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Abstract: The Ensemble Intermediate Coupled Model (EICM) is a model used for studying the
El Nifio-Southern Oscillation (ENSO) phenomenon in the Pacific Ocean, which is anomalies in
the Sea Surface Temperature (SST) are observed. This research aims to implement Cressman to
improve SST forecasts. The simulation considers two cases in this work: the control case and the
Cressman initialized case. These cases are simulations using different inputs where the two inputs
differ in terms of their resolution and data source. The Cressman method is used to initialize
the model with an analysis product based on satellite data and in situ data such as ships, buoys,
and Argo floats, with a resolution of 0.25 x 0.25 degrees. The results of this inclusion are the
Cressman Initialized Ensemble Intermediate Coupled Model (CIEICM). Forecasting of the sea surface
temperature anomalies was conducted using both the EICM and the CIEICM. The results show that
the calculation of SST field from the CIEICM was more accurate than that from the EICM. The forecast
using the CIEICM initialization with the higher-resolution satellite-based analysis at a 6-month lead
time improved the root mean square deviation to 0.794 from 0.808 and the correlation coefficient to
0.630 from 0.611, compared the control model that was directly initialized with the low-resolution
in-situ-based analysis.
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1. Introduction

The El Nifio-Southern Oscillation (ENSO) is used to describe the Sea Surface Tem-
perature Anomaly (SSTA) in the equatorial Pacific Ocean and ocean—atmosphere system
fluctuations in the Southern Hemisphere. Scientists now use the term ENSO warm event
to describe the phenomenon where the SST in the eastern and central parts of the Pacific
region is warmer than normal, while the term ENSO cold event is now used to describe
the phenomenon where the SST in the central and eastern parts of the Pacific region is
colder than normal. Many countries in the world are affected by these two phenomena,
especially countries in the equatorial parts of the Pacific Ocean. The ENSO is also associ-
ated with abnormal climatic conditions, leading to droughts in southern Africa and other
areas of the Southern Hemisphere, such as Australia; for example, the Australian continent
experienced a drought in 1997 as a result of the ENSO phenomenon. At present, the hot
weather in Australia is believed to be the cause of forest fires in Victoria and New South
Wales. Southeast Asia, comprising Indonesia, the Philippines, Malaysia, Singapore, Brunei,
and Papua New Guinea, experienced the greatest incidence of forest fires in 1997-1998.
Moreover, other countries in the region, such as Thailand, Laos, Cambodia, and Vietnam,
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suffered from drought conditions at this time. The ENSO has been identified as the domi-
nant cause of climate variability around the equatorial Pacific Ocean. It connects the air
circulation in the atmosphere with the temperature of water flowing into the Pacific Ocean.
International research has shown that the ENSO phenomenon affects more than 70% of the
global temperature, although it occurs in the Pacific Ocean.

The modelling of ENSO phenomena has improved, in terms of prediction skills, to
within a range of 12 months in advance, based on analyses of the relationships between the
atmosphere and ocean. Several studies have been conducted to predict ENSO phenomena
using different methods [1-6]. Studies have reviewed the efficacy of many models, in an
attempt to rule out changes related to ENSO phenomena [7]. The Hybrid Oceanic and
Atmospheric System Model (HCM) has been studied to explain climate variability in the
tropical Pacific Ocean system [8]. An intermediate coupled model (ICM) has been studied
and developed with a variety of methods, in order to improve ENSO forecasting results [9].
Scientists in the Institute of Oceanology, Chinese Academy of Sciences, have studied the
evolution of the SST in the tropical Pacific Ocean, as predicted using the IOCAS ICM model.
A unique feature is how the temperature of the sub-surface water, entrained into the mixed
layer, is parameterized [10]. SST data have been used to predict ENSO phenomena, as an
essential geophysical variable that can act as a predictor of atmospheric conditions [1]. The
simplest model that can be used to predict the ENSO phenomenon is the EICM. The EICM
is constructed from an Intermediate Ocean Model (IOM), which seeks to couple the ocean
with entrainment temperature, SST, and wind stress in the tropical Pacific Ocean; however,
the observation of oceanic data is very difficult, for various reasons [4], and the resulting
inaccuracies in the input data result in incorrect ENSO, leading to incorrect assessment of
the model status and its predictions [11]. Therefore, it is necessary to find a procedure that
can lead to predictions of the model which are in agreement with the observed data. The
unstable data problem may not occur if one uses satellite data, as the model grid resolution
is lower than that of the satellite data [12]. For the above reason, discovering an optimal
method is necessary for improving initial data, to make them consistent with observation
data. Hence, the Cressman initialization method may serve as a potential means to provide
the initial data in the EICM.

The data assimilation method is a technique of statistical combination that combines
the forecasted result with the initial observation data. This technique is used to correct the
initial data that are to be fed into the EICM [13,14]. The process of data assimilation between
oceanic and atmospheric improved the El Nino forecasts compared to the forecasting result
without data assimilation [15]. The Cressman method has been used to correct the SST
data when there are difficulties in measuring the temperatures at exact locations and exact
times over vast areas, with satellite-measured observations of sea surface temperature from
the MODIS Aqua spectroradiometer [16]. The Cressman method may improve results
slightly compared to other methods but is suitable for SST, as shown by [16,17]. Artur
et al. (2015) uses Cressman, but applies it to satellite-measured sea surface temperature
from the MODIS Aqua spectroradiometer, using a coupled ecosystem model [16]. This
procedure provides more correct input data, which may lead to more accurate forecasts and
more reliable predictions [18]. Therefore, this work aims to improve the SSTA prediction
of the ENSO phenomenon with EICM, using the Cressman initialization method. The
Optimum Interpolation Sea Surface Temperature (OISST) data from the Advanced Very
High-Resolution Radiometer (AVHRR) was analyzed through the data assimilation process
to be used as an input of EICM.

2. Materials and Methods
2.1. Ensemble Intermediate Coupled Model

The EICM was developed from the ICM, in order to improve ENSO phenomenon
forecasting results [13], using a different method to generate initial ensemble members
with the Markov stochastic random model. Furthermore, the studies of Evensen [19,20]
provided a set of initial conditions for an ICM with 100 members. The EICM consists of
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three main parts: the IOM, the anomaly model for T, and the wind stress [21]. This model
has been used to predict ENSO phenomena in tropical regions of the Pacific Ocean [6,22,23].
The anomaly model for T, has been implemented using the prediction of Hybrid Coupled
Model (HCM) simulations [24,25] in ENSO. The EICM framework is shown in Figure 1.
Keenlyside and Kleeman [26] developed an IOM model to predict the upper ocean currents
near the equator, where the model was based on the Baroclinic Euclidean model [27]. These
ocean models are able to simulate the variance in SST over the year in several ways. The
role of SST in the ENSO has been widely accepted, especially in the eastern Pacific. The SST
variance is regulated by zonal and meridional advection and entrainment processes [28].
Zonal currents play important roles in the calculation of the SST in the central Pacific.
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Figure 1. General simple structure of the EICM [29].

The SST component of the model can be formulated using Equation (1). The features
of the model that are different from the traditional EICMs are given special attention, which
includes simulating the anomalies in the thermocline depth and defining the sub-surface
temperature parameters. This model consists of different horizontally blended layers,
which serve as the starting point for the various modifications to the traditional EICM.
The vertical diffusivity temperature treatment is analogous to the vertical diffusion of
momentum in the non-linear component of the model. The equation for SSTA that is
implemented in the SST component is written as follows:

BT’_ _,87_7 ,aT_,aT_, 0T
ﬁ— ug (u+u)$ U@ (U‘i‘v)@
{(@+ ) M(~T— ) fwM(fw)}$
—(w+w’)M(—w7w’)$f¢xT’
Kp ] / 2Ky I

where T’ and T} are the SSTA and water temperature below the mixed layer, respectively;
the mean values of the SSTA and the water temperature below the mixed layer are rep-
resented by T and T, respectively; the parameters u’, v/, and w’ are the corresponding
anomaly fields; 7 and ¥ are the prescribed seasonally varying mean zonal and meridional
currents in the mixed layer, respectively, and w is the prescribed seasonally varying mean
entrainment velocity at the base of the mixed layer, which are all obtained from the dy-
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namical ocean model; M(x) is the Heaviside step function; —aT" is the surface heat flux
term, which is parameterized as being negatively proportional to the local SST anomalies
with the thermal damping coefficient; H is the depth of the mixed layer; H; is the depth of
the second layer [21]; x;, is the coefficient for horizontal diffusivity; x, is the coefficient for

vertical diffusivity; and V), = (aa—x, %) is the horizontal divergence operator.

2.2. Cressman Scheme

The Cressman technique was developed by George Cressman in 1959, and is the
process of modifying the background table point values (derived from the forecast model)
by a linear combination of residual values between the predicted and observed values.
This technique involves continuously inserting station data into a user-defined latitude-
longitude grid, through a grid at a smaller radius of influence, for increased accuracy. The
scheme starts with a background field from a numerical forecast, with the background
values at each grid point being continuously adjusted based on nearby observations. The
advantages of the Cressman method include the associated ease and speed of calculation,
combining forecast data into the background field, and offering generally satisfactory
results. These multi-faceted advantages of the Cressman method have made it very
popular. One disadvantage of the model is that large deviations are often observed around
the edges [30]. The Cressman method is not suitable for multiple observations, as it does
not take the observational error into account, which is another disadvantage of this method.
In this work, the simulation is divided into two cases: the “control” case and the “Cressman
initialized” case. Both of these cases are simulations using different inputs where the two
inputs differ in terms of their resolution and data source. The control initialized model
uses the coarse 2 x 2 degree ICOADS SST data, which provides an analysis that is based
solely on in situ data. The Cressman method is used to initialize the model with an analysis
product that is based on satellite data AND in situ data, such as ships, buoys, and Argo
floats, with a resolution of 0.25 x 0.25 degrees. A schematic of the grid points of the
Cressman method is shown in Figure 2.
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Figure 2. Model data coordinates (circle) and observation data (square) [31].

The model state is assumed to be univariate and is represented as a grid point value.
Previous estimates of the model state (background), provided by previous forecasts, are
represented by f;!, while observations of the same parameter are represented by f7, where
k =1, .., K. The Cressman analytical equation is defined by the model state fi”Jrl at each
grid point i, according to Equation (2):
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where f! is grid point i of the model at the n'" iteration evaluation, f{ is observation point

k, f{! is the estimated value at point k of the n'h iteration evaluation, 2 is the estimation of

the error between the model and observed data, and K is the number of observation points.
The following equations determine the weights wf;:

2_ 2

il = ﬁ% +:jz’; where 13 < R

0 where 13 > RZ,

®)

where 1y is the distance between observation point k and grid point i and R, is the radius
of the n'! iteration evaluation.

2.3. Optimum Interpolation Sea Surface Temperature

NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (or daily OISST) is
an analysis created by combining observations from various platforms, including satellites,
boats, buoys, and Argo floats, on a regular global grid. This method includes adjusting
the biases of satellite and ship observations (referring to buoys), in order to compensate
for platform differences and sensor bias, with a spatially complete SST map being created
with corrections to fill the gaps. Satellite data from the Advanced Very High Resolution
Radiometer (AVHRR) are the primary input, which have allowed for high temporal and
spatial coverage, from late 1981 to the present. The AVHRR is a broadband sensor, featuring
three bands in the visible and near-infrared, and three bands in the infrared spectral domain.
It is used to represent various world phenomena, in terms of meteorology, soil analysis,
and ocean analysis; for example, in the calculation of vegetation indices, cloud properties,
dust, snow, ice, fire detection, sea ice concentration, and SST. The spatial resolution of
AVHRR is 1 km, at the lowest point reached by a celestial body during its apparent orbit
around a given point of observation. These instruments are operated on satellites such
as the National Oceanic and Atmospheric Administration (NOAA-11) and European
Meteorological Operational (MetOp) satellites. The SST is generated in real-time, using the
AVHRR infrared transponder from High-Resolution Picture Transmission (HRPT) using
Seaspace’s Tera Scan software and NOAA’s multi-channel regression algorithm [32,33].
The individual SST scenes are daily combined day—night mean grids for the U.S. East coast,
where overpasses occur at roughly 1:30 a.m., 9:30 a.m., 1:30 p.m., and 9:30 p.m. (local time)
each day. In this work, we considered combining day- and night-time temperatures, in
order to represent the daily averaged sea-surface temperature. Daily grids are combined
into 3-day, 7-day, monthly, seasonal, and yearly average grids. As this work required
monthly SSTA data, NOAA’s daily day—night data were analyzed as monthly data.

The optimum interpolation (OI) sea surface temperature (SST) analysis was performed
on a regular grid using irregularly spaced data. The analysis is based on the weighted sum
of the data using linear weights OI, which is determined by regression [34].

N
=Y Widi, 4)
i—1

where 1y is the analyzed SST, wyy is linear weights, g; are the SST, k is grid points, index i
is for data and N is the number of data. The values of 4 and r are defined as differences
from the analysis in the previous time step, and g and r are usually different from the first
guess reference system. The average of the analysis correlation error (71;7;) is assumed to
be representative and is proportional of a Gaussian distribution, as follows:
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where (7;71;) is the average of the analysis correlation error, x and y are the zonal and
meridional data and analysis locations, and A, and A, are the zonal and meridional spatial
scales. The weight was then determined according to Reynolds and Smith 1994 by

N

Z(<7‘[i7‘[j> +el-2c5ij>wik = <7'C1'7'(j>, (6)

i=1
where €; is the noise-to-signal standard deviation ratio, J;; is data correlation error and
wjy is a linear weighting coefficient. The averages of the data errors is assumed to be
uncorrelated between the different observations. Therefore, the data correlation error is
d;j = 1fori=j, and 0 otherwise. Data types currently include ships, buoys, and day and
night satellite data for each instrument. Spatial functions are defined for each of these
quantities with different e; fields for each data type.

2.4. Extended Reconstructed Sea Surface Temperature

The SSTA data of the National Oceanic and Atmospheric Administration (NOAA,
Washington, DC, USA) monthly SST analysis dataset, provided by the Extended Re-
constructed Sea Surface Temperature (ERSST) project, were used as input data for the
EICM [35,36]. The ERSST dataset is a global monthly SST dataset that derived entirely from
in situ observational data and it is provided on a coarse 2 x 2 degree grid, [37,38]. These
data were obtained from the International comprehensive Ocean—Atmosphere Dataset
(ICOADS) from 1854 until present, as derived from Argo floats above 5 m. The ERSST
is suitable for long-term and basin-wide global studies, and uses smooth, specific, and
short-term models in the dataset. ERSST version 5 is the newest version of the ERSST,
which has improved SST spatial and temporal variability. The newest version of ERSST
improves absolute SST, shifting from using the Nighttime Marine Air Temperature (NMAT)
to the use of SST buoys as a reference to correct ship SST biases. The ERSST data were used
as input to the EICM, as shown in Table 1.

Table 1. Details of the data in this research.

Detail ERSST OISST IN SITU
Source National Oceanic and Atmospheric Administration (NOAA)
Name of data Sea Surface Temperature Anomaly (SSTA)
Longitude 0° E to 360° E 0.125° E to 359.875° E 137° E to 265° E
Latitude —90° N to 90° N —89.875° N to 89.875° N —8°Nto9° N
Time 1854-01 to Present 1981-09 to Present 1977-01 to Present
Resolution 2°x2° 0.25°x0.25° Point
https:/ /www.ncdc.noaa.gov/
Search data-access/marineocean-data/ https: https:/ /www.pmel.noaa.gov/
extended-reconstructed-sea- / /www.ncdc.noaa.gov /oisst tao/drupal/disdel/index.html
surface-temperature-ersst
[accessed on 5 August 2020] [accessed on 22 December 2020] [accessed on 27 February 2021]

The Cressman analysis procedure was used to improve the accuracy of the model from
AVHRR. Subsequently, the system was switched back to the EICM format. Figure 3 shows
an outline of how the CIEICM works automatically, using the inputs from the NOAA.


https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst
https://www.ncdc.noaa.gov/oisst
https://www.ncdc.noaa.gov/oisst
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3. Results and Discussion

Simulation was performed for the SSTA data of OISST in the EICM and CIEICM, using
historical data spanning from 1995 to 2019. The results of EICM and CIEICM simulations
were compared with the observed data from NOAA /PMEL TAO buoy network, in order
to determine whether the Cressman method had worked properly. A comparison of the
SSTA result samples from each simulation with the observations was carried out, in order
to assess the accuracy of the preliminary models. The absorption validation with EICM
consists of three parts: First, the results of both simulations are compared with the OISST
data to determine if the initial method is working correctly. Second, the results of both
simulations are compared with source data, to verify the accuracy of the two simulations.
Finally, the results of the model are computed, in SSTA index format, in the Nifio 3.4
area and compared with data from Hadley Center’s Sea Ice and Sea Surface Temperature
(HadISST) [39]. Figure 4 shows the Pacific region SSTA data for January 1995, including
SSTA data from ERSST (which was the EICM import data, shown in Figure 4a). The SSTA
data of EICM from ICOADS are shown in Figure 4b. The SSTA data, obtained from OISST,
are shown in Figure 4c, while SSTA data of CIEICM that Cressman initialized from OISST
are shown in Figure 4d.
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(a) Input data
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Figure 4. Comparison of the sample results from the EICM and CIEICM.
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From Figure 4, the OISST data yielded SSTAs lower than those from ERSST and
EICM. CIEICM found that most SSTAs were lower than EICM, and similar to those from
ERSST and OISST, as expected. Figure 5 shows a comparison of SSTA data from EICM and
CIEICM in January 1995, where the blue color means that Cressman Initialized resulted in
lower SSTA values. White and red colours indicate that Cressman Initialized increased the
SSTA value of the model. The simulation results showed that SSTAs were mostly reduced
from EICM , which was consistent with Figure 4.

Latitude

200
Longitude

Figure 5. Difference between EICM and CIEICM SSTA data in January 1995.

Visual comparison may not be sufficient and, therefore, a statistical method must be
utilised to assess the validity of the model. The statistics used were the Root Mean Square
Deviation, shown as Equation (7), Correlation Coefficient, shown as Equation (8), and
Standard Deviation of Error, shown in Equation (9).

Root Mean Square Deviation:

RMSD = (7)
Correlation Coefficient:
n
Y. ((m; —m) x (0; —0))
R=—= ®)
n . n
\/Z (mz - m)Z X Z (01 - 0)2
i=1 i=1
Standard Deviation:
)

In the above equations, m; denotes the SSTA data from the EICM and CIEICM, o;
denotes the SSTA data from OISST, 71 denotes the mean SSTA data from EICM and CIEICM,
0 denotes the mean SSTA data from OISST, # is the number of grids of data, e; is the Error
information between the model and OISST (m; — 0;), and ¢ is the mean of the Error.
Comparing SSTA data from EICM and CIEICM with the OISST from 1995 to 2019 (i.e., over
25 years), it was found that, when using Cressman Initialized, there was less discrepancy,
as the Root Mean Square Deviation value decreased from 0.616 to 0.605. The correlation
between the simulation and OISST increased from 0.535 to 0.548, and there was less
variation in the error (which decreased from 0.896 to 0.869), as shown in Table 2.



Axioms 2021, 10, 189 90f17

Table 2. Comparison of accuracy between EICM and CIEICM with OISST data.

Model Type Root Mean Correlation Standard Significance of the Correlation
Square Deviation (°C) Coefficient (—) Deviation (°C) Coefficient (p-Value)

EICM 0.616 0.535 0.896 0

CIEICM 0.605 0.548 0.869 0

When comparing the CIEICM with OISST, the absorption algorithm worked correctly.
A comparison of the precision of both models and OISST with in situ data from 1995
to 2019 was carried out, in order to validate the model and to correlate the model with
situational data, where the in situ data were obtained from the NOAA /PMEL TAO buoy
network [40,41], for which the buoy locations in the central Pacific Ocean to predict ENSO-
related climate variations are shown in Figure 6.

30

Latitude

180 200 220 240 260 280
Longitude

Figure 6. Location of measurement data from NOAA /PMEL TAO buoy network.

Figure 7 shows the correlation of SSTA data between OISST and source data, with
black lines showing that the OISST data and in situ data were highly correlated. If the SSTA
value is below the black line, the OISST data were higher than the source data. If the SSTA
value is higher than the black line, the OISST data were lower than the source data. From
the figure, the data from OISST had a correlation coefficient of 0.968.

6

5

LON

SSTA (°C) In situ
=
o
’.

SSTA (°C) OISST

Figure 7. Correlation of the SSTA from the OISST with in situ data.
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Figure 8a shows the SSTA relationship between EICM or CIEICM and OISST, where
blue indicates the relationship between EICM and OISST, and red shows the relationship
between CIEICM and OISST. It was found that the EICM was less correlated than that of
the CIEICM (at 0.624 and 0.637, respectively). Figure 8b shows the the SSTA relationship
between EICM and CIEICM and in situ data, where the blue colour shows the relationship
between EICM and in situ data, and red shows the relationship between CIEICM and in
situ data. It was found that the EICM was less correlated than that of the CIEICM (at 0.614
and 0.632, respectively).
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SSTA (°C) Model SSTA (°C) Model

(a) Correlation of the SSTA from the EICM EICM and

CIEICM with OISST data.

(b) Correlation of the SSTA from the and CIEICM with
in-situ data.

Figure 8. Correlation of the SSTA from the EICM and CIEICM with OISST and in-situ data.

Comparison of the accuracy of the two simulations with in situ data for each month
from 1995 to 2019 found that the CIEICM was able to reduce the model error. During the
period from June to August, the model tolerance was better than in other months, where
the RMSD from CIEICM was approximately 0.024 less than EICM. When comparing the
model relationships, it was found that the CIEICM was more correlated than that of the
model; it was also found that the EICM had a correlation of approximately 0.16, as shown
in Table 3.

The EICM error was compared with the in situ data, and the CIEICM error was
compared with 300 in situ data by the Mann-Whitney U statistical method. Considering
the statistical value of the Mann-Whitney U Test, it was found that the value was 41,416.5,
and the Asymptotic Significance (1-tailed) value was 0.455, which was compared with
the statistical significance level to conclude. As a result of the analysis, the Asymptotic
Significance (1-tailed) value was less than the significance level of 0.05. The error from the
EICM is greater than the error from the CIEICM, as shown in Table 4.
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Table 3. Comparison of accuracy between EICM and CIEICM with in situ data.

Month Lead Measurements Root Mean Square Deviation Correlation Coefficients

EICM CIEICM EICM CIEICM
Jan 1413 0.691 0.669 0.777 0.789
Feb 1402 0.559 0.535 0.766 0.778
Mar 1402 0.533 0.513 0.691 0.718
Apr 1391 0.55 0.521 0.606 0.629
May 1392 0.668 0.646 0.405 0.399
Jun 1369 0.772 0.743 0.318 0.336
Jul 1383 0.774 0.744 0.436 0.434
Aug 1389 0.767 0.733 0.419 0.476
Sep 1394 0.737 0.71 0.516 0.556
Oct 1384 0.691 0.652 0.723 0.746
Nov 1394 0.684 0.663 0.758 0.763
Dec 1396 0.710 0.665 0.770 0.788
Mean 0.676 0.652 0.600 0.616

Table 4. Statistical data analysis results by the Mann-Whitney U Test method.
Mann-Whitney U Wilcoxon W V4 Asymp. Sig (1-Tailed)

RMSD 41,416.5 86,566.5 —1.688 0.0455

The Taylor diagram shows a comparison of the SSTA Index in Nifio 3.4 (180° E-240° E
and 5° S-5° N). The red dot is the SSTA data from the EICM for each ensemble of
100 ensemble and HadISST data. The blue dot is the SSTA data from the CIEICM for
each ensemble of 100 ensembles and data from HadISST. The red cross is the SSTA mean
from all EICM 100 ensembles and data from HadISST, and the blue cross is the SSTA
mean from all CIEICM 100 ensembles and data from HadISST. Figure 9 shows the pre-
diction results for each month. It was found that, in the forecast using imported data
from December 1994 to November 2019, the forecast from January 1995 to December 2019
had a forecast period of 1 month. The RMSD of each ensemble was 0.53 to 0.55 and the
RMSD of the Mean Ensemble was 0.49 over a 12-month forecast period. Forecasts for
December 1995 through December 2019 had an RMSD of each ensemble from 1.2 to 1.4
and a Mean Ensemble RMSD of 0.8. When forecasting SSTA in the near-term, there was
little discrepancy, while the longer period SSTA forecast increased the error.

Figure 10 shows the SSTA Index at Nifio 3.4, in order to determine the ENSO phe-
nomenon, where the black line is the SSTA Index data from HadISST, the red line is the
SSTA Index data from EICM, and the blue line is the SSTA Index data. If the Nifio 3.4 index
is greater than 0.5, then the El Nifio is defined to occur. If the value of the index is between
0.5 and 1, a weak El Nifio is defined to occur. If it is between 1 and 1.5, it is defined to
be a moderate El Nifio. If it is between 1.5 and 2, it is defined to be strong. Finally, if it
is greater than 2, it is defined to be very strong. On the other hand, if the Oceanic Nifio
index is negative and lower than —0.5, then the La Nifia is defined to occur. The level of
the phenomenon is defined to be divided into weak, moderate, and strong, similar to that
for El Nifio. The shorter the forecast is, the less accurate the forecast; the longer the forecast,
the greater the error.
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Figure 9. Taylor diagram comparing the SSTA index at Nifio 3.4 (180° E-240° E and 5° S-5° N).

Comparing the accuracy of the two simulations with HadISST for each month’s lead
time from 1995 to 2019, the CIEICM was able to reduce the model error. With 1-8 months
lead time, the CIEICM yielded better forecasts than the EICM. With 9-12 months lead time,
the two simulations showed no significant differences in terms of RMSD, with the mean
RMSD from CIEICM being approximately 0.017 less than EICM. When comparing the
model relationships, it was found that the CIEICM was more correlated than the EICM,
with an increase of approximately 0.11. In the ranges 1, 2-6, and 7-12 months lead, the
relationship was at the levels of very strong, strong, and moderate, respectively, as shown
in Table 5.
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(c) 6-Month lead (d) 9-Month lead

Figure 10. ENSO Phenomenon from 1995 to 2019.

Table 5. Accuracy comparison between EICM, CIEICM, and HadISST data.

Month Lead Measurements Root Mean Square Deviation Correlation Coefficients
EICM CIEICM EICM CIEICM

1-Month Lead 300 0.555 0.51 0.827 0.842
2-Month Lead 299 0.654 0.624 0.759 0.77
3-Month Lead 298 0.673 0.651 0.744 0.749
4-Month Lead 297 0.721 0.716 0.706 0.698
5-Month Lead 296 0.76 0.754 0.659 0.676
6-Month Lead 295 0.808 0.794 0.611 0.63
7-Month Lead 294 0.861 0.843 0.55 0.563
8-Month Lead 293 0.897 0.877 0.506 0.509
9-Month Lead 292 0.904 0.89 0.494 0.481
10-Month Lead 291 0.889 0.889 0.499 0.464
11-Month Lead 290 0.881 0.871 0.45 0.499
12-Month Lead 289 0.871 0.855 0.434 0.489

Mean 0.790 0.773 0.603 0.614

Figure 11 shows the Pacific SSTA data in November 2015, which includes SSTA
data from EICM and SSTA data from CIEICM. It was found that, during the El Nifio
phenomenon, CIEICM simulations yielded higher SSTAs than EICMs in the Nifio region,
as shown in Figure 11a,b, respectively. Figure 11c shows the difference between EICM and
CIEICM, where blue means that carrying out Cressman Initialized resulted in a decrease in
the model’s SSTA, while white and red meant that Cressman Initialization increased the
model’s SSTA. Most SSTA values were reduced from EICM.
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Figure 11. Comparison of the El Nifio range.

Figure 12 shows the Pacific SSTA data in January 2000, which includes SSTA data
from EICM and SSTA data from CIEICM. It was found that, during the La Nifia phe-
nomenon, CIEICM simulation led to lower SSTA than EICM during Nifio region, as shown
in Figure 12a,b. Figure 12c shows the difference between EICM and CIEICM, where blue
means Cressman Initialized decreased the model SSTA, while white and red indicate
that Cressman Initialization increased the model SSTA. Most SSTA values were reduced
from EICM.
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(a) EICM (b) CIEICM (c) Difference between EICM and CIEICM
Figure 12. Comparison of the El Nifio range.

4. Conclusions

Accurately predicting the occurrence of ENSO phenomena several months in advance
is a major goal of climate research. It is necessary to find a procedure that can yield
model predictions which agree with the observed data. This study, therefore, focused on
improving the predictions of ENSO phenomena in the Pacific using the Cressman method
to improve SST forecasts with the EICM and CIEICM from 1995 to 2019. The work consisted
of three main parts. Part 1, comparing the results from EICM and CIEICM with OISST data,
it was found that the Cressman method works properly because the Cressman Initialization
method minimizes the error. From the statistical analysis, Root Mean Square Deviation
decreased from 0.616 to 0.605, and the relationship between simulation and OISST increased
from 0.535 to 0.548. Part 2 compares SST data between EICM that initializing with ICOADS
and SST data from NOAA /PMEL TAO buoy network and compares SST data between
CIEICM that initializing with Cressman using OISST and SST data from NOAA /PMEL
TAO buoy network. It was found that the CIEICM was able to reduce the error each month.
The RMSD value decreased from 0.676 to 0.652, and the correlation coefficient increased
from 0.600 to 0.616. The results showed that the Asymptotic Significance (1-tailed) value
was less than the significance level of 0.05. This means that the test has a greater EICM
error than the CIEICM error is shown in Table 4. The last part compared the SSTA index at
Nifio 3.4 of the two simulations using HadISST data. It was found that the CIEICM was
more accurate than the EICM. Moreover, the CIEICM simulation was more correlated with
data from HadISST than EICM. Both simulations were able to predict the occurrence of
ENSO phenomena well in the first six months, and had a strong correlation. This confirmed
the reliability of the algorithm using OISST data in conjunction with the EICM to obtain
the CIEICM, which yielded better prediction results.
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Several studies have attempted to solve problems associated with the input data
used in the model to increase ENSO prediction accuracy. The results of the study of
Ji and Leetmaa indicated that adequate physical parameters of data assimilation can
improve forecasting results and, thus, improve predictive skills [42]. Chen demonstrated
the effects and necessity of data assimilation on ICM and pointed out that assimilation is
key in improving the prediction skills of the current ENSO model [43]. Many assimilation
techniques have been used for the initial simulation of the ocean atmosphere [44]. A
four-dimensional variational (4D-Var) data assimilation method has been implemented in
an improved model of the tropical Pacific, in order to improve the accuracy of the model.
The results showed that 4D-Var can effectively reduce the error in ENSO analysis [45-47].
However, improving forecasting skills by assimilation is not the only method that can
be achieved. The need for assimilation may create an imbalance between early ocean
conditions and models. The results of the study of Zavala-Garay suggest that there is little
room for improvement in predictive skills, as a result of the highly limited data assimilation
method [48]. These imbalances and errors in the model can be a significant limiting factor
in forecasting skills, especially for predictions that occur in the northern winter. Most
studies to date have focused on improving the model through data assimilation, while
future studies are expected to focus on optimal error study efforts and actual forecast limit
estimates [49]. Some limiting factors cannot be avoided using data assimilation; they have
to be addressed through modifications to the model.
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Abbreviations

The following abbreviations are used in this manuscript:

AVHRR Advanced Very High-Resolution Radiometer

EICM Ensemble Intermediate Coupled Model

CIEICM Cressman Initialized Ensemble Intermediate Coupled Model
ENSO El Nifio-Southern Oscillation

ERSST Extended Reconstructed Sea Surface Temperature

HadISST Hadley Center’s Sea Ice and Sea Surface Temperature

HCM Hybrid Coupled Model

HRPT High-Resolution Picture Transmission

ICM Intermediate Coupled Model
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IOM Intermediate Ocean Model
MetOp Meteorological Operational
NMAT Night-time Marine Air Temperature
NOAA National Oceanic and Atmospheric Administration
OISST Optimum Interpolation Sea Surface Temperature
R Correlation Coefficient
RMSD Root Mean Square Deviation
SD Standard Deviation
SST Sea Surface Temperature
SSTA Sea Surface Temperature Anomaly
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