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1. Significance Statement

Mellin transform was first established by Mellin [1]. The theory of this transform is
well documented in [2,3]. In this work, we are concerned with extending current literature
such as listed in [4] by deriving a new Mellin transform and expressing it in terms of the
Lerch function with a possible connection to contact problems for a wedge [5]. We will use
this new transform and evaluate it to yield special cases in terms of Catalan’s constant C, π,
Euler constant γ, the zeta function of Riemann ζ(s), the Hurwitz zeta function ζ(s, v), and
the log-gamma function log(Γ(x)). These special cases are new with the aim of providing
a new set of integral for use by researchers where applicable.

2. Introduction

In this paper, we derive the definite integral given by

∫ ∞

0

xm−1 logk(cx)
(a2 + x2)(b2 − x2)

dx (1)

where the parameters k, c, a, b, m are general complex numbers. The integral will be used
to derive special cases in terms of special functions and fundamental constants. The
derivations follow the method used by us in [6]. This method involves using a form of the
generalized Cauchy’s integral formula given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw. (2)

where C is in general an open contour in the complex plane where the bilinear concomi-
tant [6] has the same value at the end points of the contour. We then multiply both sides
by a function of x and y, then take a definite double integral of both sides. This yields a
definite integral in terms of a contour integral. Then, we multiply both sides of Equation (2)
by another function of x and take the infinite sums of both sides such that the contour
integral of both equations are the same.
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3. Definite Integral of the Contour Integral

The variable of integration in the contour integral is α = m + w. The cut and contour
are in the first quadrant of the complex α-plane. The cut approaches the origin from
the interior of the first quadrant and the contour goes round the origin with zero radius
and is on opposite sides of the cut. Using the method in [6] involving Cauchy’s integral
Equation (2), we replace y by log(cx) and multiply both sides by xm−1

(a2+x2)(b2−x2)
to get

∫ ∞

0

1
Γ(k + 1)

xm−1 logk(cx)
(a2 + x2)(b2 − x2)

dx

=
1

2πi

∫ ∞

0

∫
C

cww−k−1xm+w−1

(a2 + x2)(b2 − x2)
dwdx

=
1

2πi

∫
C

∫ ∞

0

cww−k−1xm+w−1

(a2 + x2)(b2 − x2)
dxdw

=
1

2πi

∫
C

πcww−k−1 csc( 1
2 π(m + w))(b2am+w + a2bm+w cos( 1

2 π(m + w)))

2a2b2(a2 + b2)
dw

(3)

from Equation (3.264.1) in [7] where 0 < Re(w + m), Re(a) > 0, Re(b) > 0. We are able to
switch the order of integration over w+m and x using Fubini’s theorem since the integrand
is of bounded measure over the space C× [0, ∞).

4. The Lerch Function

The Lerch function see Section (1.11) in [8], also popularly called the Hurwitz-Lerch
function [9,10], has a series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (4)

where |z| < 1, v 6= 0,−1, . . . and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, and either |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.

5. Infinite Sum of the Contour Integral
5.1. Derivation of the First Contour Integral

In this section, we will derive the contour integral given by

1
2πi

∫
C

πcww−k−1bm+w−2 cot( 1
2 π(m + w))

2(a2 + b2)
dw (6)
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Again, using the method in [6] and Equation (2), we replace y by log(b) + log(c) +
iπ(y + 1) multiply both sides by − iπbm−2eiπm(y+1)

a2+b2 and take the infinite sum of both sides
over y ∈ [0, ∞) simplifying in terms the Lerch function to get

−
(iπ)k+1eiπmbm−2Φ(eimπ ,−k, 1− i(log(b)+log(c))

π )

Γ(k + 1)(a2 + b2)

= − 1
2πi

∞

∑
y=0

∫
C

iπbm−2w−k−1 exp(w(log(b) + log(c) + iπ(y + 1)) + iπm(y + 1))
a2 + b2 dw

= − 1
2πi

∫
C

∞

∑
y=0

iπbm−2w−k−1 exp(w(log(b) + log(c) + iπ(y + 1)) + iπm(y + 1))
a2 + b2 dw

=
1

2πi

∫
C

πcww−k−1bm+w−2(cot( 1
2 π(m + w)) + i)

2(a2 + b2)
dw

(7)

similar to Equation (1.232.1) in [7] where

cot(x) = −2i
∞

∑
y=0

e2xi(y+1) − i (8)

5.2. Derivation of the Second Contour Integral

In this section, we will derive the contour integral given by

− 1
2πi

∫
C

πcww−k−1am+w−2 csc( 1
2 π(m + w))

2(a2 + b2)
dw (9)

Again, using the method in [6] and Equation (2), we replace y by log(a) + log(c) +
1
2 iπ(2y+ 1) multiply both sides by− iπam−2e

1
2 iπm(2y+1)

a2+b2 and take the infinite sum of both sides
over y ∈ [0, ∞) simplifying in terms the Lerch function to get

−
(iπ)k+1e

iπm
2 am−2Φ(eimπ ,−k, −2i log(a)−2i log(c)+π

2π )

Γ(k + 1)(a2 + b2)

= − 1
2πi

∞

∑
y=0

∫
C

iπcww−k−1am+w−2e
1
2 iπ(2y+1)(m+w)

a2 + b2 dw

= − 1
2πi

∫
C

∞

∑
y=0

iπcww−k−1am+w−2e
1
2 iπ(2y+1)(m+w)

a2 + b2 dw

=
1

2πi

∫
C

πcww−k−1am+w−2 csc( 1
2 π(m + w))

2(a2 + b2)
dw

(10)

from Equation (1.232.2) in [7] where Im(w + m) > 0 in order for the sum to converge.

Derivation of the Additional Contour Integral

Using the method in [6] and Equation (2), we replace y → log(b) + log(c) multiply
both sides by iπbm−2

2(a2+b2)
and simplify to get

iπbm−2(log(b) + log(c))k

2Γ(k + 1)(a2 + b2)
=

1
2πi

∫
C

iπcww−k−1bm+w−2

2(a2 + b2)
dw (11)

6. Definite Integral in Terms of the Lerch Function

The proceeding theorem is an instant consequence of the previous sections.
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Theorem 1. For all k, c, a, b ∈ C,

∫ ∞

0

xm−1 logk(cx)
(a2 + x2)(b2 − x2)

dx =−
(iπ)k+1e

iπm
2 am−2Φ(eimπ ,−k, −2i log(a)−2i log(c)+π

2π )

a2 + b2

−
(iπ)k+1eiπmbm−2Φ(eimπ ,−k, 1− i(log(b)+log(c))

π )

a2 + b2

− iπbm−2(log(b) + log(c))k

2(a2 + b2)

(12)

Main Results

In the proceeding section, we will evaluate Equation (12) and simplify the Lerch
function in terms of the special functions and fundamental constants stated.

Derivation of Entry (3.264.1) in [7]

Proposition 1. For all 0 < Re(m) < 4, a > 0, b > 0,

∫ ∞

0

xm−1

(a2 + x2)(b2 − x2)
dx =

πa2bm cot(πm
2 ) + πb2am csc(πm

2 )

2a4b2 + 2a2b4 (13)

Proof. Use Equation (12) and set k = 0 and simplify using entry (2) below Table (64:12:7)
in [11].

Proposition 2.

∫ ∞

0

logk(cx)
(a2 + x2)(b2 − x2)

dx

=
1

2ab(a2 + b2)
e

iπk
2 (2π)k+1(ia(ζ(−k,

−i log(b)− i log(c) + π

2π
)

− ζ(−k,
−i log(b)− i log(c) + 2π

2π
)) + b(ζ(−k,

−2i log(a)− 2i log(c) + π

4π
)

− ζ(−k,
−2i log(a)− 2i log(c) + 3π

4π
)))− iπa(log(b) + log(c))k

(14)

Proof. Use Equation (12) and set m = 1 and simplify in terms of the Hurwitz zeta function
ζ(s, a) using entry (4) below Table (64:12:7) in [11].

Proposition 3.

∫ ∞

0

logk(cx)
(a2 + x2)(c2x2 − 1)

dx

=
1

a3c2 + a
e

iπk
2 πk+1(−2kζ(−k,

−2i log(a)− 2i log(c) + π

4π
)

+ 2kζ(−k,
−2i log(a)− 2i log(c) + 3π

4π
) + iac(2k+1 − 1)ζ(−k))

(15)

Proof. Use Equation (14) and set b = 1/c and simplify.

Proposition 4.

∫ ∞

0

logk(x)
x4 − 1

dx = −1
2

e
iπk
2 πk+1(2k(ζ(−k,

1
4
)− ζ(−k,

3
4
)− 2iζ(−k)) + iζ(−k)) (16)

Proof. Use Equation (15) and set a = c = 1 and simplify.
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Example 1.∫ ∞

0

log(x) log(log(x))
x4 − 1

dx =
1
48

π(π(−72 log(A) + 6 + 3iπ + log(256π6)) + 24iC) (17)

Proof. Use Equation (16) take the first partial derivative with respect to k and set k = 1
and simplify in terms of Catalan’s constant C, Glaisher’s constant A and π using Equa-
tion (3:12:4) in [11] and Equation (3.13) in [12].

Example 2.

∫ ∞

0

log2(x) log(log(x))
x4 − 1

dx =
1
32

(−2π3(32ζ ′(−2,
1
4
)− 32ζ ′(−2,

3
4
)

+ log(2) + log(π))− 28iπζ(3)− iπ4)

(18)

Proof. Use Equation (16) take the first partial derivative with respect to k and set k = 2
and simplify.

Example 3.

∫ ∞

0

√
log(x) log(log(x))

x4 − 1
dx =

1
4

4
√
−1π3/2(2

√
2(ζ ′(−1

2
,

1
4
)− ζ ′(−1

2
,

3
4
))

−2i(2
√

2− 1)ζ ′(−1
2
)

−i
√

2(ζ(−1
2

,
1
4
)− ζ(−1

2
,

3
4
))(π − i log(4π2))

+(
1√
2
− 1

4
)ζ(

3
2
)

+
iζ( 3

2 )(log(π)− 2
√

2 log(2π))

2π
)

(19)

Proof. Use Equation (16) take the first partial derivative with respect to k and set k = 1/2
and simplify.

Proposition 5.

∫ ∞

0

xm−1
√

log(x)
(x2 − 1)(a2 + x2)

dx

=
1

a4 + a2 (−1)3/4π3/2(e
iπm

2 amΦ(eimπ ,−1
2

,
1
2
− i log(a)

π
) + a2Li− 1

2
(eimπ))

(20)

Proof. Use Equation (12) and set k = 1/2, c = b = 1 and simplify using Equation (64:12:2)
in [11].
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Proposition 6.

∫ ∞

0

(xp − xm) logk(cx)
x(a2 + x2)2(c2x2 − 1)

dx

=
πk

2a4(a2c2 + 1)2 (ie
iπk
2 (πe

iπm
2 am(a2c2(m− 4)

+ m− 2)Φ(eimπ ,−k,
−2i log(a)− 2i log(c) + π

2π
)

+ ike
iπp

2 (a2c2 + 1)apΦ(eipπ , 1− k,
−2i log(a)− 2i log(c) + π

2π
)

− πe
iπp

2 ap(a2c2(p− 4) + p− 2)Φ(eipπ ,−k,
−2i log(a)− 2i log(c) + π

2π
)

− 2πa4(
1
c
)m−4Li−k(eimπ) + 2πa4(

1
c
)p−4Li−k(eipπ))

+ k(a2c2 + 1)ame
1
2 iπ(k+m)Φ(eimπ , 1− k,

−2i log(a)− 2i log(c) + π

2π
))

(21)

Proof. Use Equation (12) take the first partial derivative with respect to a and set b = 1/c.
Next form a second equation by replacing m→ p and take their difference and simplify.

Example 4.∫ ∞

0

1−
√

x
(x2 + 1)(x2 + (−1)2/3)2 log(ix)

dx

=
−24
144π

((−1)5/12 + (−1)3/4)Φ(−i, 2,
4
3
) + 4π(59i− 45(−1)5/12 − 9(−1)3/4

+ 18(−1)5/6 + (3 + 3(−1)3/4 − 7i
√

3 + (2 + 2i)
√

6)π)

+ log(26(−18i− 4√−1+4(−1)7/12+5(−1)11/12+6
√

3)π

(2−
√

3)−6(−1)7/12(5+ 3√−1)π(2 +
√

3)6 4√−1(5+ 3√−1)π)

+ (9 + 3i
√

3)(ψ(1)(
2
3
)− ψ(1)(

7
6
))

(22)

Proof. Use Equation (21) and set k = −1, c = i, a = eπi/3, m = 1, p = 3/2 and simplify
using entry (2) in Table below (64:12:2) in [11].

Example 5. ∫ ∞

0

1−
√

x
(x2 + i)2(x2 + 1) log(ix)

dx

=
1

16π
((4− 4i) 8

√
−1Φ(−i, 2,

5
4
)− 2( 4

√
−1 + (−4 + 2i))π2

+ i
√

2(ψ(1)(
5
8
)− ψ(1)(

9
8
)) + 4π((2− 10i) 8

√
−1− (8− 4i)

√
2

+ (−1)3/4 log(2) + log(4) + (2 + 3i)
√

2 tanh−1((−1)3/8)

+ (3− 2i)
√

2 tanh−1((−1)7/8) + (4− 2i) coth−1(
√

2)))

(23)

Proof. Use Equation (21) and set k = −1, c = i, a = eπi/4, m = 1, p = 3/2 and simplify
using entry (3) in Table below (64:12:2) in [11].
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Example 6. ∫ ∞

0

√
x− 1

(x2 + 1)(x2 + 4)2 log(ix)
dx

=
π

576π
(−44iΦ(−1, 1, 1− i log(2)

π
)

− (38− 38i)Φ(−i, 1, 1− i log(2)
π

)

− 64 4
√
−1 log(1 + i) + 64i log(2))

+ 3((4 + 4i)Φ(−i, 2, 1− i log(2)
π

)

− ψ(1)(
π − i log(2)

2π
) + ψ(1)(1− i log(2)

2π
))

(24)

Proof. Use Equation (21) and set k = −1, c = i, a = 2, m = 1, p = 3/2 and simplify.

Example 7.

∫ ∞

0

log(log(2ix))
(x2 + 1)(4x2 + 1)

dx =
1

12
π(iπ + log(

4(π + i log(2))4Γ(−π+i log(2)
2π )4

π2 log4(2)Γ(− i log(2)
2π )4

)) (25)

Proof. Use (15) take the first partial derivative with respect to k then set k = 0, c = 2i, a = 1
and simplify using Equation (64:10:2) in [11].

Proposition 7.∫ ∞

0

log(log(bx))
(a2 + x2)(1− b2x2)

dx =
π

4(a3b2 + a)
(4logΓ(−2i log(a) + 2i log(b) + π

4π
)

−4logΓ(−2i log(a) + 2i log(b) + 3π

4π
)− πab

+2iab log(2)− 4 log(−2i log(a)− 2i log(b)− 3π)

+4 log(−2i log(a)− 2i log(b)− π) + iπ + 2 log(π) + log(4))

(26)

Proof. Use (15) take the first partial derivative with respect to k then set k = 0, c = b and
simplify using Equation (64:10:2) in [11].

Example 8.

∫ ∞

0

log(log(x) + iπ
2 )

(x2 + 1)(x2 + 4)
dx = − 1

24
π(−iπ + log(

π2

4
)

+4 log(−
2i log(2)Γ(− i log(2)

2π )

(−2π − 2i log(2))Γ(− 2π+2i log(2)
4π )

))

(27)

Proof. Use (26) set a = 2, b = i and simplify.
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Proposition 8. ∫ ∞

0

log(bx) log(log(bx))
(a2 + x2)(1− b2x2)

dx

=
π

24(a3b2 + a)
(−48iπ(ζ ′(−1,

−2i log(a)− 2i log(b) + π

4π
)

−ζ ′(−1,
−2i log(a)− 2i log(b) + 3π

4π
))

+π(ab(72 log(A)− 6− 3iπ − 8 log(2)− 6 log(π)) + 6i log(a) + 6i log(b))

+12 log(2π)(log(a) + log(b)))

(28)

Proof. Use Equation (15) take the first partial derivative with respect to k then set k = 1,
c = b and simplify using Equation (3.13) in [12].

Example 9.

∫ ∞

0

log(x) log(log(x))
1− x4 dx =

1
48

π(π(log(
A72

256e6π6 )− 3iπ)− 24iC) (29)

Proof. Use Equation (26) and set a = b = 1 and simplify in terms of Glaisher’s A and
Catalan C constants using Equation (3.13) in [12].

Example 10. ∫ ∞

0

log(x) log(log(x))
(1− x2)(x2 + 4)

dx

=
1

240
π(−48iπ(ζ ′(−1,

π − 2i log(2)
4π

)

− ζ ′(−1,
3π − 2i log(2)

4π
))

+ π(2(72 log(A)− 6− 3iπ − 8 log(2)− 6 log(π))

+ 6i log(2)) + 12 log(2) log(2π))

(30)

Proof. Use Equation (26) and set a = 2, b = 1 and simplify in terms of Glaisher’s A
constant using Equation (3.13) in [12].

Example 11. ∫ ∞

0

log(2x) log(log(2x))
16x4 − 1

dx

=
1

96
π(π(−72 log(A) + 6 + 3iπ + log(256π6)) + 24iC)

(31)

Proof. Use Equation (26) and set a = 2, b = 1/2 and simplify in terms of Glaisher’s A and
Catalan’s C constants using Equation (3.13) in [12].

Example 12.

∫ ∞

0

log(log(x) + iπ
2 )

(x2 + 1)(x2 + 3)
dx =

π

8
√

3
(−iπ + i

√
3π +

√
3 log(4)

+4 log(
(log(3)− 2iπ)Γ(− 1

2 −
i log(3)

4π )
√

2π log(3)Γ(− i log(3)
4π )

))

(32)

Proof. Use Equation (26) and set a =
√

3, c = eπi/2 and simplify.
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Example 13.

∫ ∞

0

√
log(2x)

4x4 + 3x2 − 1
dx = (−1

5
− i

5
)π3/2(ζ(−1

2
,

π − 2i log(2)
4π

)

−ζ(−1
2

,
3
4
− i log(2)

2π
) + i(

√
2− 4)ζ(−1

2
))

(33)

Proof. Use Equation (12) and set k = 1/2, c = 2, m = a = 1, b = 1/2 and simplify using
entry (4) in Table below (64:12:7) in [11].

7. Discussion

In this article, using our contour integral method [6] we derived definite integrals
using the Lerch function. We were able to provide formulae and extend the range of
computation through analytic continuation of the Lerch function. We will be applying
our method to other integrals to derive other known and new integral forms in terms of
other special functions. The results in this work were numerically verified using Wolfram
Mathematica for complex ranges of the parameters.
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