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Abstract: Nonlinear fractional differential equations have gained a significant place in mathematical
physics. Finding the solutions to these equations has emerged as a field of study that has attracted a
lot of attention lately. In this work, He’s semi-inverse variation method and the ansatz method have
been applied to find the soliton solutions for fractional Korteweg–de Vries equation, fractional equal
width equation, and fractional modified equal width equation defined by Atangana’s conformable
derivative (beta-derivative). These two methods are effective methods employed to get the soliton
solutions of these nonlinear equations. All of the calculations in this work have been obtained using
the Maple program and the solutions have been replaced in the equations and their accuracy has
been confirmed. In addition, graphics of some of the solutions are also included. The found solutions
in this study have the potential to be useful in mathematical physics and engineering.

Keywords: He’s semi inverse method; ansatz method; beta derivative

1. Introduction

Nonlinear partial differential equations are used to define problems in many fields of
research, notably engineering. Obtaining exact solutions to such equations is a popular
research topic. Fractional differential equations (FDEs) have also piqued the interest of
researchers recently. Many academics have looked at FDEs in order to obtain exact answers
in various methods. Many important techniques for analyzing exact solutions have been
used in various research, including the ansatz method, modified simple equation method,
extended trail equation, first integral, exp-function, and exp(-()) methods [1–6]. Some
searchers have used alternative methods, such as the homotopy technique [7–10] and
the extended Kudryashov method [11–13], modified Kudryashov and the sine-Gordon
expansion approach [14–17] have also been applied by some searchers.

One of the most useful, significant, and appealing fields of study in science and
engineering is Soliton’s theory. Solitons are common in many aspects of life. There are
often solitary observed waves that cause the soliton to emerge in shallow water on a
lakeshore or in rivers. Fluid dynamics, optics, and surface wave propagation are examples
of physics and engineering areas where soliton type solutions are well known. Ansatz
techniques and He’s Semi-Inverse method are two of the most well-known ways for getting
such answers. Highly varied and intriguing soliton solutions to nonlinear equations have
lately been discovered using innovative approaches [18–31].

In a wide spectrum of material science facts, Korteweg–de Vries equations have been
explored as a pattern for the advancement and propagation of nonlinear waves. These
equations have been presented to describe long-wavelength shallow water waves. Fol-
lowing that, these equations have been used to a variety of fields, including collisionless
hydromagnetic waves, layered internal waves, particle acoustic waves, and plasma physics
A KdV model has been used to describe a variety of speculative physical phenomena
in quantum physics. In fluid dynamics and aerodynamics, it is used as a pattern for

Axioms 2021, 10, 203. https://doi.org/10.3390/axioms10030203 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-2341-6626
https://doi.org/10.3390/axioms10030203
https://doi.org/10.3390/axioms10030203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10030203
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10030203?type=check_update&version=2


Axioms 2021, 10, 203 2 of 15

shock wave production, solitons, turbulence, boundary layer behavior, and mass trans-
fer [32–37]. The nonlinear time-fractional Equal Width (EW) equations are very significant
partial differential equations in science and engineering that characterize a wide range
of complicated nonlinear phenomena, including plasma physics, plasma waves, fluid
mechanics, solid-state physics, and so on. They have derived for long waves propagating
with dispersion processes. In a class of nonlinear systems, they also specify the attitude of
nonlinear dispersive waves. Morrison et al. [38] proposed the equal width wave equation,
which is used as a pattern in the field of fluid mechanics. Since it provides analytical
solutions, this equation has inspired many scientists reading mathematical approaches for
partial differential problems. Various approaches have been used to get accurate solutions
for this sort of problem [39–43]. This study intends to construct soliton solutions to the
time-fractional Korteweg–de Vries (KdV) equation [40,44], the time fractional equal width
wave equation (EWE) and the time fractional modified fractional equal width equation
(mEWE) [44] of the forms

∂βu
∂tβ

+ au2ux + buxxx = 0, (1)

∂βu
∂tβ

+ auux + b
∂β

∂tβ
(uxx) = 0, (2)

∂βu
∂tβ

+ au2ux + b
∂β

∂tβ
(uxx) = 0, (3)

respectively, where a, b are nonzero constants (t > 0, 0 < β ≤ 1).

2. Atangana’s Conformable Derivatives (Beta-Derivatives) and Methodology
of Solution

Conformable fractional derivatives are potentially much easier to manage, and they
also follow several standard characteristics that existing fractional derivatives do not, such
as the chain rule. However, this fractional derivative has a significant flaw: the fractional
derivative of any differentiable function at point zero does not fulfill any physical issue
and, at this time, cannot be interpreted physically. In order to extend the conformable
derivative’s limitation, a modified version was developed. This derivative is dependent on
the interval on which the function is differentiated [45].

Abdon Atangana suggested the “beta-derivative” recently in [45–47]. The suggested
version fulfills many characteristics that have been utilized to simulate various physical
issues and have served as limitations for fractional derivatives. These derivatives are not
fractional, but they are a natural extension of the classical derivative [48]. This derivative is
dependent on the interval on which the function is differentiated. It has properties that the
well-known fractional derivatives do not have, as follows.

Definition: Assume that Ψ(ω) is a function. The beta derivative of Ψ(ω) is described by [45]

∂βΨ
∂ωβ

= lim
δ→0

Ψ(ω + δ(ω + 1
Γ(β)

)
1−β

)−Ψ(ω)

δ
, ω > 0, β ∈ (0, 1]. (4)

Several important properties of beta derivatives are given below [45–47].

Theorem: Suppose Ψ(ω) and Φ(ω) are β-differentiable functions for ∀ω > 0 and β ∈ (0, 1]. Then,

• ∂β

∂tβ {a0Ψ(ω) + a1Φ(ω)} = a0
∂β

∂tβ (Ψ(ω)) + a1
∂β

∂tβ (Φ(ω)), ∀a0, a1 ∈ R,

• ∂β

∂tβ (c0) = 0, ∀c0 ∈ R,

• ∂β

∂tβ {Ψ(ω)Φ(ω)} = Φ(ω) ∂β

∂tβ {Ψ(ω)}+ Ψ(ω) ∂β

∂tβ {Φ(ω)},

• ∂β

∂tβ

{
Ψ(ω)
Φ(ω)

}
=

Φ(ω) ∂β

∂tβ {Ψ(ω)}−Ψ(ω) ∂β

∂tβ {Φ(ω)}

Ψ(ω)2 ,
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• ∂β

∂tβ {Ψ(ω)} = (ω + 1
Γ(β)

)
1−β

dΨ(ω)
dω ,

• ∂β

∂tβ {(Ψ ◦Φ)(ω)} = (ω + 1
Γ(β)

)
1−β

Φ′(ω)Ψ′(Φ(ω)).

The proofs of these relations are given by Atangana in [45–47].
Now, we will regard the nonlinear FDE of the type below

H(u,
∂βu
∂tβ

, ux,
∂2βu
∂t2β

, uxx, . . .) = 0, 0 < β ≤ 1, (5)

where u is an unknown function, H is a polynomial of u and its partial fractional derivatives,
and β is order of the Atangana’s conformable derivatives (beta-derivatives) of the function
u = u(x, t).

The traveling wave transformation is

u(x, t) = U(ε), ε = kx− 1
β
(ct +

1
Γ(β)

)

β

, (6)

where k 6= 0 and c 6= 0 are constants. Substituting Equation (6) to Equation (5), we gain the
following nonlinear ordinary differential equation (ODE)

N(U,
dU
dε

,
d2U
dε2 ,

d3U
dε3 , . . .) = 0. (7)

He’s Semi-Inverse Method

We present He’s semi-inverse method (HSIM) for the exact solution of nonlinear time
fractional differential equations, built by Jabbari et al. [49].

The method includes the following steps:

1. Firstly, with the help of the above operations, Equation (5) is converted to Equation (7);
2. If possible, Equation (7) is integrated term by term, one or more times. For conve-

nience, the integration constant(s) can be equaled to zero;
3. The following trial functional (8) is constructed

J(U) =
∫

Ldε (8)

where L is an unknown function of U and its derivatives;
4. By the Ritz method, different solitary wave solutions can be obtained, such as

U(ε) = Asech(Bε), U(ε) = Acsch(Bε), U(ε) = Atanh(Bε), U(ε) = Acoth(Bε)

and so on. In this study we investigated a solitary wave solution in this form

U(ε) = Asech(Bε), (9)

where A and B are constants to be further determined. Substituting Equation (9) into
Equation (8) and making J stationary with respect to A and B results in

∂J
∂A

= 0,
∂J
∂B

= 0. (10)

By solving system (10), A and B are found. Thus, the solitary wave solution (9) is
well-determined.

From now on, HSIM and AM will be written respectively instead of the He’s semi
inverse method and ansatz method, throughout the study.
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3. Applications
3.1. Time-Fractional Korteweg-de Vries (KdV) Equation

To solve Equation (1), applying the traveling wave transformation (6), we gain

− cU′ + akU2U′ + bk3U′′′ = 0.

Integrating with respect to ε once and equaling the constants of integration to zero,
we get

− cU +
ak
3

U3 + bk3U′′ = 0 (11)

with U′ = dU
dε .

3.1.1. Application of HSIM

By He’s semi-inverse principle [50,51], from (11), this variational formula can be found:

J =
∫ ∞

0

(
−bk3

2
(U′)2 − c

2
U2 +

ak
12

U4
)

dε. (12)

By Ritz-like method, we seek a solitary wave solution in this form

U(ε) = Asech(Bε), (13)

where A and B are unknown constants to be found later. Substituting Equation (13) into
Equation (12), we have

J =
−bk3

6
A2B− c

2B
A2 +

ak
18B

A4.

Making J stationary with A and B gives

∂J
∂A = −bk3

3 AB− c
B A + 2ak

9B A3 = 0,
∂J
∂B = −bk3

6 A2 + c
2B2 A2 − ak

18B2 A4 = 0.

From this system, we obtain

A = ∓
√

6c
ak

, B = ∓
√

c
bk3 . (14)

Applying Equation (6), we have the following bright soliton solutions of Equation (1)

u(x, t) = ∓
√

6c
ak

sech[(∓
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)]. (15)

3.1.2. Application of AM

The bright soliton and singular soliton solutions to this equation will be found in this
section. For the bright soliton solutions, we regard the ansatz

U(ε) = Asech(θε), (16)

where

ε = kx− 1
β
(ct +

1
Γ(β)

)
β

(17)

A is the amplitude of the soliton, θ is the inverse width of the soliton and p > 0 is the
situation for solitons to exist [52]. Now, we get

d2U
dε2 = Ap2θ2 sechp(θε)− Ap(p + 1)θ2 sechp+2(θε), (18)



Axioms 2021, 10, 203 5 of 15

and
U3 = A3sech3p(θε). (19)

Substituting (16)–(19) into (11), the following equation

− cA sechp(θε)+
ak
3

A3sech3p(θε)+ bk3 Ap2θ2sechp(θε)− bk3θ2 Ap(p+ 1)sechp+2(θε) = 0

is found.
With the aid of the balancing principle, we may get p = 1 by equating the exponents

p + 2 and 3p in this equation. When we compare the different powers of sech(θε), we get
the algebraic equation system shown below.

ak
3 A3 − 2bk3θ2 A = 0,
−cLA + bk3θ2 A = 0.

By solving this system, we obtain

A(1) = −
√

6c
ak

, θ(1) = −
√

c
bk3 , (20)

A(2) = −
√

6c
ak

, θ(2) =

√
c

bk3 , (21)

A(3) =

√
6c
ak

, θ(3) = −
√

c
bk3 , (22)

A(4) =

√
6c
ak

, θ(4) =

√
c

bk3 . (23)

Eventually, we get the bright soliton solutions for Equation (1) as follows

u1(x, t) = −
√

6c
ak

sech[(−
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (24)

u2(x, t) = −
√

6c
ak

sech[(
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (25)

u3(x, t) =

√
6c
ak

sech[(−
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (26)

u4(x, t) =

√
6c
ak

sech[(
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)]. (27)

For the singular soliton solutions, we regard the ansatz

U(ε) = Asechp(θε), (28)

where

ε = kx− 1
β
(ct +

1
Γ(β)

)
β

(29)

A is the amplitude of the soliton, θ is the inverse width of the soliton and p > 0 is the
situation for solitons to exist. Now, we have

d2U
dε2 = Ap2θ2 cschp(θε) + Ap(p + 1)θ2cschp+2(θε) (30)

and
U3 = A3csch3p(θε). (31)
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Substituting (28)–(31) into (11), the following equation

− cA cschp(θε) +
ak
3

A3csch3p(θε) + bk3 Ap2θ2cschp(θε)

is obtained.
In this equation, with the help of the balancing principle, equating the exponents

p + 2 and 3p, we get p = 1. Now comparing the different powers of csch(θε), we get the
following algebraic equation system

ak
3 A3 + 2bk3θ2 A = 0,
−cA + bk3θ2 A = 0.

By solving this system, we find

A(1) = −
√
−6c
ak

, θ(1) = −
√

c
bk3 , (32)

A(2) = −
√
−6c
ak

, θ(2) =

√
c

bk3 , (33)

A(3) =

√
−6c
ak

, θ(3) = −
√

c
bk3 , (34)

A(4) =

√
−6c
ak

, θ(4) =

√
c

bk3 (35)

where a < 0, b 6= 0.
Consequently, we get the singular soliton solutions Equation (1) as follows

u1(x, t) = −
√
−6c
ak

csch[(−
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (36)

u2(x, t) = −
√
−6c
ak

csch[(
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (37)

u3(x, t) =

√
−6c
ak

csch[(−
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (38)

u4(x, t) =

√
−6c
ak

csch[(
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)]. (39)

When comparing the acquired findings to the results in [38,44], it is clear that the
solutions are novel. The graphs of bright soliton solutions of u(x, t) for β = 0.25, 0.5 and
0.75 are shown in Figure 1.

Time-Fractional Korteweg-de Vries (KdV) Equation has been applied with Riemann-
Liouville fractional derivative in [53].
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3.2. Time-Fractional Equal Width Wave Equation (EWE)

In the present section to solve Equation (2), using the traveling wave transformation (6),
we get

− cU′ + akUU′ − bck2U′′′ = 0.

Similarly, by integrating this equation and equaling the integration constants to zero,
we have

− cU +
ak
3

U3 + bk3U′′ = 0 (40)

where U′ = dU
dε .

3.2.1. Application of HSIM

By He’s semi-inverse principle [50,51], from (40), the variational formula can be found:

J =
∫ ∞

0

(
bck2

2
(U′)2 − c

2
U2 +

ak
6

U3

)
dε. (41)

By a Ritz-like method, we search for a solitary wave solution in this format

U(ε) = Asech2(Bε), (42)
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where A and B are unknown constants. Substituting Equation (42) into Equation (41), we get

J =
4

15
bck2 A2B− c

3B
A2 +

4ak
45B

A3. (43)

Making J stationary with A and B gives

∂J
∂A = 8bck2

15 AB− 2c
3B A + 4ak

15B A2 = 0, ,
∂J
∂B = 4bck2

15 A2 + c
3B2 A2 − 4ak

45B2 A3 = 0.

From this system, we obtain

A =
3c
ak

, B = ∓
√
−1

4bk2 (b < 0). (44)

Using Equation (6), we get the following bright soliton solutions of Equation (2)

u(x, t) = ∓
√

6c
ak

sech[(∓
√

c
bk3 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)]. (45)

3.2.2. Application of AM

In this part we will achieve the bright soliton and singular soliton solutions of this
equation. For the bright soliton solutions, we regard the ansatz

U(ε) = Asechp(θε), (46)

where

ε = kx− 1
β
(ct +

1
Γ(β)

)
β

(47)

A is the amplitude of the soliton, θ is the inverse width of the soliton and p > 0 is the
condition for solitons to exist [52]. Now, we get

d2U
dε2 = Ap2θ2 sechp(θε)− Ap(p + 1)θ2 sechp+2(θε), (48)

and
U2 = A2sech2p(θε). (49)

Substituting (46)–(49) into (40), the following equation

− cA sec hp(θε) +
ak
2

A2 sech2p(θε)− bck2 Ap2θ2sechp(θε) + bck2θ2 Ap(p + 1)sechp+2(θε) = 0

is obtained.
By using the balancing principle to this equation, equating the exponents p + 2 and 2p,

we get p = 2. When we compare the different powers of sech(θε), we obtain the algebraic
equations system presented below.

ak
2 A2 + 6bck2θ2 A = 0,
−cA− 4bck2θ2 A = 0.

Solving this system, we have

A =
3c
ak

, θ = ∓
√
−1

4bk2 (b < 0). (50)
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In conclusion, we make the bright soliton solutions for Equation (2) as follows

u(x, t) =
3c
ak

sech2[(∓
√
−1

4bk2 )(kx− 1
β
(ct +

1
Γ(β)

)
β

)]. (51)

For the singular soliton solutions, we take into account the ansatz

U(ε) = Acschp(Bε), (52)

where

ε = kx− 1
β
(ct +

1
Γ(β)

)
β

(53)

A is the amplitude of the soliton, θ is the inverse width of the soliton and p > 0 is the
situation for solitons to exist. Now, we have

d2U
dε2 = Ap2θ2 cschp(θε) + Ap(p + 1)θ2 cschp+2(θε), (54)

and
U2 = A2csch2p(θε). (55)

Substituting (52)–(55) into (40), the following equation

− cA cschp(θε) +
ak
2

A2csch2p(θε)− bck2 Ap2θ2cschp(θε)− bck2θ2 Ap(p + 1) cschp+2(θε) = 0

is obtained.
From this equation, employing the balancing principle, equating the exponents p + 2

and 2p, we find p = 2. Now comparing the different powers of csch(θε), we achieve the
following algebraic equation system

ak
2 A2 − 6bck2θ2 A = 0,
−cA− 4bck2θ2 A = 0.

Solving this system, we find

A =
−3c
ak

, θ = ∓
√
−1

4bk2 (b < 0). (56)

Finally, we gain the singular soliton solutions for Equation (2) as follows

u(x, t) =
−3c
ak

csch2[(∓
√
−1

4bk2 )(kx− 1
β
(ct +

1
Γ(β)

)
β

)]. (57)

when the obtained results are compared with the results in [41], it is clear that the solutions
are new. In Figure 2, graphs of bright soliton solutions of u(x, t) corresponding to β = 0.25,
0.5 and 0.75 are presented.
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3.3. Time-Fractional Modified Equal Width Wave Equation (mEWE)

In this section to solve Equation (3), using Equation (6), we get

− cU′ + akU2U′ − bck2U′′′ = 0.

In the same way, by integrating this equation and setting the integration constants to
zero, we have

− cU +
ak
3

U3 − bck2U′′ = 0 (58)

where U′ = dU
dε .

3.3.1. Application of HSIM

By He’s semi-inverse principle [50,51], from (58), the variational formula can be got:

J =
∫ ∞

0

(
bck2

2
(U′)2 − c

2
U2 +

ak
12

U4

)
dε. (59)

By Ritz-like method, we seek a solitary wave solution in this style

U(ε) = Asech(Bε), (60)

where A and B are unknown constants. Substituting Equation (60) into Equation (59),
we find

J =
bck2

6
A2B− c

2B
A2 +

ak
18B

A4. (61)
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Making J stationary with A and B gives

∂J
∂A = bck2

3 AB− c
B A + 2ak

9B A3 = 0,
∂J
∂B = bck2

6 A2 + c
2B2 A2 − ak

18B2 A4 = 0.

From this system, we obtain

A = ∓
√

6c
ak

, B = ∓
√
−1
bk2 (b < 0). (62)

Using Equation (6), we acquire the bright soliton solutions Equation (3)

u(x, t) = ∓
√

6c
ak

sech[(∓
√
−1
bk2 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)] (b < 0). (63)

3.3.2. Application of AM

In this part, we will get the bright soliton and singular soliton solutions of this equation.
For the bright soliton solutions, we allow in the ansatz

U(ε) = Asec hp(Bε), (64)

where

ε = kx− 1
β
(ct +

1
Γ(β)

)
β

(65)

A is the amplitude of the soliton, θ is the inverse width of the soliton and p > 0 is for
the existence of solitons [52]. Now, we get

d2U
dε2 = Ap2θ2 sechp(θε)− Ap(p + 1)θ2 sechp+2(θε), (66)

and
U3 = A3sech3p(θε). (67)

Substituting (64)–(67) into (58), the following equation

− cA sec hp(θε) +
ak
3

A3sech3p(θε)− bck2 Ap2θ2sechp(θε) + bck2θ2 Ap(p + 1)sechp+2(θε) = 0

is obtained. From this equation, by the balancing principle, equating the exponents p + 2
and 3p, we get p = 1. Now comparing the different powers of sech(θε), we achieve the
following algebraic equation system

ak
3 A3 + 2bck2θ2 A = 0,
−cA− bck2θ2 A = 0.

Solving this system, we get

A(1) = −
√

6c
ak

, θ(1) = −
√
−1
bk2 , (68)

A(2) = −
√

6c
ak

, θ(2) =

√
−1
bk2 , (69)

A(3) =

√
6c
ak

, θ(3) = −
√
−1
bk2 , (70)

A(4) =

√
6c
ak

, θ(4) =

√
−1
bk2 . (71)
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In conclusion, we get the bright soliton solutions for Equation (3) as follows

u1(x, t) = −
√

6c
ak

sech[(−
√
−1
bk2 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (72)

u2(x, t) = −
√

6c
ak

sech[(

√
−1
bk2 )(kx− 1

β
(ct +

1
Γ(β)

)
β

], (73)

u3(x, t) =

√
6c
ak

sech[(−
√
−1
bk2 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (74)

u4(x, t) =

√
6c
ak

sech[(

√
−1
bk2 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)]. (75)

For the singular soliton solutions, we regard the ansatz

U(ε) = Acschp(θε), (76)

where

ε = kx− 1
β
(ct +

1
Γ(β)

)
β

(77)

A is the amplitude of the soliton, θ is the inverse width of the soliton and p > 0 is for
the existence solitons, as well. Now, we have

d2U
dε2 = Ap2θ2 cschp(θε) + Ap(p + 1)θ2 cschp+2(θε), (78)

and
U3 = A3csch3p(θε). (79)

Substituting (76)–(79) into (58), the following equation

− cA cschp(θε) +
ak
3

A3csch3p(θε)− bck2 Ap2θ2cschp(θε)

is obtained. From this equation, by the balancing principle, equating the exponents p + 2
and 3p, we get p = 1. Now comparing the different powers of csch(θε), we find the
following algebraic system

ak
3 A3 − 2bck2θ2 A = 0,
−cA− bck2θ2 A = 0.

Solving this system, we get

A(1) = −
√
−6c
ak

, θ(1) = −
√
−1
bk2 , (80)

A(2) = −
√
−6c
ak

, θ(2) =

√
−1
bk2 , (81)

A(3) =

√
−6c
ak

, θ(3) = −
√
−1
bk2 , (82)

A(4) =

√
−6c
ak

, θ(4) =

√
−1
bk2 . (83)

Eventually, we gain the singular soliton solutions for Equation (3) as follows

u1(x, t) = −
√
−6c
ak

csch[(−
√
−1
bk2 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (84)
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u2(x, t) = −
√
−6c
ak

csch[(

√
−1
bk2 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (85)

u3(x, t) =

√
−6c
ak

csch[(−
√
−1
bk2 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)], (86)

u4(x, t) =

√
−6c
ak

csch[(

√
−1
bk2 )(kx− 1

β
(ct +

1
Γ(β)

)
β

)]. (87)

when the findings obtained are compared with the results in [41], it is clear that the solutions
are new.

On bright soliton solution, if a = c = k = 1 and b = −1, it is clear that the graphs in
Figure 1 will be the same.

4. Conclusions

In this work, He’s semi-inverse variation method and the ansatz method have been
used successfully to obtain the bright and singular soliton solutions of the nonlinear frac-
tional KdV equation, EWE and mEWE. It could be deduced from the findings that these
techniques are suited. It is understood that the other soliton solutions can be obtained with
them. They can be considered more powerful and convenient in solving other nonlinear
FDE types. The resulting soliton solutions are useful to researchers and have important
applications in mathematical physics and engineering. By selecting the appropriate param-
eter values, the behaviors of several solutions have been given that aid the investigator
in understanding the physical comment. In addition, when the results obtained by both
methods are compared with related publications, it is seen that they are new. It is under-
stood from the results gained that the proposed techniques are so effective, promising, and
suitable for solving other nonlinear fractional differential equations.
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