν=0

γW(eµ)γ
W(eν)RW(eµ, eν) (140)

is the curvature homomorphism on the vector bundle W and is independent of the choice
of an o.n. frame of TM. Inserting

RW = 1Λ(T∗M) ⊗ RV (141)

into Equation (139), and decomposing a section ψ of the twisted vector bundle as

ψ = ∑
i,j

ai,jci ⊗ f j, (142)
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where { f j}j an o.n.b of L2(Ω,V ,A0, dP), and {ci}i is an o.n.b of L2(Ω, Λ(T∗M),A0, dP) of
eigenvectors of γΛ(T∗M)(eµ) such that for all µ,

γΛ(T∗M)(eµ)ci = (−1)iı, (143)

we obtain

(RWψ, ψ) = − ∑
i,j,k,l
µ 6=ν

ai,jak,l(−1)µ+νδi,k(RV (eµ, eν) f j, fl)

= ∑
i,j,k,l
ν 6=µ

ai,jak,l(−1)ν+µδi,k(RV (eν, eµ) f j, fl)

= −(RWψ, ψ),

(144)

and hence, for any ψ
(RWψ, ψ) = 0. (145)

Based on the polarization identity, we inferRW = 0, and Equation (137) follows. For
the proof of (138), we have:

⇒: If NFLVR holds, then with Theorem 11 there exists an f ∈ dom
(

∆VBN

)
such that

∆V f = 0, and ∇V = 0. Let us consider the section ψ := c ⊗ f , where c ∈ R is a
constant. With Equation (137), we infer via integration by parts

(QW2
ψ, ψ) = (∇W∗∇Wψ, ψ) = (∇Wψ,∇Wψ) = c2(∇V f ,∇V f ) = 0, (146)

and the proof in this direction is complete.

⇐: If there is a ψ 6= 0 in ker
(

QW
B0

abs⊗BN
)2
)

, then

ψ =
⊕
i,j

ai,jci ⊗ f j, (147)

where ci ∈ Λi(T∗M), because the Laplace–Beltrami operator maintains the degree
of differential forms. Therefore, there is at least a pair (i, j) such that for ci 6= 0 and
f j 6= 0

QW2
ci ⊗ f j = 0, (148)

and based on Equation (137),

0 = (QW2
ci ⊗ f j, ci ⊗ f j) = (∇W(ci ⊗ f j),∇W(ci ⊗ f j))

= (∇Λi(T∗M)ci,∇Λi(T∗M)ci)(∇V f j,∇V f j),
(149)

and therefore, ∇V f j = 0 for at least a j. Hence, ∆V f j = 0, and NFLVR follows from
Theorem 11.

Remark 22. Theorem 16 holds true if we replace the absolute with the relative boundary condition.

Corollary 4. The no-free-lunch-with-vanishing-risk condition is satisfied if and only if H∗(M,V),
the homology group of the vector bundle V over M, does not vanish:

(NFLVR)⇐⇒ H∗(M,V) 6= {0}. (150)
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Proof. According to Theorem 16, NFLVR and the isomorphism between the cohomology
group and the kernel of (QW

B0
abs⊗BN

)2

H∗(M, Λ(T∗M)⊗ V) =
N⊕

j=0

H(M, Λj(T∗M)⊗ H∗(M,V) =
N⊕

j=0

H j(M)⊗ H∗(M,V), (151)

where H j(M,R) is the jth cohomology group of M and H∗(M,V) the cohomology group
of the vector bundle V over M. We see that NFLVR is satisfied if and only if there exists at
least a j = 0, . . . , N + 1 such that

H j(M,R)⊗ H∗(M,V), (152)

Since H0(M) 6= {0} because the constant functions are eigenvectors of the Laplace–
Beltrami operator under the absolute boundary condition for the eigenvalue 0, this con-
dition is satisfied if and only if the cohomology group of the cash flow bundle does not
vanish. Since the cohomology group is isomorphic to the homology group, the proof
is complete.

Remark 23. Corollary 4 states that the vanishing of the homology group of the cash flow bundle is
a topological obstruction to the no-free-lunch-with-vanishing-risk condition.

5. Conclusions

By introducing an appropriate stochastic differential geometric formalism, the classical
theory of stochastic finance can be embedded into a conceptual framework called Geometric
Arbitrage Theory, where the market is modelled with a principal fibre bundle with a
connection and arbitrage corresponding to its curvature. The associated vector bundle,
termed cash flow bundle, carries a covariant differentiation induced by the connection. The
presence of the eigenvalue 0 in the spectrum of the connection Laplacian on the cash flow
bundle, or of the Dirac Laplacian on the cash flow bundle twisted with the exterior algebra
bundle, characterizes the fulfilment of the no-free-lunch-with-vanishing-risk condition
for the market model. We extend the Jarrow–Protter–Shimbo bubble theory to markets
allowing for arbitrage and highlight the connections with the Platen–Heath real world
pricing of the benchmark approach. The non-vanishing of the Euler characteristic of the
asset nominal space and the non-vanishing of the homology group of the cash flow bundle
are topological obstructions to the fulfillment of the NFLVR condition.

As a result, we have justified the title of this paper, which is an adaptation of Kač’s
famous question that introduced spectral inverse problems for self-adjoint operators on
manifolds: Can you hear the shape of a drum? We do hope that this approach will be
appreciated by the mathematical finance community.
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Appendix A. Generalized Derivatives of Stochastic Processes

In stochastic differential geometry, one would like to lift the constructions of stochastic
analysis from open subsets of RN to N dimensional differentiable manifolds. To that
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aim, chart invariant definitions are needed, and hence, a stochastic calculus satisfying the
usual chain rule instead of Itô’s Lemma is required, (cf. [14], Chapter 7, and the remark
in Chapter 4 at the beginning of page 200). That is why the papers about geometric
arbitrage theory are mainly concerned with stochastic integrals and derivatives meant in
Stratonovich’s sense and not in Itô’s. Of course, at the end of the computation, Stratonovich
integrals can be transformed into Itô’s. Note that a fundamental portfolio equation, the self-
financing condition, cannot be directly formally expressed with Stratonovich integrals; it
must first be expressed with Itô’s and then transformed into Stratonovich’s because it is a
non-anticipative condition.

Definition A1. Let I be a real interval and Q = (Qt)t∈I be a RN-valued stochastic process on
the probability space (Ω,A, P). The process Q determines three families of σ-subalgebras of the
σ-algebra A:

(i) “Past” Pt, generated by the preimages of Borel sets in RN by all mappings Qs : Ω→ RN for
0 < s < t;

(ii) “Future” Ft, generated by the preimages of Borel sets in RN by all mappings Qs : Ω→ RN

for 0 < t < s;
(iii) “Present” Nt, generated by the preimages of Borel sets in RN by the mapping Qs : Ω→ RN .

Let Q = (Qt)t∈I be continuous. Assuming that the following limits exist, Nelson’s stochas-
tic derivatives are defined as follows:

DQt := lim
h→0+

E
[

Qt+h −Qt

h

∣∣∣∣Pt

]
: forward derivative,

D∗Qt := lim
h→0+

E
[

Qt −Qt−h
h

∣∣∣∣Ft

]
: backward derivative,

DQt :=
DQt +D∗Qt

2
: mean derivative.

(A1)

Let S1(I) be the set of all processes Q such that t 7→ Qt, t 7→ DQt and t 7→ D∗Qt are
continuous mappings from I to L2(Ω,A). Let C1(I) be the completion of S1(I) with respect to the
norm

‖Q‖ := sup
t∈I

(
‖Qt‖L2(Ω,A) + ‖DQt‖L2(Ω,A) + ‖D∗Qt‖L2(Ω,A)

)
. (A2)

Remark A1. The stochastic derivatives D, D∗, and D correspond to Itô’s, to the anticipative,
and, respectively, to Stratonovich’s integral (cf. [33]). The process space C1(I) contains all of Itô
processes. If Q is a Markov process, then the sigma algebras Pt (“past”) and Ft (“future”) in
the definitions of forward and backward derivatives can be substituted by the sigma algebra Nt
(“present”) (see Chapter 6.1 and 8.1 in [33]).

Stochastic derivatives can be defined pointwise in ω ∈ Ω outside the class C1 in terms
of generalized functions.

Definition A2. Let Q : I ×Ω → RN be a continuous linear functional in the test processes
ϕ : I ×Ω → RN for ϕ(·, ω) ∈ C∞

c (I,RN). This means that for a fixed ω ∈ Ω, the functional
Q(·, ω) ∈ D(I,RN), the topological vector space of continuous distributions. We can then define
Nelson’s generalized stochastic derivatives:

DQ(ϕt) := −Q(Dϕt): forward generalized derivative;

D∗Q(ϕt) := −Q(D∗ϕt): backward generalized derivative;

D(ϕt) := −Q(Dϕt): mean generalized derivative.

(A3)
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If the generalized derivative is regular, then the process has a derivative in the classic
sense. This construction is nothing other than a straightforward pathwise lift of the theory
of generalized functions to a wider class of stochastic processes which do not a priori allow
for Nelson’s derivatives in the strong sense. We will utilize this feature in the treatment of
credit risk, where many processes with jumps occur.
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