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Abstract: In this work we introduce and investigate the ideas of statistical Riemann integrability,
statistical Riemann summability, statistical Lebesgue integrability and statistical Lebesgue summa-
bility via deferred weighted mean. We first establish some fundamental limit theorems connecting
these beautiful and potentially useful notions. Furthermore, based upon our proposed techniques,
we establish the Korovkin-type approximation theorems with algebraic test functions. Finally, we
present two illustrative examples under the consideration of positive linear operators in association
with the Bernstein polynomials to exhibit the effectiveness of our findings.
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1. Introduction Preliminaries and Motivation

Let [a, b] ⊂ R, for every k ∈ N there defined a sequence (hk) of functions such that
hk : [a, b]→ R.

The Riemann sum δ(hk;P) of the sequence (hk) of functions associated with a tagged
partition P can be viewed as

δ(hk;P) :=
k

∑
i=1

hi(γi)(ri − ri−1).

We now recall the notion of Riemann integrability of the sequence of functions on a
closed and bounded interval [a, b].

A sequence (hk)k∈N of functions is integrable to h (a function) in the Riemann sense
over [a, b] if, for each ε > 0, ∃ σε > 0 such that

|δ(hk;P)− h| < ε,

where P is any tagged partition of [a, b], and ‖P‖ < σε.
We write

hk ∈ R[a, b].

Now, we define the Lebesgue integral of a sequence of measurable functions.
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Let (X,F , λ) be a finite measurable space, and let (hk) be the sequence of measurable
functions with

hk =
k

∑
i=1

biχBi ,

where Bi = [α : hk(α) = bi] and bi’s are distinct values of (hk). Then the Lebesgue integral
of (hk) with respect to measure λ is given by

∫
X

hkdλ =
k

∑
i=1

biλ(Bi).

The sequence (hk) of measurable functions is Lebesgue integrable to a measurable
function h if, for each ε > 0 ∣∣∣∣∫X

hkdλ− h
∣∣∣∣ < ε.

We write
hk ∈ L(X, λ).

In sequence spaces, the theory of usual convergence is one of the most essential
parts, and gradually it has been achieved a very high level of development. Subsequently,
two eminent mathematicians Fast [1] and Steinhaus [2] independently introduced a new
concept called statistical convergence in sequence space theory. Really, this nice concept
is very useful for advanced study in pure and applied Mathematics. Moreover, it is more
powerful than the usual convergence and has been an active area of research in the current
days. Moreover, such notion is closely related with the study of Measure theory, Probability
theory, Fibonacci sequence, and Real analysis, etc. For some recent research works in this
direction, see [3–6].

Suppose E ⊆ N, and let Ek = {η : η 5 k and η ∈ E}. Then the natural density
d(E) of E is defined by

d(E) = lim
k→∞

|Ek|
k

= τ,

where |Ek| denotes the cardinality of Ek, and τ ∈ R is finite.
A sequence (un) is said to be statistically convergent to α if, for each ε > 0,

Eε = {η : η ∈ N and |uη − α| = ε}

has natural density (see [1,2]) zero. Thus, for every ε > 0, we have

d(Eε) = lim
k→∞

|Eε|
k

= 0.

We write
stat lim

k→∞
uk = α.

In the year 2002, Móricz [7] studied and introduced the notion of statistical Cesàro
summability and after that Mohiuddine et al. [8] proved some approximation of the
Korovkin-type theorems via the concept of statistical Cesàro summability. Subsequently,
Karakaya and Chishti [9] first introduced and studied the idea of weighted statistical
convergence, and later this definition was modified by Mursaleen et al. [10]. Recently,
Srivastava et al. [11] introduced and studied the concepts of deferred weighted summability
mean and proved the Korovkin-type theorems and in the same year Srivastava et al. [12]
also proved the Korovkin-type theorems via Nörlund summability mean based on equi-
statistical convergence. Subsequently, Dutta et al. [13] demonstrated some Korovkin-type
approximation theorems via the usual deferred Cesàro summablity mean. Moreover, such
concepts have been generalised in many aspects. In view of this, the interested readers
may see, [14–19].
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We now present the notions of statistically Riemann integrable and statistically
Lebesgue integrable sequence of functions.

Definition 1. A sequence (hk)k∈N of functions is said to be statistically Riemann integrable to h
(a function) on [a, b] if, for each ε > 0 and every x ∈ [a, b], ∃ σε > 0, and for any tagged partition
P of [a, b] (‖P‖ < σε), the set

Eε = {η : η ∈ N and |δ(hη ;P)− h| = ε}

has zero natural density. That is, for every ε > 0

d(Eε) = lim
k→∞

|Eε|
k

= 0.

We write
statRie lim

k→∞
δ(hk;P) = h.

Definition 2. A sequence (hk)k∈N of measurable functions is said to be statistically Lebesgue
integrable to a measurable function h on X if, for each ε > 0

Eε = {η : η ∈ N and
∣∣∣∣∫X

hkdλ− h
∣∣∣∣ = ε}

has zero natural density. That is, for every ε > 0

d(Eε) = lim
k→∞

|Eε|
k

= 0.

We write
statLeb lim

k→∞

∫
X

hkdλ = h.

Now, we establish a theorem (below) connecting the above two potential and use-
ful concepts.

Theorem 1. If a sequence (hk) of measurable functions is statistically Riemann integrable to a
function h over [a, b], then (hk) is statistically Lebesgue integrable to the same function h on X.

Proof. Suppose a sequence (hk) of functions is statistically Riemann integrable to a function
h. Then, for all ε > 0 and for any tagged partition P of [a, b] such that ‖P‖ < σε, we have

statRie lim
k→∞

δ(hk;P) = h.

Moreover, (hk) being a sequence of measurable functions, for every ε > 0∫
X

hkdλ ≤ lim
k→∞

δ(hk;P).

Therefore, for each ε > 0

lim
k→∞

1
k
|{η : η ∈ N and

∣∣∣∣∫X
hkdλ− h

∣∣∣∣ = ε}|

5 lim
k→∞

1
k
|{η : η ∈ N and |δ(hk;P)− h| = ε}|.

Consequently, by Definition 2

statLeb lim
k→∞

∫
X

hkdλ = h.
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We setup here an example demonstrating the non-validity of converse statement of
Theorem 1.

Example 1. Let hk : [0, 1] → R be the functions defined by hk(x) = 0 if, x ∈ Q ∩ [0, 1] and
hk(x) = 1 if, x ∈ (R \Q) ∩ [0, 1].

It is easy to see that the sequence (hk) of functions is not statistically Riemann inte-
grable, but it is statistically Lebesgue integrable to 1 over [0, 1].

Motivated essentially by the aforementioned studies and investigations, we introduce
and investigate the notions of statistical versions of Riemann integrability and Riemann
summability as well as statistical versions of Lebesgue integrability and Lebesgue summa-
bility via deferred weighted mean. We first establish some fundamental limit theorems
connecting these beautiful and potentially useful notions. Moreover, based upon our pro-
posed techniques we establish the Korovkin-type approximation theorems with algebraic
test functions. Finally, we consider two illustrative examples involving suitable positive
linear operators associated with the Bernstein polynomials to justify the effectiveness of
our findings.

2. Riemann Integrability via Deferred Weighted Mean

Let (φk) and (ϕk) ∈ Z0+ be such that φk < ϕk with limk→∞ ϕk = +∞, and let (pi) be
a sequence of real numbers (non-negative) such that

Pk =
ϕk

∑
i=φk+1

pi.

Then, we approach the Riemann sum of the functions δ(hk;P) corresponding to a
tagged partition P via the deferred weighted summability mean of the form

W(δ(hk;P)) = 1
Pk

ϕk

∑
$=φk+1

p$δ(h$;P). (1)

We now present the definitions of statistical Riemann integrability and statistical
Riemann summability via deferred weighted summability mean.

Definition 3. Let (φk) and (ϕk) ∈ Z0+, and let (pk) be a sequence of real numbers (non-negative).
A sequence of functions (hk)k∈N is said to be deferred weighted statistically Riemann integrable
to h over [a, b] if, for every ε > 0, ∃ σε > 0, and for P be any tagged partition of [a, b] such that
‖P‖ < σε, the set

{η : η 5 Pk and pη |δ(hη ;P)− h| = ε}

has zero natural density. This implies that, for each ε > 0,

lim
k→∞

|{η : η 5 Pk and pη |δ(hη ;P)− k| = ε}|
Pk

= 0.

We write
DWRstat lim

k→∞
δ(hk;P) = h.

Definition 4. Let (φk) and (ϕk) ∈ Z0+, and let (pk) be a sequence of non-negative real numbers.
A sequence of functions (hk)k∈N is said to be statistically deferred weighted Riemann summable
to h over [a, b] if, for every ε > 0, ∃ σε > 0, and for P be any tagged partition of [a, b] such that
‖P‖ < σε, the set

{η : η 5 k and |W(δ(hη ;P))− h| = ε}
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has zero natural density. This implies that, for all ε > 0,

lim
k→∞

|{η : η 5 k and |W(δ(hη ;P))− h| = ε}|
k

= 0.

We write
statDWR lim

k→∞
δ(hk;P) = h.

Now, we establish an inclusion theorem connecting the above two new potentially
useful concepts.

Theorem 2. Let (φk) and (ϕk) ∈ Z0+, and let (pk) be a sequence of non-negative real numbers.
If a sequence (hk)k∈N of functions is deferred weighted statistically Riemann integrable to h over
[a, b], then it is statistically deferred weighted Riemann summable to h on [a, b], but the converse is
not true.

Proof. Since (hk)k∈N is deferred weighted statistically Riemann integrable to a function h
over [a, b], by Definition 3, we have

lim
k→∞

|{η : η 5 Pk and pη |δ(hη ;P)− h| = ε}|
Pk

= 0.

Now under the assumption of the following two sets:

Oε = {η : η 5 Pk and pη |δ(hη ;P)− h| = ε}

and
Oc

ε = {η : η 5 Pk and pη |δ(hη ;P)− h| < ε},

we have

|W(δ(hk;P))− h| =
∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$δ(h$;P)− h

∣∣∣∣∣
5

∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$

[
δ(h$;P)− h

]∣∣∣∣∣+
∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$h− h

∣∣∣∣∣
5

1
Pk

ϕk

∑
$=φk+1
(η∈Oε)

p$

∣∣δ(h$;P)− h
∣∣+ 1

Pk

ϕk

∑
$=φk+1
(η∈Oc

ε)

p$

∣∣δ(h$;P)− h
∣∣

+ |h|
∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$ − 1

∣∣∣∣∣
5

1
Pk
|Oε|+

1
Pk
|Oc

ε|.

This implies that
|W(δ(hk;P))− h| < ε.

Thus, the functions (hk) is statistically deferred weighted Riemann summable to h
on [a, b].

Next, in view of the converse statement (non-validity), we consider the following
illustrative example.

Example 2. Let φk = 2k, ϕk = 4k and pk = 1 and let hk : [0, 1]→ R be the functions of the form
hk(x) = 0, if x ∈ Q∩ [0, 1] with k is even and hk(x) = 1, if x ∈ R \Q∩ [0, 1] with k is odd.
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The given sequence of functions (hk) trivially spcifies that, it is neither Riemann integrable
nor deferred weighted Riemann integrable in statistical sense. However, according to Equation (1),

W(δ(hk;P)) = 1
ϕk − φk

ϕk

∑
$=φk+1

δ(h$;P)

=
1
2k

4k

∑
m=2k+1

δ(h$;P) = 1
2

.

Thus, the functions (hk) has deferred weighted Riemann sum 1
2 corresponding to a tagged

partition P . Therefore, the functions (hk) is statistically deferred weighted Riemann summable to 1
2

on [0, 1] but it is not deferred weighted statistically Riemann integrable.

3. Lebesgue Integrability via Deferred Weighted Mean

Let (φk) and (ϕk) ∈ Z0+ be such that φk < ϕk with limk→∞ ϕk = +∞, and let (pi) be
a sequence of non-negative real numbers for which

Pk =
ϕk

∑
i=φk+1

pi.

Then, we define the Lebesgue sum via deferred weighted summability mean for the
sequence of measurable functions (hk) as

W(L(X, λ))) =
1
Pk

ϕk

∑
$=φk+1

p$(b$λ(B$)). (2)

We now present below the definitions of statistical Lebesgue integrability and statistical
Lebesgue summability of a sequence of measurable functions via deferred weighted mean.

Definition 5. Let (φk) and (ϕk) ∈ Z0+, and let (pk) be a sequence of non-negative real numbers.
A sequence (hk)k∈N of measurable functions is said to be deferred weighted statistically Lebesgue
integrable to a measurable function h on X if, for every ε > 0, the set

{η : η 5 Pk and pη |bηλ(Bη)− h| = ε}

has zero natural density. This implies that, for each ε > 0,

lim
k→∞

|{η : η 5 Pk and pη |bηλ(Bη)− h| = ε}|
Pk

= 0.

We write
DWLstat lim

k→∞
hk = h.

Definition 6. Let (φk) and (ϕk) ∈ Z0+, and let (pk) be a sequence of non-negative real numbers.
A sequence (hk)k∈N of measurable functions is statistically deferred weighted Lebesgue summable
to a measurable function h on X if, for all ε > 0

{η : η 5 k and |W(L(X, λ))− h| = ε}

has zero natural density. This implies that, for all ε > 0,

lim
k→∞

|{η : η 5 k and |W(L(X, λ))− h| = ε}|
k

= 0.
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We write
statDWL lim

k→∞
hk = h.

We present below a theorem connecting these two potentially useful concepts.

Theorem 3. Let (φk) and (ϕk) ∈ Z0+, and let (pk) be a sequence of non-negative real numbers.
If a sequence (hk)k∈N of measurable functions is deferred weighted statistically Lebesgue integrable
to a measurable function h on X, then it is statistically deferred weighted Lebesgue summable to the
same measurable function h on X, but the converse is not true.

Proof. Since (hk)k∈N is deferred weighted statistically Lebesgue integrable to a measurable
function h on X, by Definition 5, we obtain

lim
k→∞

|{η : η 5 Pk and pη |bηλ(Bη)− h| = ε}|
Pk

= 0.

Now under the assumption of the following two sets:

Dε = {η : η 5 Pk and pη |bηλ(Bη)− h| = ε}

and
Dc

ε = {η : η 5 Pk and pη |bηλ(Bη)− h| < ε},

we have

|W(L(X, λ))− h| =
∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$b$λ(B$)− h

∣∣∣∣∣
5

∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$

[
b$λ(B$)− h

]∣∣∣∣∣+
∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$h− h

∣∣∣∣∣
5

1
Pk

ϕk

∑
$=φk+1
(η∈Dε)

p$

∣∣b$λ(B$)− h
∣∣+ 1

Pk

ϕk

∑
$=φk+1
(η∈Dc

ε)

p$

∣∣b$λ(B$)− h
∣∣

+ |h|
∣∣∣∣∣ 1
Pk

ϕk

∑
$=φk+1

p$ − 1

∣∣∣∣∣
5

1
Pk
|Dε|+

1
Pk
|Dc

ε| < ε.

This implies that
|W(L(X, λ))− h| < ε.

Hence, the sequence (hk) of measurable functions is statistically deferred weighted
Lebesgue summable to the measurable function h on X.

Next in view of the non-validity of the converse statement, the following example illus-
trates that, a statistically deferred weighted Lebesgue summable sequence of measurable
functions is not deferred weighted statistically Lebesgue integrable.

Example 3. Let φk = 2k, ϕk = 4k and pk = 1 and let hk : [0, 1]→ R be the functions given by
hk(x) = 1 if, x ∈ [0, 1] with k is even and hk(x) = 0 if, x = 0 with k is odd.

The given sequence (hk) of measurable functions clearly specifies that, it is neither Lebesgue
integrable nor deferred weighted statistically Lebesgue integrable. However, according to our
proposed mean (2), it is easy to see

W(L(X, λ)) =
1

ϕk − φk

ϕk

∑
$=φk+1

b$λ(B$)
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=
1
2k

4k

∑
m=2k+1

b$λ(B$) =
1
2

.

Thus, the sequence (hk) of measurable functions has deferred weighted Lebesgue sum 1
2 .

Therefore, the sequence (hk) of measurable functions is statistically deferred weighted Lebesgue
summable to 1

2 over [0, 1] but it is not deferred weighted statistically Lebesgue integrable.

4. Korovkin-Type Approximation Theorems

Recently, several researchers have worked to extend (or generalize) the approximation
aspects of Korovkin’s approximation theorems in various mathematical fields such as (for
example) Soft computing, Machine learning, Probability theory, Measurable theory, and so
on. This concept is extremely valuable in Real Analysis, Functional Analysis, Harmonic
Analysis, and other related fields. Here, we choose to refer to recent works [11,13,20] for
interested readers .

Let C[0, 1] be the space of all real-valued continuous functions, and evidently it is a
complete normed linear space (Banach space) under the sup norm. Then for h ∈ C[0, 1],
the sup norm of h is defined as

‖h‖∞ = sup{|h(ρ)| :5 ρ 5 1}.

Let Gj : C[0, 1]→ C[0, 1] such that

Gj(h; ρ) = 0 as h = 0.

That is to say, Gj is a sequence of positive linear operators over [0, 1].
Now in view of our proposed mean (1), we use the notion of statistical Riemann

integrability (DWRstat) and statistical Riemann summability (statDWR) for sequence of
functions to establish and prove the following Korovkin-type approximation theorems.

Theorem 4. Let
Gj : C[0, 1]→ C[0, 1]

be a sequence of positive linear operators. Then, for all h ∈ C[0, 1],

DWRstat lim
j→∞
‖Gj(h; ρ)− h(ρ)‖∞ = 0 (3)

if and only if

DWRstat lim
j→∞
‖Gj(1; ρ)− 1‖∞ = 0, (4)

DWRstat lim
j→∞
‖Gj(ρ; ρ)− ρ‖∞ = 0 (5)

and

DWRstat lim
j→∞
‖Gj(ρ

2; ρ)− ρ2‖∞ = 0. (6)

Proof. Since each of the following functions:

h0(ρ) = 1, h1(ρ) = 2ρ and h2(ρ) = 3ρ2

belongs to C[0, 1] and is continuous, the implication given by (3) obviously implies (4)
to (6).
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Now for the completion of the proof of Theorem 4, we assume that, the conditions (4)
to (6) hold true. If h ∈ C[0, 1], then there exists a constant K > 0 such that

|h(ρ)| 5 K (∀ ρ ∈ [0, 1]).

We thus find that

|h(r)− h(ρ)| 5 2K (r, ρ ∈ [0, 1]). (7)

Clearly, for given ε > 0, there exists δ > 0 such that

| f (r)− f (ρ)| < ε (8)

whenever
|r− ρ| < δ, for all r, ρ ∈ [0, 1].

Let us choose
µ1 = µ1(r, ρ) = (2r− 2ρ)2.

If
|r− ρ| = δ,

then, we obtain

|h(r)− h(ρ)| < 2K
θ2 µ1(r, ρ). (9)

From Equations (8) and (9), we get

|h(r)− h(ρ)| < ε +
2K
θ2 µ1(r, ρ),

which implies that

−ε− 2K
θ2 µ1(r, ρ) 5 h(r)− h(ρ) 5 ε +

2K
θ2 µ1(r, ρ). (10)

Now, since Gm(1; ρ) is monotone and linear, by applying the operator Gm(1; ρ) to this
inequality, we have

Gm(1; ρ)

(
−ε− 2K

θ2 µ1(r, ρ)

)
5 Gm(1; ρ)(h(r)− h(ρ))

5 Gm(1; ρ)

(
ε +

2K
θ2 µ1(r, ρ)

)
.

We note that ρ is fixed and so h(ρ) is a constant number. Therefore, we have

−εGm(1; ρ)− 2K
θ2 Gm(µ1; ρ) 5 Gm(h; ρ)− h(ρ)Gm(1; ρ)

5 εGm(1; ρ) +
2K
θ2 Gm(µ1; ρ). (11)

Moreover, we know that

Gm(h; ρ)− h(ρ) = [Gm(h; ρ)− h(ρ)Gm(1; ρ)] + h(ρ)[Gm(1; ρ)− 1]. (12)

Using (11) and (12), we have

Gm(h; ρ)− h(ρ) < εGm(1; ρ) +
2K
θ2 Gm(µ1; ρ) + h(ρ)[Gm(1; ρ)− 1]. (13)
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We now estimate Gm(µ1; ρ) as follows:

Gm(µ1; ρ) = Gm((2r− 2ρ)2; ρ) = Gm(2r2 − 8ρr + 4ρ2; ρ)

= Gm(4r2; ρ)− 8tGm(r; ρ) + 4ρ2Gm(1; ρ)

= 4[Gm(r2; ρ)− ρ2]− 8t[Gm(r; ρ)− ρ]

+ 4ρ2[Gm(1; ρ)− 1].

Using (13), we obtain

Gm(h; ρ)− h(ρ) < εGm(1; ρ) +
2K
θ2 {4[Gm(r2; ρ)− ρ2]

− 8ρ[Gm(r; ρ)− ρ] + 4ρ2[Gm(1; ρ)− 1]}
+ h(ρ)[Gm(1; ρ)− 1].

= ε[Gm(1; ρ)− 1] + ε +
2K
θ2 {4[Gm(r2; ρ)− ρ2]

− 8ρ[Gm(r; ρ)− ρ] + 4ρ2[Gm(1; ρ)− 1]}
+ h(ρ)[Gm(1; ρ)− 1].

Since ε > 0 is arbitrary, we can write

|Gm(h; ρ)− h(ρ)| 5 ε +

(
ε +

8K
θ2 +K

)
|Gm(1; ρ)− 1|

+
16K
θ2 |Gm(r; ρ)− ρ|+ 8K

θ2 |Gm(r2; ρ)− ρ2|

5 A(|Gm(1; ρ)− 1|+ |Gm(r; ρ)− ρ|
+ |Gm(r2; ρ)− ρ2|), (14)

where

A = max
(

ε +
8K
θ2 +K,

16K
θ2 ,

8K
θ2

)
.

Now, for a given ω > 0, there exists ε > 0 (ε < ω) such that

Tm(ρ; ω) = {m : m 5 Pk and pm|Gm(h; ρ)− h(ρ)| = ω}.

Furthermore, for ν = 0, 1, 2, we have

Tν,m(ρ; ω) =

{
m : m 5 Pk and pm|Gm(h; ρ)− hν(ρ)| =

ω− ε

3A

}
,

so that

Tm(ρ; ω) 5
2

∑
ν=0

Tν,m(ρ; ω).

Clearly, we obtain

‖Tm(ρ; ω)‖C[0,1]

Pk
5

2

∑
ν=0

‖Tν,m(ρ; ω)‖C[0,1]

Pk
. (15)

Now, using the above assumption about the implications in (4) to (6) and by Definition 3,
the right-hand side of (15) tends to zero as n→ ∞. Consequently, we get

lim
k→∞

‖Tm(ρ; ω)‖C[0,1]

Pk
= 0 (δ, ω > 0).

Therefore, the implication (3) holds true. This completes the proof of Theorem 4.
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Theorem 5. Let
Gj : C[0, 1]→ C[0, 1]

be a sequence of positive linear operators. Then, for all h ∈ C[0, 1],

statDWR lim
j→∞
‖Gj(h; ρ)− h(ρ)‖∞ = 0 (16)

if and only if

statDWR lim
j→∞
‖Gj(1; ρ)− 1‖∞ = 0, (17)

statDWR lim
j→∞
‖Gj(ρ; ρ)− ρ‖∞ = 0 (18)

and

statDWR lim
j→∞
‖Gj(ρ

2; ρ)− ρ2‖∞ = 0. (19)

Proof. Theorem 5 can be proved in the similar lines of the proof of Theorem 4. Therefore,
we choose to skip the details involved.

In view of Theorem 5, we consider here an example that, a sequence of positive
linear operators which does not work via the statistical versions of the deferred weighted
Riemann integrable functions (Theorem 4). Nevertheless, it fairly works on Theorem 5.
In this sense we say, Theorem 5 is a non-trivial generalization of the statistical weighted
Riemann integrable functions (Theorem 4).

We now think of the operator

ρ(1 + ρD)

(
D =

d
dρ

)
, (20)

that was used by Al-Salam [21], and subsequently, by Viskov and Srivastava [22].

Example 4. Consider the Bernstein polynomial Bn(h; β) on C[0, 1] given by

Bk(h; β) =
k

∑
$=0

f
($

k

)(k
$

)
β$(1− b)k−$ (β ∈ [0, 1]; k = 0, 1, · · ·). (21)

We now approach the positive linear operators on C[0, 1] is given by (20) as follows:

G$(h; β) = [1 + h$]β(1 + βD)B$(h; β) (∀ h ∈ C[0, 1]), (22)

where (h$) is the sequence of functionds given in Example 2.
We now determine the values of each of the testing functions 1, β and β2 by using (22)

as follows:

G$(1; β) = [1 + h$]β(1 + βD)1 = [1 + h$]β,

G$(t; β) = [1 + h$]β(1 + βD)β = [1 + h$]β(1 + β)

and

G$(t2; β) = [1 + h$]β(1 + βD)

{
β2 +

β(1− β)

$

}
= [1 + h$]

{
β2
(

2− 3β

$

)}
.
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Consequently, we have

statDWR lim
$→∞
‖G$(1; β)− 1‖∞ = 0, (23)

statDWR lim
$→∞
‖G$(β; β)− β‖∞ = 0 (24)

and

statDWR lim
$→∞
‖G$(β2; β)− β2‖∞ = 0, (25)

that is, the sequence G$(h; β) satisfies the conditions (17) to (19). Therefore, by Theorem 5, we have

statDWR lim
$→∞
‖G$(h; β)− h‖∞ = 0.

The given sequence (hk) of functions mentioned as in Example 2 is statistically deferred
weighted Riemann summable, but not deferred weighted statistically Riemann integrable. Therefore,
our proposed operators defined by (22) satisfy Theorem 5. However, they do not satisfy for statistical
versions of deferred weighted Riemann integrable functions (Theorem 4).

Now in view of our proposed mean (2), we use the notions of statistical Lebesgue
integrability (DWLstat) and statistical Lebesgue summability (statDWL) for sequence of
measurable functions to establish the following Korovkin-type approximation theorems.

Theorem 6. Let
Gj : C[0, 1]→ C[0, 1]

be a sequence of positive linear operators. Then, for all h ∈ C[0, 1],

DWLstat lim
j→∞
‖Gj(h; ρ)− h(ρ)‖∞ = 0 (26)

if and only if

DWLstat lim
j→∞
‖Gj(1; ρ)− 1‖∞ = 0, (27)

DWLstat lim
j→∞
‖Gj(ρ; ρ)− ρ‖∞ = 0 (28)

and

DWLstat lim
j→∞
‖Gj(ρ

2; ρ)− ρ2‖∞ = 0. (29)

Proof. Theorem 6 can be proved in the similar lines of the proof of Theorem 4. Therefore,
we choose to skip the details involved.

Theorem 7. Let
Gj : C[0, 1]→ C[0, 1]

be a sequence of positive linear operators. Then, for all h ∈ C[0, 1],

statDWL lim
j→∞
‖Gj(h; ρ)− h(ρ)‖∞ = 0 (30)

if and only if

statDWR lim
j→∞
‖Gj(1; ρ)− 1‖∞ = 0, (31)

statDWR lim
j→∞
‖Gj(ρ; ρ)− ρ‖∞ = 0 (32)



Axioms 2021, 10, 229 13 of 16

and

statDWR lim
j→∞
‖Gj(ρ

2; ρ)− ρ2‖∞ = 0. (33)

Proof. Theorem 7 can be proved in the similar lines of the proof of Theorem 4. Therefore,
we choose to skip the details involved.

In view of Theorem 7, we consider here an example that, a sequence of positive
linear operators which does not work via the statistical versions of the deferred weighted
Lebesgue integrable sequence of measurable functions (Theorem 6). Nevertheless, it fairly
works on Theorem 7. In this sense, we say Theorem 7 is a non-trivial generalization of
the statistical deferred weighted Lebesgue integrable sequence of measurable functions
(Theorem 6).

Example 5. Consider the Bernstein polynomial Bn(h; β) on C[0, 1] given by (21).
We now approach the positive linear operators on C[0, 1] under the composition of (21) and (20)

as follows:

H$(h; β) = [1 + h$]β(1 + βD)B$(h; β) (∀ h ∈ C[0, 1]), (34)

where (h$) is the same as mentioned in Example 3.
In similar lines of Example 4, we determine the values of each of the testing functions 1, β and

β2 by using (34) as follows:

H$(1; β) = [1 + h$]β(1 + βD)1 = [1 + h$]β,

H$(t; β) = [1 + h$]β(1 + βD)β = [1 + h$]β(1 + β)

and

H$(t2; β) = [1 + h$]β(1 + βD)

{
β2 +

β(1− β)

$

}
= [1 + h$]

{
β2
(

2− 3β

$

)}
.

Consequently, we have

statDWL lim
$→∞
‖H$(1; β)− 1‖∞ = 0, (35)

statDWL lim
$→∞
‖G$(β; β)− β‖∞ = 0 (36)

and

statDWL lim
$→∞
‖H$(β2; β)− β2‖∞ = 0, (37)

that is, the sequence H$(h; β) satisfies the conditions (35) to (37). Therefore, by Theorem 7, we have

statDWR lim
$→∞
‖H$(h; β)− h‖∞ = 0.

The given sequence of the functions (hk) mentioned in Example 3 is statistically deferred
weighted Lebesgue summable, but not deferred weighted statistically Lebesgue integrable. Therefore,
our proposed operators defined by (34) satisfy Theorem 7. However, they do not satisfy for statistical
versions of deferred weighted Lebesgue integrable sequence of functions (Theorem 6).
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5. Remarkable Conclusion

In this concluding section of our investigation, we further observe the potentiality of
our Theorems 5 and 7 over Theorems 4 and 6 respectively, and in general, over the classical
versions of the Korovkin-type approximation theorems.

Remark 1. Let us consider the sequence of functions (h$)$∈N as in Example 2 and also that (h$)
is statistically deferred weighted Riemann summable, so that

statDWR lim
$→∞

δ(h$;P) = 1
2

on [0, 1].

Then we have

statDWR lim
k→∞
‖Gk(hν; ρ)− fν(ρ)‖∞ = 0 (ν = 0, 1, 2). (38)

Thus, by Theorem 5, we immediately get

statDWR lim
j→∞
‖Gk(h; ρ)− h(ρ)‖∞ = 0, (39)

where
h0(ρ) = 1, h1(ρ) = ρ and h2(ρ) = ρ2.

Here the functions (hk) is statistically deferred weighted Riemann summable, but neither
Riemann integrable nor deferred weighted statistically Riemann integrable. Thus, this application
evidently demonstrates that our Korovkin-type approximation Theorem 5 properly works under the
operators defined in the Equation (22), but the statistical versions as well as classical of deferred
weighted Riemann integrable functions do not behave properly for the same operators. In view of
this observation, we certainly say that our Theorem 5 is a non-trivial generalization of Theorem 4 as
well as the classical Korovkin-type approximation theorem [23].

Remark 2. Let us consider the functions (h$)$∈N in Example 3 and also that (h$) is statistically
deferred weighted Lebesgue summable, so that

statDWL lim
$→∞

b$λ(B$) =
1
2

on [0, 1].

Then, we have

statDWL lim
k→∞
‖Gk(hν; ρ)− hν(ρ)‖∞ = 0 (ν = 0, 1, 2). (40)

Thus by Theorem 7, we immediately get

statDWL lim
k→∞
‖Gk(h; ρ)− h(ρ)‖∞ = 0, (41)

where
h0(ρ) = 1, h1(ρ) = ρ and h2(ρ) = ρ2.

As we known (hk) is statistically deferred weighted Lebesgue summable, but neither classically
Lebesgue integrable nor statistically Lebesgue integrable via deferred weighted mean. Therefore,
our Korovkin-type approximation Theorem 7 properly works under the operators defined in the
Equation (34), but the statistical versions as well as classical version of deferred weighted Lebesgue
integrable functions do not behave properly for the same operators. In view of this observation, we
certainly say that our Theorem 7 is a non-trivial generalization of Theorem 6 as well as the classical
Korovkin-type approximation theorem [23].
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Remark 3. In view of all the Korovkin-type approximation theorems established in Section 4, we
certainly set-up a containments zone, Theorem 4 ⊆ Theorem 5 ⊆ Theorem 6 ⊆ Theorem 7. That is,
Theorem 7 generalizes rest other theorems.

Remark 4. Influenced by a recently-published survey-cum-expository review article by Srivas-
tava [24], we draw the awareness of curious reader’s toward the prospect of exploring the q-
generalizations of the results which are demonstrated in this paper. Moreover, the (p, q)-extension
will be a fairly trivial and insignificant change based on the proposed extension as the the additional
parameter p is redundant (see, for details, Srivastava [24], p. 340). Furthermore, in view of a recent
result of Srivastava [25], the attention of the interested reader’s is also drawn for further researches
towards (k, s)-extension of the Riemann-Liouville fractional integral.
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