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Abstract: The aim of this work is to prove the well-posedness of some linear and nonlinear mixed
problems with integral conditions defined only on two parts of the considered boundary. First, we
establish for the associated linear problem a priori estimate and prove that the range of the operator
generated by the considered problem is dense using a functional analysis method. Then by applying
an iterative process based on the obtained results for the linear problem, we establish the existence,
uniqueness and continuous dependence of the weak solution of the nonlinear problem.
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1. Introduction and Statement of the Problem

Some problems related to physical and technical issues can be described in terms
of nonlocal problems with integral conditions in partial differential equations. Nonlocal
conditions arise mainly when the values of the studied function on the boundary cannot
be measured directly, while their average are known. Parabolic equation, describe several
physical phenomena belongs to this of problem i.e., nonlocal problems. Therefore, the
problem of parabolic equation with integral condition is stated as follows:

We consider in the rectangular domain Ω = [0, 1]× [0, T], where the problem is to
find a solution σ(x, t) of the following non-classical boundary value problem such that

£σ =
∂σ

∂t
− ∂

∂x

(
a

∂σ

∂x

)
= g

(
x, t, σ,

∂σ

∂x

)
, for (x, t) ∈ [0, 1]× [0, T], (1)

with the initial condition

lσ = σ(x, 0) = ϕ(x), for x ∈ [0, 1], (2)

and Dirichlet boundary condition

σ(0, t) = σ(1, t), for t ∈ [0, T], (3)

and the nonlocal condition

∫ α

0
K1(x)σ(x, t)dx +

∫ 1

α
K2(x)σ(x, t)dx = 0, 0 < α < 1 ∀t ∈ [0, T]. (4)
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where the functions g
(

x, t, σ,
∂σ

∂x

)
, ϕ(x) are known, and we assume that the following

matching conditions are satisfied{
ϕ(0) = 0,∫ α

0 K1(x)ϕ(x)dx +
∫ 1

α K2(x)ϕ(x)dx = 0.

We also assume that there exists a positive constant d such that∣∣∣∣g(x, t, σ1,
∂σ1

∂x

)
− g
(

x, t, σ2,
∂σ2

∂x

)∣∣∣∣ ≤ d
(
|σ1 − σ2|+

∣∣∣∣∂σ1

∂x
− ∂σ2

∂x

∣∣∣∣),

for all (x, t) ∈ Ω.
In addition, we assume that the functions a(x, t), K1(x), K2(x) are differentiable on Ω,

respectively on [0, 1] and their derivatives satisfy the conditions

0 < a0 ≤ a(x, t) ≤ a1 ∀(x, t) ∈ Ω,

c2 ≤
∂a
∂t

(x, t) ≤ c1, ∀(x, t) ∈ Ω,∣∣∣∣ ∂a
∂x

(x, t)
∣∣∣∣ ≤ b, ∀(x, t) ∈ Ω.

0 < m0 ≤ K1(x) ≤ m1, 0 < m2 ≤ K2(x) ≤ m3, ∀x ∈ [0, 1],∣∣∣∣dK1(x)
dx

∣∣∣∣ ≤ b1,
∣∣∣∣dK2(x)

dx

∣∣∣∣ ≤ b2. ∀x ∈ [0, 1].

(5)

This type of problem can be found in various problems arising from physics, such
as heat conduction [1–4], plasma physics [5], thermoelasticity [6], electrochemistry [7],
chemical diffusion [8] and underground water flow [9–11]. Several results published in
the literature such as in [1–4,7,12–24] have solved the parabolic equation by combining the
integral condition with Dirichlet condition or Newmann condition, or with purely integral
conditions, using various methods. For hyperbolic equations, the unicity and existence of
the solution have been studies in [13,25–32] and the mixed type equations in [33–37] . The
elliptic equations were considered in [38–40].

The linear problem associated with the problem stated in Equations (1)–(4), for α = 0
and K2(x) = 1, has been studied in [20] and for α = 1 and K1(x) = 1 in [17] with
Dirichlet condition.

The main purpose of the present paper is to study and found a solution to the posed
problem without imposing any conditions on the functions K1(x), K2(x) and on the con-
stant α in the interval ]0, 1[. In addition, the nonlinear problem of the parabolic equation
with weighted integral condition defined on two parts of the boundary is solved.

The following methodology to solve the posed problem is summarized below
First, an a priori estimate is established for the associated linear problem and the density of
the operator range generated by the considered problem is proved using the functional
analysis method. Subsequently, by applying an iterative process based on the obtained
results for the linear problem, the existence and uniqueness of the weak solution of the
nonlinear problems is established.

The rest of the paper is organized as follows: In Section 2, the associated linear problem
is stated. Section 3 deals with the proof of the uniqueness of the solution using an a priori
estimate, while Section 4 gives the solvability of the considered linear problem. Finally, in
Section 5, based on the obtained results in Sections 3 and 4, and on the use of an iterative
process, we prove the existence and uniqueness of the solution of the nonlinear problem .
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2. Statement of the Associated Linear Problem

Let us in this section give the position of the linear problem and introduce the
different function spaces needed to investigate the mixed nonlocal problem given by
Equation (6), bellow

£u =
∂u
∂t
− ∂

∂x

(
a

∂u
∂x

)
= f (x, t), (6)

and supplemented by the conditions Equations (2)–(4).
The given problem Equations (6), (2)–(4) can be considered to be a solving of the

operator equation Lu = (£u, lu) = F , where the operator L has a domain of definition D(L)

consisting of functions u ∈ L2(Ω) such that
∂u
∂t

,
∂u
∂x

,
∂2u
∂x∂t

(x, t) ∈ L2(Ω) and satisfying the
conditions Equations (3) and (4).

The operator L is an operator defined on E into F, where E is the Banach space of
functions u ∈ L2(Ω), with the finite norm

‖u‖2
E =

∫
Ω

Φ(x)

[∣∣∣∣∂u
∂t

∣∣∣∣2 + ∣∣∣∣∂2u
∂x2

∣∣∣∣2
]

dxdt + sup
t

∫ 1

0

[
Φ(x)

∣∣∣∣∂u
∂x

∣∣∣∣2 + |u|2
]

dx. (7)

F is the Hilbert space of functions F = ( f , ϕ), f ∈ L2(Ω), ϕ ∈ H1(0, 1) with the
finite norm

‖F‖2
F =

∫
Ω

Φ(x)| f (x, t)|2dxdt +
∫ 1

0

[
Φ(x)

∣∣∣∣dϕ

dx

∣∣∣∣2 + |ϕ|2
]

dx. (8)

where

Φ(x) =


x2

α2 , 0 ≤ x ≤ α,

(1− x)2

(1− α)2 , α ≤ x ≤ 1.

Then, we show that the operator L has a closure L and establish an energy inequality:

‖u‖E ≤ k‖Lu‖F ∀u ∈ D(L). (9)

Definition 1. A solution of the operator equation Lu = F = ( f , ϕ) is called a strong solution of
problem Equations (6), (2)–(4).

Since the points of the graph of the operator L are limits of sequences of points of
the graph of L, we can extend the a priori estimate Equation (9) to be applied to strong
solutions by taking limits, i.e., we have the inequality

‖u‖E ≤ k
∥∥Lu

∥∥
F, ∀u ∈ D

(
L
)
. (10)

From this inequality, we deduce the uniqueness of a strong solution, if it exists, and
that the range of the operator L coincides with the closure of the range of L.

Proposition 1. The operator L : E −→ F admits a closure L.

The following a priori estimate gives the uniqueness of the solution if it exists of the
posed linear problem.
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3. An Energy Inequality and Its Application

Theorem 1. There exists a positive constant k, such that for each function u ∈ D(L) we have

‖u‖E ≤ k‖Lu‖F. (11)

Proof of Theorem 1. Let

Mu =


x2K1

a(0, t)
eλx ∂u

∂t
+ 2x

a(0,t) eλx ∫ α
x K1(µ)

∂u
∂t

dµ, 0 ≤ x ≤ α,

(1− x)2K2

a(1, t)
eβ(1−x) ∂u

∂t
+ 2(1−x)

a(1,t) eβ(1−x)
∫ x

α K2(µ)
∂u
∂t

dµ, α ≤ x ≤ 1.

where 

α2

a(0, t)
eλαK1(α) =

(1− α)2

a(1, t)
eβ(1−α)K2(α),

λ > max

(
0, sup

0≤x≤α

k′1(x)
k1(x)

)
,

β > max(0, sup
α≤x≤1

k′2(x)
k2(x) .

(12)

We consider the quadratic form obtained by multiplying Equation (6) by e−ct Mu, with
0 ≤ s ≤ T, c > 0, integrating over Ωs = [0, 1]× [0, s] and taking the real part, we obtain

Φ(u, u) = Re
∫

Ωs
e−ct ∂u

∂t
Mudxdt− Re

∫
Ωs

e−ct ∂

∂x

(
a(x, t)

∂u
∂x

)
Mudxdt. (13)

Substituting Mu by its expression in the first term in the right-hand side of Equation (13),
integrating with respect to x, using the boundary condition Equation (3), the integral con-
dition Equations (4) and (12), we obtain

Re
∫

Ωs e−ct ∂u
∂t

Mudxdt =
∫ s

0

∫ α
0

x2K1
a(0,t) e−ct+λx

∣∣∣∣∂u
∂t

∣∣∣∣2dxdt

+
∫ s

0

∫ 1
α

(1−x)2K2
a(1,t) e−ct+β(1−x)

∣∣∣∣∂u
∂t

∣∣∣∣2dxdt +
∫ s

0

∫ α
0

K1+(λK1−K′1)x
a(0,t)K2

1
e−ct+λx

∣∣∣∣∫ α
x K1

∂u
∂t

∣∣∣∣2dxdt

+
∫ s

0

∫ 1
α

K2+(βK2+K′2)(1−x)
a(1,t)K2

2
e−ct+β(1−x)

∣∣∣∣∫ x
α K2

∂u
∂t

∣∣∣∣2dxdt,

(14)
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− Re
∫

Ωs e−ct ∂

∂x

(
a(x, t)

∂u
∂x

)
Mudxdt =

Re
∫ s

0

∫ α
0

x2K1
a(0,t) ae−ct+λx ∂u

∂x
∂2u
∂x∂t

dxdt + Re
∫ s

0

∫ 1
α

(1−x)2K2
a(1,t) ae−ct+β(1−x) ∂u

∂x
∂2u
∂x∂t

dxdt

+2 Re
∫ s

0

∫ α
0

(1+λx)K1
a(0,t) ae−ct+λxu

∂u
∂t

dxdt + 2Re
∫ s

0

∫ 1
α

(1+β(1−x))K2
a(1,t) ae−ct+β(1−x)u

∂u
∂t

dxdt

+ Re
∫ s

0

∫ α
0
(K′1+λK1)x2

a(0,t) ae−ct+λx ∂u
∂x

∂u
∂t

dxdt+Re
∫ s

0

∫ 1
α
(K′2−βK2)(1−x)2

a(1,t) ae−ct+β(1−x) ∂u
∂x

∂u
∂t

dxdt

−2 Re
∫ s

0

∫ α
0

λa+(1+λx)(λa+ ∂a
∂x )

a(0,t) e−ct+λxu
∫ α

x K1
∂u
∂t

dζdxdt

−2 Re
∫ s

0

∫ 1
α

βa+(1+β(1−x))(βa− ∂a
∂x )

a(1,t) e−ct+β(1−x)u
∫ x

α K2
∂u
∂t

dζdxdt.

(15)

Integrating the first four terms with respect to t in Equation (15) using the condition
Equation (2) we have

Re
∫ s

0

∫ α

0

x2K1
a(0, t)

ae−ct+λx ∂u
∂x

∂2u
∂x∂t

dxdt =
1
2

∫ s

0

∫ α

0

caa(0,t)−
(

∂a
∂t a(0,t)−a ∂a(0,t)

∂t

)
a2(0,t) x2K1e−ct+λx

∣∣∣∣ ∂u
∂x

∣∣∣∣2dxdt

+
1
2

∫ α

0

x2aK1

a(0, t)
e−ct+λx

∣∣∣∣∂u
∂x

∣∣∣∣2
∣∣∣∣∣
t=s

dx− 1
2

∫ α

0

x2a(x, 0)K1

a(0, 0)
eλx
∣∣∣∣dϕ

dx

∣∣∣∣2dx,

Re
∫ s

0

∫ 1

α

(1−x)2K2
a(1,t) ae−ct+β(1−x) ∂u

∂x
∂2u
∂x∂t

dxdt =

1
2

∫ s

0

∫ 1

α

caa(1,t)−
(

∂a
∂t a(1,t)−a ∂a(1,t)

∂t

)
a2(1,t) (1− x)2K2e−ct+β(1−x)

∣∣∣∣∂u
∂x

∣∣∣∣2dxdt

+
1
2

∫ 1

α

(1− x)2aK2

a(1, t)
e−ct+β(1−x)

∣∣∣∣∂u
∂x

∣∣∣∣2
∣∣∣∣∣
t=s

dx− 1
2

∫ 1

α

(1− x)2a(x, 0)K2

a(1, 0)
e+β(1−x)

∣∣∣∣dϕ

dx

∣∣∣∣2dx,

2 Re
∫ s

0

∫ α

0

(1+λx)aK1
a(0,t) e−ct+λxu

∂u
∂t

dxdt =

1
2

∫ s

0

∫ α

0

caa(0, t)−
(

∂a
∂t a(0, t)− a ∂a(0,t)

∂t

)
a2(0, t)

(1 + λx)K1e−ct+λx|u|2dxdt

+
1
2

∫ α

0

(1 + λx)aK1

a(0, t)
e−ct+λx |u|2

∣∣∣
t=s

dx− 1
2

∫ α

0

(1 + λx)a(x, 0)K1

a(0, t)
eλx|ϕ|2dx,

and

2 Re
∫ s

0

∫ 1

α

(1 + β(1− x))K2

a(1, t)
ae−ct+β(1−x)u

∂u
∂t

dxdt =

∫ s

0

∫ 1

α

caa(1, t)−
(

∂a
∂t a(1, t)− a ∂a(1,t)

∂t

)
a2(1, t)

(1 + β(1− x))K2e−ct+β(1−x)|u|2dxdt

+
1
2

∫ 1

α

(1 + β(1− x))aK2

a(1, t)
e−ct+β(1−x) |u|2

∣∣∣
t=s

dx− 1
2

∫ 1

α

(1 + β(1− x))a(x, 0)K2

a(1, 0)
e+β(1−x)|ϕ|2dx.
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Combining the previous equalities with Equations (14) and (15), Equation (13) becomes

∫ s
0

∫ α
0

x2K1
a(0,t) e−ct+λx

∣∣∣∣∂u
∂t

∣∣∣∣2dxdt +
∫ s

0

∫ 1
α

(1−x)2K2
a(1,t) e−ct+β(1−x)

∣∣∣∣∂u
∂t

∣∣∣∣2dxdt

+ 1
2

∫ s
0

∫ α
0

caa(0,t)−
(

∂a
∂t a(0,t)−a ∂a(0,t)

∂t

)
a2(0,t) x2K1e−ct+λx

∣∣∣∣∂u
∂x

∣∣∣∣2dxdt

+ 1
2

∫ s
0

∫ 1
α

caa(1,t)−
(

∂a
∂t a(1,t)−a ∂a(1,t)

∂t

)
a2(1,t) (1− x)2K2e−ct+β(1−x)

∣∣∣∣∂u
∂x

∣∣∣∣2dxdt

+
∫ s

0

∫ α
0

K1+(λK1−K′1)x
a(0,t)K2

1
e−ct+λx

∣∣∣∣∫ α
x K1

∂u
∂t

∣∣∣∣2dxdt +
∫ s

0

∫ 1
α

K2+(βK2+K′2)(1−x)
a(1,t)K2

2
e−ct+β(1−x)

∣∣∣∫ x
α K2

∂u
∂t

∣∣∣2dxdt

+
∫ s

0

∫ α
0

caa(0,t)−
(

∂a
∂t a(0,t)−a ∂a(0,t)

∂t

)
a2(0,t) (1 + λx)K1e−ct+λx|u|2dxdt

+
∫ s

0

∫ 1
α

caa(1,t)−
(

∂a
∂t a(1,t)−a ∂a(1,t)

∂t

)
a2(1,t) (1 + β(1− x))K2e−ct+β(1−x)|u|2dxdt

+ 1
2

∫ α
0

x2aK1
a(0,t) e−ct+λx

∣∣∣∣∂u
∂x

∣∣∣∣2
∣∣∣∣∣
t=s

dx + 1
2

∫ 1
α

(1−x)2aK2
a(1,t) e−ct+β(1−x)

∣∣∣∣∂u
∂x

∣∣∣∣2
∣∣∣∣∣
t=s

dx

+
∫ α

0
(1+λx)aK1

a(0,t) e−ct+λx |u|2
∣∣∣
t=s

dx + 1
2

∫ 1
α

(1+β(1−x))aK2
a(1,t) e−ct+β(1−x) |u|2

∣∣∣
t=s

dx

+Re
∫ s

0

∫ α
0
(K′1+λK1)x2

a(0,t) ae−ct+λx ∂u
∂x

∂u
∂t

dxdt +Re
∫ s

0

∫ 1
α
(K′2−βK2)(1−x)2

a(1,t) ae−ct+β(1−x) ∂u
∂x

∂u
∂t

dxdt

−2 Re
∫ s

0

∫ α
0

λa+(1+λx)(λa+ ∂a
∂x )

a(0,t) e−ct+λxu
∫ α

x K1
∂u
∂t

dζdxdt

−2 Re
∫ s

0

∫ 1
α

βa+(1+β(1−x))(βa− ∂a
∂x )

a(1,t) e−ct+β(1−x)u
∫ x

α K2
∂u
∂t

dζdxdt =

Re
∫

Ωs e−ct f Mudxdt + 1
2

∫ α
0

x2a(x,0)K1
a(0,0) eλx

∣∣∣∣dϕ

dx

∣∣∣∣2dx + 1
2

∫ 1
α

(1−x)2a(x,0)K2
a(1,0) eβ(1−x)

∣∣∣∣dϕ

dx

∣∣∣∣2dx

+
∫ α

0
(1+λx)a(x,0)K1

a(0,t) eλx|ϕ|2dx +
∫ 1

α
(1+β(1−x))a(x,0)K2

a(1,0) eβ(1−x)|ϕ|2dx.

(16)

Using Young inequalities and using the fact that

∫ s

0

∫ α

0
e−ct+λx

∣∣∣∣∫ α

x
K1

∂u
∂t

dζ

∣∣∣∣2dxdt ≤ 4m1a1

∫ s

0

∫ α

0

K1

a(0, t)
x2e−ct+λx

∣∣∣∣∂u
∂t

∣∣∣∣2dxdt,

∫ s

0

∫ 1

α
e−ct+λx

∣∣∣∣∫ α

x
K2

∂u
∂t

dζ

∣∣∣∣2dxdt ≤ 4m2a1

∫ s

0

∫ 1

α

K2

a(1, t)
(1− x)2e−ct+λx

∣∣∣∣∂u
∂t

∣∣∣∣2dxdt,

we obtain

Re
∫ s

0

∫ α

0

(
K′1 + λK1

)
x2

a(0, t)
ae−ct+λx ∂u

∂x
∂u
∂t

dxdt ≤

1
4

∫ s

0

∫ α

0

x2K1

a(0, t)
e−ct+λx

∣∣∣∣∂u
∂t

∣∣∣∣2dxdt +
a2

1(b1 + λm1)
2

a0m2
0

∫ s

0

∫ α

0
x2K1e−ct+λx

∣∣∣∣∂u
∂x

∣∣∣∣2dxdt,

Re
∫ s

0

∫ 1

α

(K′2 − βK2)(1− x)2

a(1, t)
ae−ct+β(1−x) ∂u

∂x
∂u
∂t

dxdt ≤
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1
4

∫ s

0

∫ 1

α

(1− x)2K2

a(1, t)
e−ct+λx

∣∣∣∣ ∂u
∂t

∣∣∣∣2dxdt +
a2

1(b2 + βm3)
2

a0m2
2

∫ s

0

∫ 1

α
(1− x)2K2e−ct+λx

∣∣∣∣ ∂u
∂x

∣∣∣∣2dxdt,

2 Re
∫ s

0

∫ α

0

λa + (1 + λx)
(

λa + ∂a
∂x

)
a(0, t)

e−ct+λxu
∫ α

x
K1

∂u
∂t

dζdxdt ≤

16
∫ s

0

∫ α

0

(λa1 + (1 + λα)(λa1 + b))2

a(0, t)
m0

m1a1
K1e−ct+λx|u|2dxdt +

1
4

∫ s

0

∫ α

0

K1
a(0, t)

e−ct+λx
∣∣∣∣ ∂u

∂t

∣∣∣∣2dxdt,

2 Re
∫ s

0

∫ 1

α

βa+(1+β(1−x))(βa− ∂a
∂x )

a(1,t) e−ct+β(1−x)u
∫ x

α
K2

∂u
∂t

dζdxdt ≤

16
∫ s

0

∫ 1

α

(βa1+(1+β(1−α))(βa1+b))2

a(1,t)
m2

m3a1
K2e−ct+β(1−x)|u|2dxdt +

1
4

∫ s

0

∫ 1

α

K2
a(1,t) e−ct+β(1−x)

∣∣∣∣ ∂u
∂t

∣∣∣∣2dxdt,

Re
∫ s

0

∫ α

0
e−ct f Mudxdt ≤(

8m1
a0

+ 32
m1a2

0a1

) ∫ s

0

∫ α

0
x2e−ct+λx| f |2dxdt + 1

4

∫ s

0

∫ α

0

K1
a(0,t) x2e−ct+λx

∣∣∣∣∂u
∂t

∣∣∣∣2dxdt,

Re
∫ s

0

∫ 1

α
e−ct f Mudxdt ≤(

8m3
a0

+ 32
m3a2

0a1

) ∫ s

0

∫ 1

α
(1− x)2e−ct+β(1−x)| f |2dxdt + 1

4

∫ s

0

∫ 1

α

(1−x)2K2
a(1,t) e−ct+β(1−x)

∣∣∣∣ ∂u
∂t

∣∣∣∣2dxdt.

We choose the constant c such that

c >
a1

a0
max


(

M1
a2

0
+ 16 (λa1+(λa1+b))2

a0

)
(1 + λα),

(
M2
a2

0
+ 16 βa1+(βa1+b)2

a0

)
(1 + β(1− α)),

M1 +
a2

1(b1+λm1)
2

a0m0
, M2 +

a2
1(b2+βm3)

2

a0m2
.

 (17)

where

M1 = sup
(x,t)∈Ω

(
a(0, t)

∂a
∂t
− a

∂a(0, t)
∂t

)
, M2 = sup

(x,t)∈Ω

(
∂a
∂t

a(1, t)− a
∂a(1, t)

∂t

)
.

Then by combining the previous inequalities with Equation (16), we obtain

∫
Ωs Φ(x)

[∣∣∣∣∂u
∂t

∣∣∣∣2 + ∣∣∣∣∂u
∂x

∣∣∣∣2
]

dxdt +
∫ 1

0

(
Φ(x)

∣∣∣∣∂u
∂x

∣∣∣∣2 + |u|2
)

dx

∣∣∣∣∣
t=s

≤

K2

[∫
Ω Φ(x)| f |2dxdt +

∫ 1
0

(
Φ(x)

∣∣∣∣∂ϕ

∂x

∣∣∣∣2 + |ϕ|2
)

dx

]
,

(18)

where

K2 =
max

{(
8m1
a0

+ 32
m1a2

0a1

)
α2eλα ,

(
8m3
a0

+ 32
m3a2

0a1

)
(1−α)2eβ(1−α), (1+λα)a1m1

a0
eλα , (1+β(1−α))a1m3

a0
eβ(1−α)

}
min

{
α2m0
2a1

,α2m0
ca2

0−M1
2a2

1
, (1−α)2m2

2a1
,(1−α)2m2

ca2
0−M2
2a2

1
, a0m2(1−α)2

2a1
, α2a0m0

2a1

} ecT .

From Equations (6) and (18), we deduce
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∫
Ωs

Φ(x)

[∣∣∣∣∂u
∂t

∣∣∣∣2 + ∣∣∣∣∂2u
∂x2

∣∣∣∣2
]

dxdt +
∫

Ωs
Φ(x)

∣∣∣∣∂u
∂x

∣∣∣∣2dxdt +
∫ 1

0

(
Φ(x)

∣∣∣∣∂u
∂x

∣∣∣∣2 + |u|2
)

dx

∣∣∣∣∣
t=s

≤

k2

[∫
Q

Φ(x)| f |2dxdt +
∫ 1

0

(
Φ(x)

∣∣∣∣∂ϕ

∂x

∣∣∣∣2 + |ϕ|2
)

dx

]
,

If we drop the second term in the last inequality and by taking the least upper bound
of the left side with respect to s from 0 to T, we obtain the desired estimate Equation (11)
with k2 = K2 + 4+2K2+4b2K2

a2
0

.

Then, we deduce the uniqueness and continuous dependence of the solution on the
input data of the problem Equations (6), (2)– (4).

Corollary 1. If a strong solution of Equations (6), (2)–(4) exists, it is unique and depends continu-
ously on F = ( f , ϕ).

Corollary 2. The range R
(

L
)

of L is closed in F and R(L) = R
(

L
)
.

Corollary (2) shows that to prove that problem Equations (6), (2)–(4) has a strong
solution for arbitrary F, it suffices to prove that the set R(L) is dense in F.

4. Solvability of Problem Equations (6), (2)–(4)

To prove the solvability of problem Equations (6), (2)–(4) it is sufficient to show that
R(L) is dense in F. The proof is based on the following lemma

Lemma 1. Suppose that the function a and its derivatives are bounded.
Let u ∈ D0(L) = {u ∈ D(L), u(x, 0) = 0}. If, for u ∈ D0(L) and some functions w ∈

L2(Ω), we have ∫
Ω

Φ(x) f wdxdt = 0, (19)

then w vanish almost everywhere in Ω.

Proof of Lemma 1. Equation (19), can be written as follows∫
Ω

∂u
∂t

ρdxdt =
∫

Ω
A(t)uρdxdt, (20)

where

ρ = Φ(x)w,

and

A(t)u =
∂

∂x

(
a(x, t)

∂u
∂x

)
.

We introduce the smoothing operators [17] J−1
ε =

(
I − ε

∂

∂t

)−1
and

(
J−1
ε

)∗
=

(
I + ε

∂

∂t

)−1
Substituting the function u in Equation (20) by the smoothing

function uε and using the relation

A(t)uε = J−1
ε A(t)u− εJ−1

ε Bε(t)uε,

where
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Bε(t)uε =
∂A(t)

∂t
uε =

∂

∂x

(
∂a
∂t

∂uε

∂x

)
,

we obtain

−
∫

Ω
u

∂ρ∗ε
∂t

dxdt =
∫

Ω
(A(t)u− εBε(t)uε)ρ∗ε dxdt. (21)

Since the operator A(t) has a continuous inverse in L2(0, 1) defined by

A−1(t)g =
∫ x

0

dζ

a

∫ ζ

0
g(η)dη + C1(t)

∫ x

0

dζ

a
+ C2(t),

the functions C1(t) and C2(t) satisfies



C1(t) = −
∫ 1

0 K(x)dx
∫ x

0

∫ ζ
0 g(η)dη

a
dζ+

∫ 1
0 K(x)dx

∫ 1
0

∫ x
0 g(η)dη

a
dx

∫ 1
0 K(x)dx

∫ x
0

dζ

a
+
∫ 1

0 K(x)dx

,

C2(t) = −
∫ 1

0 K(x)dx
∫ x

0

∫ ζ
0 g(η)dη

a
dζ+

∫ 1
0 K(x)dx

∫ 1
0

∫ x
0 g(η)dη

a
dx

∫ 1
0 K(x)dx

∫ x
0

dζ

a
+
∫ 1

0 K(x)dx

∫ 1
0

1
a

dx +
∫ 1

0

∫ ζ
0 g(η)dη

a
dζ,

where

K(x) =
{

K1(x) 0 ≤ x ≤ α,
K2(x) α ≤ x ≤ 1.

Then, we have
∫ α

0 K1(x)A−1(t)udx +
∫ 1

α K2(x)A−1(t)udx = 0, hence, the function
J−1
ε u = uε can be represented in the form

uε = J−1
ε A−1(t)A(t)u,

then

Bε(t)g =
∂2a

∂t∂x
J−1
ε

C1(t) +
∫ ζ

0 g(η)dη

a
+

∂a
∂t

J−1
ε

g
a
− ∂a

∂t
J−1
ε

∂a
∂x
a

C1(t) +
∫ ζ

0 g(η)dη

a
.

Consequently, Equation (21), becomes

−
∫

Ω
u

∂ρ∗ε
∂t

dxdt =
∫

Ω
A(t)uhεdxdt, (22)

where

hε = ρ∗ε − εB∗ε (t)ρ
∗
ε ,

and B∗ε (t) is the adjoint operator of Bε(t).
The left-hand side of Equation (22) is a continuous linear functional of u, hence the

function hε has the derivatives
∂hε

∂x
,

∂2hε

∂x2 ∈ L2(Ω) and the following condition are satisfied

hε(0, t) = hε(1, t) = 0, a(0, t)
∂hε

∂x
(0, t) = a(1, t)

∂hε

∂x
(1, t).
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For a sufficiently small ε and the operator

(
J−1
ε

)∗ ∂a
∂t

a
is bounded in L2(Ω), we have∥∥∥∥∥∥∥ε

(
J−1
ε

)∗ ∂a
∂t

a

∥∥∥∥∥∥∥
L2(Ω)

< 1, hence, the operator I − ε

(
J−1
ε

)∗ ∂a
∂t

a
has a bounded inverse in

L2(Ω), we deduce that
∂ρ∗ε
∂x

,
∂2ρ∗ε
∂x2 ∈ L2(Ω) and the following condition is satisfied

ρ∗ε(0, t) = ρ∗ε(1, t) = 0, a(0, t)
∂ρ∗ε
∂x

(0, t) = a(1, t)
∂ρ∗ε
∂x

(1, t). (23)

We introduce the function v such that
K1v =

x
α

w +
1
α

∫ x
α wdζ, x ∈ (0, α),

K2v =
1− x
1− α

w− 1
1− α

∫ x
α wdζ, x ∈ (α, 1),

then, the function ρ(x) can be expressed as follows

ρ(x) =


x2

α2 w =
x
α

K1v− 1
α

∫ x
α K1vdx, x ∈ (0, α),

(1− x)2

(1− α)2 w =
1− x
1− α

K2v +
1

1− α

∫ x
α K2vdx, x ∈ (α, 1),

and we deduce that
v(0, t) = v(1, t) = 0,

∫ α
0 K1vdx =

∫ 1
α K2vdx = 0,

a(0, t)K1(0)
∂v
∂x

(0, t) = a(1, t)K2(1)
∂v
∂x

(1, t).

and

∂ρ

∂x
= H(x)

∂[K(x)v]
∂x

, where H(x) =


x
α

, x ∈ (0, α),

1− x
1− α

, x ∈ (α, 1).

Putting

u =
∫ t

0
exp(cτ)vdτ,

in Equation (20) and integrating with respect to x and t, using Equation (23) we obtain

Re
∫

Ω
A(t)uρdxdt = −

∫
Ω

K(x)H(x)
2

(
ca− ∂a

∂t

)
e−ct

∣∣∣∣∂u
∂x

∣∣∣∣2dxdt

−
∫ 1

0

K(x)H(x)
2

ae−ct
∣∣∣∣∂u
∂x

∣∣∣∣2dx

∣∣∣∣∣
t=T

− Re
∫

Ω
K(x)H(x)ae−ct)

∂u
∂x

vdxdt,

and

Re
∫ s

0

∫ 1

0

∂u
∂t

ρdxdt =
∫ s

0

∫ 1

0
ectH(x)|v|2dxdt,

we choose
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c >
a3

a0
+

1
2

,

then, we obtain ∫
Q

exp(ct)K(x)H(x)|v|2dxdt = 0,

then v = 0 a.e., which implies w = 0.

Theorem 2. The range R(L) of the operator L is dense in F.

Proof of Theorem 2. Since F is a Hilbert space, we have R(L) = F if and only if the relation

∫
Q

Φ(x) f gdxdt +
∫ 1

0
Φ(x)

dlu
dx

dϕ

dx
dx +

∫ 1

0
luϕdx, (24)

for arbitrary u ∈ D(L) and (g, ϕ) ∈ F, implies that g = 0 and ϕ = 0.
Putting u ∈ D0(L) in Equation (24), we conclude from the Lemma 1 that g = w = 0,

a.e. then g = 0.
Taking u ∈ D(L) in Equation (24) yields

∫ 1

0
Φ(x)

dlu
dx

dϕ

dx
dx +

∫ 1

0
luϕdx = 0, (25)

Since the two terms in the previous equality vanish independently and since the range
of the trace operator l is everywhere dense in Hilbert space with the norm

∫ 1

0
Φ(x)

∣∣∣∣dϕ

dx

∣∣∣∣2dx +
∫ 1

0
|ϕ|2dx,

hence, ϕ = 0. Thus, R(A) = F. Then the problem Equations (6), (2)–(4) has a strong
solution for an arbitrary F.

5. Study of the Nonlinear Problem

This section is devoted to the proof of the existence, uniqueness and continuous
dependence of the solution on the data of the problem Equations (1)–(4).

If the solution of problem Equations (1)–(4) exists, it can be expressed in the form
u = w + U, where

U is a solution of the homogeneous problem

£U =
∂U
∂t
− ∂

∂x

(
a

∂U
∂x

)
= 0, ∀(x, t) ∈ Ω, (26)

U0 = U(x, 0) = ϕ(x), ∀x ∈ [0, 1], (27)

U(0, t) = U(1, t), ∀t ∈ [0, T], (28)∫ α

0
K1(x)U(x, t)dx +

∫ 1

α
K2(x)U(x, t)dx = 0, ∀t ∈ [0, T]. (29)

and w is a solution of the problem
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£w =
∂w
∂t
− ∂

∂x

(
a

∂w
∂x

)
= F

(
x, t, w,

∂w
∂x

)
, ∀(x, t) ∈ Ω, (30)

w(x, 0) = 0, ∀x ∈ [0, 1], (31)

w(0, t) = w(1, t), ∀t ∈ [0, T], (32)∫ α

0
K1(x)w(x, t)dx +

∫ 1

α
K2(x)w(x, t)dx = 0, ∀t ∈ [0, T]. (33)

where F
(

x, t, w,
∂w
∂x

)
= f

(
x, t, w + U,

∂(w + U)

∂x

)
and it satisfies the condition

|F(x, t, u1, v1)− F(x, t, u2, v2)| ≤ d(|u1 − u2|+ |v1 − v2|) for all x, t ∈ Ω. (34)

According to Theorem 1 and Lemma 1, the problem Equations (26)–(29) has a unique
solution that depends continuously on U0 ∈ V1,0(0, 1) where V1,0(0, 1) is a Hilbert space
with the scalar product

(u, v)V1,0(0, 1) =
∫ 1

0
Φ(x)

∂u
∂x

∂v
∂x

dx +
∫ 1

0
uvdx.

and with associated norm

‖u‖V1,0(0, 1) =
∫ 1

0
Φ(x)

∣∣∣∣∂u
∂x

∣∣∣∣2dx +
∫ 1

0
|u|2dx.

We shall prove that the problem Equations (30)–(33) has a weak solution using an
approximation process and passage to the limit.

Assume that v and w ∈ C1(Ω), and the following conditions are satisfied{
v(x, T) = 0,

∫ α
0 K1(x)v(x, t)dx +

∫ 1
α K2(x)v(x, t)dx = 0,

w(x, 0) = w(1, t), w(0, t) = 0.
(35)

Taking the scalar product in L2(Ω) of Equation (30) and the integrodifferential operator

Λv =


x

a(0, t)
∫ α

x K1(µ)vdµ, 0 ≤ x ≤ α,

(1− x)
a(1, t)

∫ x
α K2(µ)vdµ α ≤ x ≤ 1.

,

by taking the real part, we obtain

H(w, v) = Re
∫

Ω F
(

x, t , w, ∂w
∂x

)
Λvdxdt

= Re
∫

Ω
∂w
∂t Λvdxdt− Re

∫
Ω

∂
∂x

(
a ∂w

∂x

)
Λvdxdt.

(36)

Substituting the expression of Λv in the first integral of the right hind-side of Equation (36),
integrating with respect to t, using the condition Equation (35), we obtain

Re
∫

Ω
∂w
∂t Λvdxdt = − Re

∫ T
0

∫ α
0 w

(
x

a(0,t)

∫ α
x K1

∂v
∂t dζ − xat(0,t)

a2(0,t)

∫ α
x K1vdζ

)
dxdt

− Re
∫ T

0

∫ 1
α w
(
(1− x)
a(1, t)

∫ x
α K2

∂v
∂t dζ − (1−x)at(1,t)

a2(1,t)

∫ x
α K2(µ)vdµ

)
dxdt.

(37)

Substituting the expression of Mv in the second integral of the right hind-side of
Equation (36), integrating with respect to x, using the condition Equation (35), we obtain
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−Re
∫

Ω
∂

∂x

(
a ∂w

∂x

)
Λvdxdt= Re

∫ T
0

∫ α
0

K1a
a(0,t)

[
−x ∂w

∂x +w
]
vdxdt−

∫ T
0

∫ α
0

1
a(0,t)

∂a
∂x w

∫ α
x K1

∂v
∂t dζdxdt

+ Re
∫ T

0

∫ 1
α

K2a
a(0,t)

[
(1− x) ∂w

∂x + w
]
vdxdt +

∫ T
0

∫ 1
α

1
a(1,t)

∂a
∂x w

∫ x
α K2

∂v
∂t dζdxdt.

(38)

Insertion of Equation (37), Equation (38) into Equation (36) yields

H(w, v) = − Re
∫ T

0

∫ α

0
w

(
x

a(0, t)

∫ α

x
K1

∂v
∂t

dζ − xat(0, t)
a2(0, t)

∫ α

x
K1vdζ

)
dxdt

− Re
∫ T

0

∫ 1

α
w

(
(1− x)
a(1, t)

∫ x

α
K2

∂v
∂t

dζ − (1− x)at(1, t)
a2(1, t)

∫ x

α
K2(µ)vdµ

)
dxdt

+ Re
∫ T

0

∫ α

0

K1a
a(0, t)

[
−x

∂w
∂x

+ w
]

vdxdt−
∫ T

0

∫ α

0

1
a(0, t)

∂a
∂x

w
∫ α

x
K1

∂v
∂t

dζdxdt

+ Re
∫ T

0

∫ 1

α

K2a
a(0, t)

[
(1− x)

∂w
∂x

+ w
]

vdxdt +
∫ T

0

∫ 1

α

1
a(1, t)

∂a
∂x

w
∫ x

α
K2

∂v
∂t

dζdxdt ,

where

H(w, v) =

Re
∫ T

0

∫ α

0

K1
a(0, t)

v
∫ x

0
ζF
(

ζ, t, w,
∂w
∂ζ

)
dζdxdt+ Re

∫ T

0

∫ 1

α

K2
a(1, t)

v
∫ 1

x
(1− ζ)F

(
ζ, t, w,

∂w
∂ζ

)
dζdxdt, (39)

obtained by intrgating the right-hand side of Equation (36) with respect to x.

Definition 2. By a weak solution of problem Equations (30)–(33) we mean a function w ∈
L2(0, T : V1, 0(0, 1)

)
satisfying the identity Equation (39) and the integral condition Equation (33).

We will construct an iteration sequence in the following way.
Starting with w0 = 0, the sequence (wn)n∈N is defined as follows: given wn−1, then

for n ≥ 1, we solve the problem

£wn =
∂wn

∂t
− ∂

∂x

(
a

∂wn

∂x

)
= F

(
x, t, wn−1,

∂wn−1

∂x

)
, ∀(x, t) ∈ Ω, (40)

wn(x, 0) = 0, ∀x ∈ [0, 1], (41)

wn(0, t) = wn(1, t), ∀t ∈ [0, T], (42)∫ α

0
K1(x)wn(x, t)dx +

∫ 1

α
K2(x)wn(x, t)dx = 0, ∀t ∈ [0, T]. (43)

From Theorem 1 and Lemma 1, we deduce that for fixed n, each problem Equations (40)–(43)
has a unique solution wn(x, t). If we set Vn(x, t) = wn+1(x, t)− wn(x, t), we obtain the
new problem

£Vn =
∂Vn

∂t
− ∂

∂x

(
a

∂Vn

∂x

)
= σn−1, ∀(x, t) ∈ Ω, (44)

Vn(x, 0) = 0, ∀x ∈ [0, 1], (45)

Vn(0, t) = Vn(1, t), ∀t ∈ [0, T], (46)∫ α

0
K1(x)Vn(x, t)dx +

∫ 1

α
K2(x)Vn(x, t)dx = 0, ∀t ∈ [0, T]. (47)

where
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σn−1 = F
(

x, t, wn,
∂wn

∂x

)
− F

(
x, t, wn−1,

∂wn−1

∂x

)
. (48)

Theorem 3. Assume that the condition Equation (34) holds, for the linearized problem
Equations (44)–(47), there exists a positive constant k, such that

‖Vn‖L2(0, T: V1,0(0, 1)) ≤ k‖Vn−1‖L2(0, T: V1,0(0, 1)). (49)

Proof of Theorem 3. We denote by

QVn =


x2K1

a(0, t)
eλx ∂Vn

∂t
+ 2x

a(0,t) eλx ∫ α
x K1(µ)

∂Vn

∂t
dµ, 0 ≤ x ≤ α,

(1− x)2K2

a(1, t)
eβ(1−x) ∂Vn

∂t
+ 2(1−x)

a(1,t) eβ(1−x)
∫ x

α K2(µ)
∂Vn

∂t
dµ α ≤ x ≤ 1.

where 

α2

a(0, t)
eλαK1(α) =

(1− α)2

a(1, t)
eβ(1−α)K2(α),

λ > max

(
0, sup

0≤x≤α

k′1(x)
k1(x)

)
,

β > max(0, sup
α≤x≤1

k′2(x)
k2(x) .

,

We consider the quadratic form obtained by multiplying Equation (44) by e−ctQVn,
with the constant c satisfying Equation (17), integrating over Ωs = [0, 1] × [0 , s], with
0 ≤ s ≤ T, taking the real part, we obtain

Φ(Vn, Vn) = Re
∫

Ωs
e−ctσn−1QVndxdt

= Re
∫

Ωs
e−ctx2(1− x)2 ∂Vn

∂t
QVndxdt− Re

∫
Ωs

e−ct ∂

∂x

(
a

∂Vn

∂x

)
QVndxdt. (50)

Following the same procedure done in establishing the proof of Theorem 1, using
Equation (34), we obtain

‖Vn‖2
L2(0, T:V1, 0(0, 1)) ≤ k2‖Vn−1‖2

L2(0, T:V1, 0(0, 1)), (51)

where

K2 =
max

{(
8m1
a0

+ 32
m1a2

0a1

)
α2eλα ,

(
8m3
a0

+ 32
m3a2

0a1

)
(1−α)2eβ(1−α)

}
min

{
α2m0

ca2
0−M1
2a2

1
,(1−α)2m2

ca2
0−M2
2a2

1
, a0m2(1−α)2

2a1
, a0m0α2

2a1

} d2ecT ,

Since Vn(x, t) = wn+1(x, t) − wn(x, t), then the sequence wn(x, t) can be written
as follows

wn(x, t) =
k=n−1

∑
k=1

Vk + w0(x, t),

the sequence wn(x, t) converge to an element w ∈ L2(0, T : V1,0(0, 1)
)

if
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d2 <

min
{

α2m0
ca2

0−M1
2a2

1
, (1− α)2m2

ca2
0−M2
2a2

1
, a0m2(1−α)2

2a1
, a0m0α2

2a1

}
max

{(
8m1
a0

+ 32
m1a2

0a1

)
α2eλα,

(
8m3
a0

+ 32
m3a2

0a1

)
(1− α)2eβ(1−α)

} e−cT .

Now to prove that this limit function w is a solution of the problem under considera-
tion Equations (44)–(47), we should show that w satisfies Equations (33) and (39).

For problem Equations (40)–(43), we have

H(wn − w, v) + H(w, v) =

Re
∫ T

0

∫ α
0

K1
a(0,t)v

∫ x
0 ζ
(

F
(

η, t, wn−1, ∂wn−1
∂η

)
− F

(
η, t, w, ∂w

∂η

)
dη
)

dxdt

Re
∫ T

0

∫ 1
α

K2
a(1,t)v

∫ 1
x (1− ζ)

(
F
(

η, t, wn−1, ∂wn−1
∂η

)
− F

(
η, t, w, ∂w

∂η

))
dηdxdt

Re
∫ T

0

∫ α
0

K1
a(0,t)v

∫ x
0 ζF

(
ζ, t, w, ∂w

∂ζ

)
dζdxdt +Re

∫ T
0

∫ 1
α

K2
a(1,t)v

∫ 1
x(1− ζ)F

(
ζ, t, w, ∂w

∂ζ

)
dζdxdt.

(52)

From Equation (40), we have

H(wn − w, v) = Re
∫

Ω

∂(wn − w)

∂t
Mvdxdt− Re

∫
Ω

∂

∂x

(
a

∂(wn − w)

∂x

)
Mvdxdt.

Integrating with respect to t and x using the conditions Equation (35), we obtain

H(wn − w, v) = − Re
∫ T

0

∫ α
0 (wn − w)

(
x

a(0,t)

∫ α
x K1

∂v
∂t dζ − xat(0,t)

a2(0,t)

∫ α
x K1vdζ

)
dxdt

− Re
∫ T

0

∫ 1
α (wn − w)

(
(1− x)
a(1, t)

∫ x
α K2

∂v
∂t dζ − (1−x)at(1,t)

a2(1,t)

∫ x
α K2(µ)vdµ

)
dxdt

+Re
∫ T

0

∫ α
0

K1a
a(0,t)

[
−x ∂(wn−w)

∂x + (wn − w)
]
vdxdt−

∫ T
0

∫ α
0

1
a(0,t)

∂a
∂x (wn − w)

∫ α
x K1

∂v
∂t dζdxdt

+Re
∫ T

0

∫ 1
α

K2a
a(0,t)

[
(1− x) ∂(wn−w)

∂x + w
]
vdxdt +

∫ T
0

∫ 1
α

1
a(1,t)

∂a
∂x (wn − w)

∫ x
α K2

∂v
∂t dζdxdt,

(53)

Each term of the left-hand side of Equation (53) is controlled by

− Re
∫ T

0

∫ α

0
(wn − w)

(
x

a(0, t)

∫ α

x
K1

∂v
∂t

dζ − xat(0, t)
a2(0, t)

∫ α

x
K1vdζ

)
dxdt ≤

max
(

α2m1 max(|c1|,|c2|)
a2

0
,

α2m1

a0

)(∫
Ω
|wn − w|2dxdt

)1
2
(∫

Ω

∣∣∣∣∂v
∂t

∣∣∣∣2 + |v|2dxdt

)1
2

,

− Re
∫ T

0

∫ 1

α
(wn − w)

(
(1− x)
a(1, t)

∫ x

α
K2

∂v
∂t

dζ − (1− x)at(1, t)
a2(1, t)

∫ x

α
K2(µ)vdµ

)
dxdt ≤

max

(
(1− α)2m3 max(|c1|, |c2|)

a2
0

,
(1− α)2m3

a0

)(∫
Ω
|wn − w|2dxdt

)1
2
(∫

Ω

∣∣∣∣ ∂v
∂t

∣∣∣∣2 + |v|2dxdt

)1
2

,

Re
∫ T

0

∫ α

0

K1a
a(0, t)

[
−x ∂(wn−w)

∂x + (wn − w)
]
vdxdt−

∫ T

0

∫ α

0

1
a(0, t)

∂a
∂x

(wn − w)
∫ α

x
K1

∂v
∂t

dζdxdt ≤

max
(

αm1a1
√

2
a0

, αbm1
a0

)(∫ T

0

∫ α

0

(
x2
∣∣∣ ∂(wn−w)

∂x

∣∣∣2 + |wn− w|2
)

dxdt
) 1

2
(∫ T

0

∫ α

0

(∣∣∣∣ ∂v
∂t

∣∣∣∣2+|v|2
)

dxdt

)1
2



Axioms 2021, 10, 181 16 of 19

Re
∫ T

0

∫ 1

α

K2a
a(0, t)

[
(1− x)

∂(wn − w)

∂x
+ w

]
vdxdt +

∫ T

0

∫ 1

α

1
a(1, t)

∂a
∂x

(wn − w)
∫ x

α
K2

∂v
∂t

dζdxdt ≤

max
(
(1−α)m3a1

√
2

a0
, αbm3

a0

)(∫ T

0

∫ 1

α

(
(1−x)2

∣∣∣ ∂(wn−w)
∂x

∣∣∣2+|wn−w|2
)

dxdt
) 1

2
(∫ T

0

∫ 1

α

(∣∣∣ ∂v
∂t

∣∣∣2+|v|2)dxdt
) 1

2

from the previous inequalities, we deduce that

|H(wn − w, v)| ≤

C
(
‖wn − w‖L2(0,T:V1,0(0,1))

)(∫
Ω

(∣∣∣ ∂v
∂t

∣∣∣2 + |v|2)dxdt
)1

2 ,
(54)

Using the condition Equation (34) and Cauchy-Schwartz inequality in the first two
terms in the left-hand side in Equation (52), we obtain

Re
∫ T

0

∫ α
0

K1
a(0,t)v

∫ x
0 ζ
(

F
(

η, t, wn−1, ∂wn−1
∂η

)
− F

(
η, t, w, ∂w

∂η

)
dη
)

dxdt

Re
∫ T

0

∫ 1
α

K2
a(1,t)v

∫ 1
x (1− ζ)

(
F
(

η, t, wn−1, ∂wn−1
∂η

)
− F

(
η, t, w, ∂w

∂η

))
dηdxdt ≤

max
(

αdm1
a0

, (1−α)dm3
a0

)
‖wn − w‖L2(0,T:V1

0 (0,1))

(∫
Ω|v|

2dxdt
)1

2 ,

(55)

From Equations (54) and (55) and passing to the limit in Equation (52) as n→ +∞, we
deduce that

H(w, v) = Re
∫ T

0

∫ α

0

K1

a(0, t)
v
∫ x

0
ζF
(

ζ, t, w ,
∂w
∂ζ

)
dζdxdt

+ Re
∫ T

0

∫ 1

α

K2

a(1, t)
v
∫ 1

x
(1− ζ)F

(
ζ, t, w,

∂w
∂ζ

)
dζdxdt.

Now we show that Equation (33) holds. Since lim
n→+∞

‖wn − w‖L2(0,T:V1,0(0,1)) = 0, then

lim
n→+∞

∣∣∣∣∫ α

0
K1(wn − w)dx +

∫ 1

α
K2(wn − w)dx

∣∣∣∣2≤(m1
√

α + m3
√

1− α
)

lim
n→+∞

∫ 1

0
|wn − w|2dx → 0. (56)

from Equation (56) we conclude that
∫ α

0 K1wdx +
∫ 1

α K2wdx = 0. Then the problem
Equations (30)–(33) has a weak solution for arbitrary F.

Thus, we have proved the following

Theorem 4. If condition Equation (34) is satisfied, then the solution of problem Equations (30)–(33)
is unique.

Proof of Theorem 4. Suppose that w1, w2 ∈ L2(0, T : V1,0(0, 1)
)

are two solution of
Equations (30)–(33), the function v = w1 − w2 is in L2(0, T : V1,0(0 , 1)

)
and satisfies

∂v
∂t
− ∂

∂x

(
a

∂v
∂x

)
= G(x, t), (x, t) ∈ Ω, (57)

v(x, 0) = 0, x ∈ [0, 1], (58)

v(0, t) = 0, t ∈ [0, T], (59)∫ α

0
K1vdx +

∫ 1

α
K2vdx = 0, t ∈ [0, T], (60)

where G(x, t) = F
(

x, t, w1,
∂w1

∂x

)
− F

(
x, t, w2,

∂w2

∂x

)
.
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Taking the inner product in L2(Ω) of Equation (57) and the integro-differential operator

Mu =


x2K1

a(0, t)
eλx ∂v

∂t
+ 2x

a(0,t) eλx ∫ α
x K1(µ)

∂v
∂t

dµ, 0 ≤ x ≤ α,

(1− x)2K2

a(1, t)
eβ(1−x) ∂v

∂t
+ 2(1−x)

a(1,t) eβ(1−x)
∫ x

α K2(µ)
∂v
∂t

dµ α ≤ x ≤ 1.

where 

α2

a(0, t)
eλαK1(α) =

(1− α)2

a(1, t)
eβ(1−α)K2(α),

λ > max

(
0, sup

0≤x≤α

k′1(x)
k1(x)

)
,

β > max(0, sup
α≤x≤1

k′2(x)
k2(x) .

Following the same procedure done in establishing the proof of Theorem 1, we obtain

‖v‖2
L2(0, T:V1,0(0, 1)) ≤ k2‖v‖2

L2(0 , T:V1,0(0, 1)).

where

K2 =
max

{(
8m1
a0

+ 32
m1a2

0a1

)
α2eλα ,

(
8m3
a0

+ 32
m3a2

0a1

)
(1−α)2eβ(1−α)

}
min

{
α2m0

ca2
0−M1
2a2

1
,(1−α)2m2

ca2
0−M2
2a2

1
, a0m2(1−α)2

2a1
, a0m0α2

2a1

} d2ecT ,

Since k2 < 1, then v = 0, which implies that w1 = w2 ∈ L2(0, T : V1,0(0, 1)
)
.

Then the uniqueness of the weak solution holds.

6. Conclusions

In this work we studied the existence, uniqueness and continuous dependence of
a weak solution for some classes of mixed nonlinear problems with nonlocal conditions
(boundary integral conditions). The used method is one of the most efficient functional
analysis methods for solving linear partial differential equations with boundary integral
conditions, the so-called energy-integral method or a priori estimates method. We con-
structed for each problem suitable multiplicators, which provide the a priori estimate,
from which it was possible to establish the solvability of the problem. For the nonlocal
mixed problems for nonlinear equations, we first established the a priori estimate for an
associated linear problem and hence the solvability of this associated linear problem. Then,
by applying an iterative process based on the obtained results for the linear problem, we
proved the existence, uniqueness and continuous dependence of a weak solution of the
considered nonlinear problem.
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