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Abstract: In this paper, we initiate the study of existence of solutions for a fractional differential
system which contains mixed Riemann–Liouville and Hadamard–Caputo fractional derivatives,
complemented with nonlocal coupled fractional integral boundary conditions. We derive necessary
conditions for the existence and uniqueness of solutions of the considered system, by using standard
fixed point theorems, such as Banach contraction mapping principle and Leray–Schauder alternative.
Numerical examples illustrating the obtained results are also presented.

Keywords: coupled systems; Riemann–Liouville fractional derivative; Hadamard–Caputo fractional
derivative; nonlocal boundary conditions; existence; fixed point

1. Introduction

Fractional differential equations have played a very important role in almost all branches
of applied sciences because they are considered a valuable tool to model many real world
problems. For details and applications, we refer the reader to monographs [1–11]. The study
of coupled systems of fractional differential equations is important as such systems appear
in various problems in applied sciences, see [12–16].

On the other hand, multi-term fractional differential equations also gained consid-
erable importance in view of their occurrence in the mathematical models of certain real
world problems, such as behavior of real materials [17], continuum and statistical mechan-
ics [18], an inextensible pendulum with fractional damping terms [19], etc.

Fractional differential equations have several kinds of fractional derivatives, such
as Riemann–Liouville fractional derivative, Caputo fractional derivative, Hadamard frac-
tional derivative, and so on. In the literature, there are many papers studying existence
and uniqueness results for boundary value problems and coupled systems of fractional
differential equations and used mixed types of fractional derivatives, see [20–29]. In [23],
the following boundary value problem is considered:

RLDq[CDrx(t)− g(t, x(t))] = f (t, x(t)), 0 < t < T,

x(η) = φ(x), Ipx(T) = h(x),
(1)
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where RLDq, CDr are Riemann–Liouville and Caputo fractional derivatives of orders q, r ∈
(0, 1), respectively, Ip is the Riemann–Liouville fractional integral of order p > 0, f , g : J×R
→ R are given continuous functions and φ, h : C(J,R)→ R are two given functionals.

In [24], the authors initiated the study of a coupled system of sequential mixed Caputo
and Hadamard fractional differential equations supplemented with coupled separated
boundary conditions. To be more precisely, in [24], existence and uniqueness results are
established for the following couple system:

CDp1 H Dq1 x(t) = f (t, x(t), y(t)), t ∈ [a, b],

H Dq2 CDp2 y(t) = g(t, x(t), y(t)), t ∈ [a, b],

α1x(a) + α2
CDp2 y(a) = 0, β1x(b) + β2

CDp2 y(b) = 0,

α3y(a) + α4
H Dq1 x(a) = 0, β3y(b) + β4

H Dq1 x(b) = 0,

(2)

where CDpi and H Dqi are notations of the Caputo and Hadamard fractional derivatives of
orders pi and qi, respectively, 0 < pi, qi ≤ 1, i = 1, 2, f , g : [a, b]×R×R→ R are nonlinear
continuous functions, a > 0, αi ∈ R \ {0}, βi ∈ R, i = 1, . . . , 4.

In [25], the existence and uniqueness of solutions for neutral fractional order coupled
systems containing mixed Caputo and Riemann–Liouville sequential fractional derivatives
were studied, complemented with nonlocal multi-point and Riemann–Stieltjes integral
multi-strip conditions of the form:

cDq(RLDpx(t) + f (t, x(t)) = g(t, x(t), y(t)), t ∈ (0, 1),
cDq1(RLDp1 y(t) + f1(t, y(t)) = g1(t, x(t), y(t)), t ∈ (0, 1),

x(0) = 0, bx(1) = a
∫ 1

0
y(s)dH(s) +

n

∑
i=1

αi

∫ ηi

ξi

y(s)ds,

y(0) = 0, b1y(1) = a1

∫ 1

0
x(s)dH(s) +

m

∑
j=1

β j

∫ ζ j

θj

x(s)ds,

(3)

where RLDp,RL Dp1 , and cDq,c Dq1 denote the Riemann–Liouville and Caputo fractional
derivatives of order p, p1 and q, q1, respectively, 0 < p, p1, q, q1 ≤ 1, with 1 < p + q ≤
2, 1 < p1 + q1 ≤ 2, f , f1 and g, g1 are given continuous functions, 0 < ξi < ηi < 1, 0 <
θj < ζ j < 1, αi, β j ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . , m, a, a1, b, b1 ∈ R, and H(·) is a function
of bounded variation.

To the best of the authors’ knowledge, there are some papers dealing with sequential
mixed type fractional derivatives, but we not find in the literature papers dealing with
coupled systems with sequential Riemann–Liouville and Hadamard–Caputo fractional
differential equations. Motivated by this fact, and to fill this gap, in the present paper, we
investigate the existence and uniqueness of solutions for the following coupled system
of sequential Riemann–Liouville and Hadamard–Caputo fractional differential equations
supplemented with nonlocal coupled fractional integral boundary conditions

RLDp1
(

HCDq1 x
)
(t) = f (t, x(t), y(t)), t ∈ [0, T],

RLDp2
(

HCDq2 y
)
(t) = g(t, x(t), y(t)), t ∈ [0, T],

HCDq1 x(0) = 0, x(T) =
m

∑
i=1

αi
RL Iβi y(ξi),

HCDq2 y(0) = 0, y(T) =
k

∑
j=1

λj
RL Iδj x(ηj),

(4)
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where RLDpr and HCDqr are the Riemann–Liouville and Hadamard–Caputo fractional
derivatives of orders pr and qr, respectively, 0 < pr, qr < 1, r = 1, 2, the nonlinear
continuous functions f , g : [0, T] × R2 → R, RL Iφ is the Riemann–Liouville fractional
integral of orders φ > 0, φ ∈ {βi, δj} and given constants αi, λj ∈ R, ξi, ηj ∈ (0, T),
i = 1, . . . , m, j = 1, . . . , k.

Let us compare the coupled system (4) with the coupled system (2) studied in [24].

(i) In (2), we studied a coupled system consisting by mixed Caputo and Hadamard frac-
tional derivatives, while, in (4), we consider mixed Riemann–Liouville and Hadamard–
Caputo fractional derivatives.

(ii) In (2), the coupled system was subjected to coupled separated boundary conditions,
while, in (4), the coupled system is subjected to nonlocal coupled fractional integral
boundary conditions.

(iii) In both problems (4) and (2), the same method is used to establish the existence and
uniqueness results, and based on standard fixed point theorems, but their presentation
in the framework of mixed coupled Caputo and Hadamard and Riemann–Liouville
and Hadamard–Caputo fractional derivatives is new.

We also notice that the conditions HCDq1 x(0) = 0 and HCDq2 y(0) = 0 are necessary
for the well-posedness of the problem.

By using standard tools from fixed point theory in the present study, we establish
existence and uniqueness results for the coupled system (4). The Banach contraction
mapping principle is used to obtain the existence and uniqueness result, while an existence
result is derived via the Leray–Schauder alternative.

The rest of the paper is organized as follows. In Section 2, some basic definitions and
lemmas from fractional calculus are recalled. In addition, an auxiliary lemma, concerning
a linear variant of (4), which plays a key role in obtaining the main results, is proved.
The main results are presented in Section 3, which also include examples illustrating
the basic results. We emphasize that our results are new and significantly enhance the
existing literature on the topic, and, as far as we know, they are the first results concern-
ing a coupled system with sequential mixed Riemann–Liouville and Hadamard–Caputo
fractional derivatives.

2. Preliminaries

In this section, we introduce some notations and definitions of fractional calculus [2,30]
and present preliminary results needed in our proofs later.

Definition 1. The Riemann–Liouville fractional derivative of order p > 0 of a continuous function
f : (0, ∞)→ R is defined by

RLDp f (t) =
1

Γ(n− p)

(
d
dt

)n ∫ t

0
(t− s)n−p−1 f (s)ds, n− 1 < p < n,

where n = [p] + 1, [p] denotes the integer part of a real number p and Γ is the Gamma function
defined by Γ(p) =

∫ ∞
0 e−ssp−1ds.

Definition 2. The Riemann–Liouville fractional integral of order p of a function f : (0, ∞)→ R,
is defined as

RL Ip f (t) =
1

Γ(q)

∫ t

0
(t− s)p−1 f (s)ds, p > 0,

provided the right side is pointwise defined on R+.
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Definition 3. For an at least n-times differentiable function g : (0, ∞) → R, the Hadamard–
Caputo derivative of fractional order q > 0 is defined as

HCDqg(t) =
1

Γ(n− q)

∫ t

0

(
log

t
s

)n−q−1
δng(s)

ds
s

, n− 1 < q < n, n = [q] + 1,

where δ = t d
dt and log(·) = loge(·).

Definition 4. The Hadamard fractional integral of order q > 0 is defined as

H Iqg(t) =
1

Γ(α)

∫ t

0

(
log

t
s

)q−1
g(s)

ds
s

,

provided the integral exists.

Lemma 1 (see [2]). Let p > 0. Then, for y ∈ C(0, T) ∩ L(0, T), it holds that

RL Ip
(

RLDpy
)
(t) = y(t) + c1tp−1 + c2tp−2 + · · ·+ cntp−n,

where ci ∈ R, i = 1, 2, . . . , n and n− 1 < p < n.

Lemma 2 ([30]). Let u ∈ ACn
δ [0, T] or Cn

δ [0, T] and q ∈ C, where Xn
δ [0, T] = {g : [0, T]→ C :

δn−1g(t) ∈ X[0, T]}. Then, we have

H Iq(HCDq)u(t) = u(t) + c0 + c1 log t + c2(log t)2 + · · ·+ cn−1(log t)n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [q] + 1).

Lemma 3 ([2], p. 113). Let q > 0 and β > 0 be given constants. Then, the following formula

H Iqtβ = β−qtβ,

holds.

Next, the integral equations are obtained by transformation of a linear variant of
problem (4). For convenience in computation, we set some constants

Ω1 =
m

∑
i=1

αiξ
βi
i

Γ(βi + 1)
, Ω2 =

k

∑
j=1

λjη
δj
j

Γ(δj + 1)

and Λ = Ω1Ω2 − 1 6= 0.

Lemma 4. Let f ∗, g∗ ∈ C([a, b],R) be two given functions. Then, the linear system equivalent to
problem (4) of sequential Riemann–Liouville and Hadamard–Caputo fractional differential equations

RLDp1
(

HCDq1 x
)
(t) = f ∗(t), t ∈ [0, T],

RLDp2
(

HCDq2 y
)
(t) = g∗(t), t ∈ [0, T],

HCDq1 x(0) = 0, x(T) =
m

∑
i=1

αi
RL Iβi y(ξi),

HCDq2 y(0) = 0, y(T) =
k

∑
j=1

λj
RL Iδj x(ηj),

(5)

can be written into integral equations as
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x(t) = − 1
Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) +

1
Λ

H Iq1
(

RL Ip1 f ∗
)
(T)

+
Ω1

Λ
H Iq2

(
RL Ip2 g∗

)
(T)− Ω1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj)

+ H Iq1
(

RL Ip1 f ∗
)
(t), (6)

and

y(t) = −Ω2

Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) +

Ω2

Λ
H Iq1

(
RL Ip1 f ∗

)
(T)

+
1
Λ

H Iq2
(

RL Ip2 g∗
)
(T)− 1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj)

+ H Iq2
(

RL Ip2 g∗
)
(t). (7)

Proof. For t ∈ [0, T] and by taking the Riemann–Liouville fractional integral of order p1 to
the first equation of (5), we obtain

HCDq1 x(t) = c1tp1−1 + RL Ip1 f ∗(t), c1 ∈ R. (8)

Similarly, for the second equation of (5), we have

HCDq2 y(t) = d1tp2−1 + RL Ip2 g∗(t), d1 ∈ R. (9)

Since 0 < pr < 1, r = 1, 2, the conditions HCDq1 x(0) = 0 and HCDq2 y(0) = 0 imply c1 = 0
and d1 = 0, respectively. Applying the Hadamard fractional integral of orders q1 and q2 to
(8) and (9), respectively, and substituting the values of c1, d1, we get

x(t) = c0 +
H Iq1

(
RL Ip1 f ∗

)
(t), (10)

and
y(t) = d0 +

H Iq2
(

RL Ip2 g∗
)
(t). (11)

Now, we consider the terms

m

∑
i=1

αi
RL Iβi y(ξi) = d0

m

∑
i=1

αiξ
βi
i

Γ(βi + 1)
+

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) (12)

and
k

∑
j=1

λj
RL Iδj x(ηj) = c0

k

∑
j=1

λjη
δj
j

Γ(δj + 1)
+

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj). (13)

Consequently, by (10)–(13) and boundary fractional integral conditions in (5), it follows that

c0 = − 1
Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) +

1
Λ

H Iq1
(

RL Ip1 f ∗
)
(T)

+
Ω1

Λ
H Iq2

(
RL Ip2 g∗

)
(T)− Ω1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj),

and



Axioms 2021, 10, 174 6 of 15

d0 = −Ω2

Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 g∗

))
(ξi) +

Ω2

Λ
H Iq1

(
RL Ip1 f ∗

)
(T)

+
1
Λ

H Iq2
(

RL Ip2 g∗
)
(T)− 1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 f ∗

))
(ηj),

Substituting the values of c0 and d0 in (10) and (11), we obtain integral equations in (6)
and (7), respectively, as desired.

The converse follows by direct computation. This completes the proof.

Next, we establish formulas for multiple fractional integrals of Riemann–Liouville
and Hadamard types.

Lemma 5. Let a, b, c > 0 be constants. Then, we have

(i)

H Ib
(

RL Ia(1)
)
(t) =

a−bta

Γ(a + 1)
.

(ii)

RL Ic
(

H Ib
(

RL Ia(1)
))

(t) =
a−b

Γ(a + c + 1)
ta+c.

Proof. Since RL Ia(1) =
ta

Γ(a + 1)
, we have

H Ib
(

RL Ia(1)
)
(t) =

1
Γ(a + 1)

H Ibta =
a−bta

Γ(a + 1)
, (14)

by using Lemma 3, and (i) is proved. To prove (ii), taking the Riemann–Liouville fractional
integral of order c > 0 in (14), we have

RL Ic
(

H Ib
(

RL Ia(1)
))

(t) =
a−b

Γ(a + 1)
RL Icta =

a−b

Γ(a + c + 1)
ta+c,

from RL Icta =
Γ(a + 1)

Γ(a + c + 1)
ta+c. The proof is completed.

Corollary 1. Let constants pr, qr, r = 1, 2, βi, ξi, δj, ηj be defined in problem (4). Then, from
Lemma 5, we have

H Iq1
(

RL Ip11
)
(T) =

p−q1
1 Tp1

Γ(p1 + 1)
,

H Iq2
(

RL Ip21
)
(T) =

p−q2
2 Tp2

Γ(p2 + 1)
,

RL Iβi
(

H Iq2
(

RL Ip21
))

(ξi) =
p−q2

2
Γ(p2 + βi + 1)

ξ
p2+βi
i ,

RL Iδj
(

H Iq1
(

RL Ip11
))

(ηj) =
p−q1

1
Γ(p1 + δj + 1)

η
p1+δj
j ,

which will be used in the next section.

3. Main Results

Let C = C([0, T],R) be the Banach space of all continuous functions from [0, T] to
R. Let X = {x(t) : x(t) ∈ C2([0, T],R)} be the space endowed with the norm ‖x‖ =



Axioms 2021, 10, 174 7 of 15

sup{|x(t)|, t ∈ [0, T]}. Obviously, (X, ‖ · ‖) is a Banach space. Next, we set Y = {y(t) :
y(t) ∈ C2([0, T],R)} with the norm ‖y‖ = sup{|y(t)|, t ∈ [0, T]}. The product space
(X×Y, ‖(x, y)‖) is Banach space with the norm ‖(x, y)‖ = ‖x‖+ ‖y‖.

In the following, for brevity, we use the subscript notation

hx,y(t) = h(t, x(t), y(t)), h ∈ { f , g}, (15)

in fractional integral as

RL Iphx,y(φ) =
1

Γ(p)

∫ φ

a
(φ− s)p−1h(s, x(s), y(s)) ds, (16)

where φ ∈ {t, T, ξi, ηj}. In addition, we use it in multiple fractional integrations.

In view of Lemma 4, we define the operator P : X×Y → X×Y by

P(x, y)(t) =
(
P1(x, y)(t)
P2(x, y)(t)

)
,

where

P1(x, y)(t) = − 1
Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 gx,y

))
(ξi) +

1
Λ

H Iq1
(

RL Ip1 fx,y

)
(T)

+
Ω1

Λ
H Iq2

(
RL Ip2 gx,y

)
(T)− Ω1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 fx,y

))
(ηj)

+ H Iq1
(

RL Ip1 fx,y

)
(t)

and

P2(x, y)(t) = −Ω2

Λ

m

∑
i=1

αi
RL Iβi

(
H Iq2

(
RL Ip2 gx,y

))
(ξi) +

Ω2

Λ
H Iq1

(
RL Ip1 fx,y

)
(T)

+
1
Λ

H Iq2
(

RL Ip2 gx,y

)
(T)− 1

Λ

k

∑
j=1

λj
RL Iδj

(
H Iq1

(
RL Ip1 fx,y

))
(ηj)

+ H Iq2
(

RL Ip2 gx,y

)
(t).

For computational convenience, we set

M1 =

(
1 + |Λ|
|Λ|

)(
p−q1

1 Tp1

Γ(p1 + 1)

)
+
|Ω1|
|Λ|

p−q1
1

k

∑
j=1

|λj|η
p1+δj
j

Γ(p1 + δj + 1)

,

M2 =
|Ω1|
|Λ|

(
p−q2

2 Tp2

Γ(p2 + 1)

)
+

1
|Λ|

(
p−q2

2

m

∑
i=1

|αi |ξ
p2+βi
i

Γ(p2 + βi + 1)

)
,

M3 =
|Ω2|
|Λ|

(
p−q1

1 Tp1

Γ(p1 + 1)

)
+

1
|Λ|

p−q1
1

k

∑
j=1

|λj|η
p1+δj
j

Γ(p1 + δj + 1)

,

M4 =

(
1 + |Λ|
|Λ|

)(
p−q2

2 Tp2

Γ(p2 + 1)

)
+
|Ω2|
|Λ|

(
p−q2

2

m

∑
i=1

|αi |ξ
p2+βi
i

Γ(p2 + βi + 1)

)
.

In the first result, Banach’s contraction mapping principle is used to prove existence
and uniqueness of solutions of system (4).

Theorem 1. Suppose that f , g : [0, T] × R2 → R are continuous functions. In addition, we
assume that f , g satisfies the Lipchitz condition:

(H1) there exist constants mi, ni, i = 1, 2

| f (t, u1, v1)− f (t, u2, v2)| ≤ m1|u1 − u2|+ m2|v1 − v2|
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and
|g(t, u1, v1)− g(t, u2, v2)| ≤ n1|u1 − u2|+ n2|v1 − v2|,

for all t ∈ [0, T] and ui, vi ∈ R, i = 1, 2. Then, the system (4) has a unique solution on [0, T], if

(M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2) < 1. (17)

Proof. Let us define supt∈[0,T] f (t, 0, 0) = N1 < ∞ and supt∈[0,T] g(t, 0, 0) = N2 < ∞.
Choose a constant r > 0 satisfying

r >
(M1 + M3)N1 + (M2 + M4)N2

1− [(M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2)]
.

At first, we shall show that the set PBr ⊂ Br, where a ball Br = {(x, y) ∈ X×Y : ‖(x, y)‖ ≤
r}. For (x, y) ∈ Br, and using

| fx,y| ≤ | fx,y − f0,0|+ | f0,0| ≤ m1‖x‖+ m2‖y‖+ N1,

and
|gx,y| ≤ |gx,y − g0,0|+ |g0,0| ≤ n1‖x‖+ n2‖y‖+ N2,

we get relations

|P1(x, y)(t)|

≤ 1
|Λ|

m

∑
i=1
|αi | RL Iβi

(
H Iq2

(
RL Ip2 |gx,y|

))
(ξi) +

1
|Λ|

H Iq1
(

RL Ip1 | fx,y|
)
(T)

+
|Ω1|
|Λ|

H Iq2
(

RL Ip2 |gx,y|
)
(T) +

|Ω1|
|Λ|

k

∑
j=1
|λj| RL Iδj

(
H Iq1

(
RL Ip1 | fx,y|

))
(ηj)

+ H Iq1
(

RL Ip1 | fx,y|
)
(T)

≤ 1
|Λ|

m

∑
i=1
|αi | RL Iβi

(
H Iq2

(
RL Ip2 1

))
(ξi)(n1‖x‖+ n2‖y‖+ N2)

+
1
|Λ|

H Iq1
(

RL Ip1 1
)
(T)(m1‖x‖+ m2‖y‖+ N1)

+
|Ω1|
|Λ|

H Iq2
(

RL Ip2 1
)
(T)(n1‖x‖+ n2‖y‖+ N2)

+
|Ω1|
|Λ|

k

∑
j=1
|λj| RL Iδj

(
H Iq1

(
RL Ip1 1

))
(ηj)(m1‖x‖+ m2‖y‖+ N1)

+ H Iq1
(

RL Ip1 1
)
(T)(m1‖x‖+ m2‖y‖+ N1)

=
1
|Λ|

(
p−q2

2

m

∑
i=1

|αi |ξ
p2+βi
i

Γ(p2 + βi + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

+
1
|Λ|

(
p−q1

1 Tp1

Γ(p1 + 1)

)
(m1‖x‖+ m2‖y‖+ N1)

+
|Ω1|
|Λ|

(
p−q2

2 Tp2

Γ(p2 + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

+
|Ω1|
|Λ|

p−q1
1

k

∑
j=1

|λj|η
p1+δj
j

Γ(p1 + δj + 1)

(m1‖x‖+ m2‖y‖+ N1)

+

(
p−q1

1 Tp1

Γ(p1 + 1)

)
(m1‖x‖+ m2‖y‖+ N1)

= M1(m1‖x‖+ m2‖y‖+ N1) + M2(n1‖x‖+ n2‖y‖+ N2)

= (M1m1 + M2n1)‖x‖+ (M1m2 + M2n2)‖y‖+ M1 N1 + M2 N2

≤ [M1(m1 + m2) + M2(n1 + n2)]r + M1 N1 + M2 N2.



Axioms 2021, 10, 174 9 of 15

Therefore, we deduce that

‖P1(x, y)‖ ≤ [M1(m1 + m2) + M2(n1 + n2)]r + M1N1 + M2N2.

In a similar way of computation, we get

|P2(x, y)(t)| ≤ |Ω2|
|Λ|

m

∑
i=1
|αi| RL Iβi

(
H Iq2

(
RL Ip21

))
(ξi)(n1‖x‖+ n2‖y‖+ N2)

+
|Ω2|
|Λ|

H Iq1
(

RL Ip11
)
(T)(m1‖x‖+ m2‖y‖+ N1)

+
1
|Λ|

H Iq2
(

RL Ip21
)
(T)(n1‖x‖+ n2‖y‖+ N2)

+
1
|Λ|

k

∑
j=1
|λj| RL Iδj

(
H Iq1

(
RL Ip11

))
(ηj)(m1‖x‖+ m2‖y‖+ N1)

+ H Iq2
(

RL Ip21
)
(T)(n1‖x‖+ n2‖y‖+ N2)

=
|Ω2|
|Λ|

(
p−q2

2

m

∑
i=1

|αi|ξ
p2+βi
i

Γ(p2 + βi + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

+
|Ω2|
|Λ|

(
p−q1

1 Tp1

Γ(p1 + 1)

)
(m1‖x‖+ m2‖y‖+ N1)

+
1
|Λ|

(
p−q2

2 Tp2

Γ(p2 + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

+
1
|Λ|

p−q1
1

k

∑
j=1

|λj|η
p1+δj
j

Γ(p1 + δj + 1)

(m1‖x‖+ m2‖y‖+ N1)

+

(
p−q2

2 Tp2

Γ(p2 + 1)

)
(n1‖x‖+ n2‖y‖+ N2)

= M3(m1‖x‖+ m2‖y‖+ N1) + M4(n1‖x‖+ n2‖y‖+ N2),

which yields

‖P2(x, y)‖ ≤ [M3(m1 + m2) + M4(n1 + n2)]r + M3N1 + M4N2.

Then, we conclude that

‖P(x, y)‖ ≤ [M1(m1 + m2) + M2(n1 + n2)]r + M1N1 + M2N2

+[M3(m1 + m2) + M4(n1 + n2)]r + M3N1 + M4N2 ≤ r,

which leads to PBr ⊂ Br.
In the next step, we will show that the P is a contraction operator. For any (x1, y1),

(x2, y2) ∈ X×Y, we have
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|P1(x1, y1)(t)−P1(x2, y2)(t)|

≤ 1
|Λ|

m

∑
i=1
|αi| RL Iβi

(
H Iq2

(
RL Ip2 |gx1,y1 − gx2,y2 |

))
(ξi)

+
1
|Λ|

H Iq1
(

RL Ip1 | fx1,y1 − fx2,y2 |
)
(T) +

|Ω1|
|Λ|

H Iq2
(

RL Ip2 |gx1,y1 − gx2,y2 |
)
(T)

+
|Ω1|
|Λ|

k

∑
j=1
|λj| RL Iδj

(
H Iq1

(
RL Ip1 | fx1,y1 − fx2,y2 |

))
(ηj)

+ H Iq1
(

RL Ip1 | fx1,y1 − fx2,y2 |
)
(T)

≤ 1
|Λ|

m

∑
i=1
|αi| RL Iβi

(
H Iq2

(
RL Ip21

))
(ξi)(n1‖x1 − x2‖+ n2‖y1 − y2‖)

+
1
|Λ|

H Iq1
(

RL Ip11
)
(T)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

+
|Ω1|
|Λ|

H Iq2
(

RL Ip21
)
(T)(n1‖x1 − x2‖+ n2‖y1 − y2‖)

+
|Ω1|
|Λ|

k

∑
j=1
|λj| RL Iδj

(
H Iq1

(
RL Ip11

))
(ηj)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

+ H Iq1
(

RL Ip11
)
(T)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

= M1(m1‖x1 − x2‖+ m2‖y1 − y2‖) + M2(n1‖x1 − x2‖+ n2‖y1 − y2‖)
= (M1m1 + M2n1)‖x1 − x2‖+ (M1m2 + M2n2)‖y1 − y2‖.

Then, we get the result that

‖P1(x1, y1)−P1(x2, y2)‖ ≤ M1(m1 + m2) + M2(n1 + n2)(‖x1 − x2‖+ ‖y1 − y2‖). (18)

In addition, we have

|P2(x1, y1)(t)−P2(x2, y2)(t)|

≤ |Ω2|
|Λ|

m

∑
i=1
|αi| RL Iβi

(
H Iq2

(
RL Ip21

))
(n1‖x1 − x2‖+ n2‖y1 − y2‖)

+
|Ω2|
|Λ|

H Iq1
(

RL Ip11
)
(T)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

+
1
|Λ|

H Iq2
(

RL Ip21
)
(T)(n1‖x1 − x2‖+ n2‖y1 − y2‖)

+
1
|Λ|

k

∑
j=1
|λj| RL Iδj

(
H Iq1

(
RL Ip11

))
(ηj)(m1‖x1 − x2‖+ m2‖y1 − y2‖)

+ H Iq2
(

RL Ip21
)
(T)(n1‖x1 − x2‖+ n2‖y1 − y2‖)

= M3(m1‖x1 − x2‖+ m2‖y1 − y2‖) + M4(n1‖x1 − x2‖+ n2‖y1 − y2‖)
= (M3m1 + M4n1)‖x1 − x2‖+ (M3m2 + M4n2)‖y1 − y2‖,

which yields

‖P2(x1, y1)−P2(x2, y2)‖ ≤ M3(m1 + m2) + M4(n1 + n2)(‖x1 − x2‖+ ‖y1 − y2‖). (19)

The above results in (18) and (19) imply

‖P(x1, y1)−P(x2, y2)‖ ≤ [(M1 + M3)(m1 + m2) + (M2 + M4)(n1 + n2)]

×(‖x1 − x2‖+ ‖y1 − y2‖).
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Since (M1 + M3)(m1 +m2)+ (M2 + M4)(n1 + n2) < 1, then the operatorP is a contraction.
From the benefits of Banach’s fixed point theorem, the operator P has a unique fixed point,
which is the unique solution of (4) on [0, T]. The proof is completed.

The Leray–Schauder alternative is applied to our second existence result.

Lemma 6. (Leray–Schauder alternative) [31]. Let Q : U → U be a completely continuous
operator. Let

µ(Q) = {x ∈ U : x = θQ(x) f or some 0 < θ < 1}.

Then, either the set µ(Q) is unbounded, or Q has at least one fixed point.

Theorem 2. Suppose that there exist constants ar, br ≥ 0 for r = 1, 2 and a0, b0 > 0. In addition,
for any u, v ∈ R, we assume that

| f (t, u, v)| ≤ a0 + a1|u|+ a2|v|,
|g(t, u, v)| ≤ b0 + b1|u|+ b2|v|.

If (M1 + M3)a1 + (M2 + M4)b1 < 1 and (M1 + M3)a2 + (M2 + M4)b2 < 1, then (4) has at
least one solution on [0, T].

Proof. The first task of the proof is to show that the operator P : X × Y → X × Y is
completely continuous. The continuity of the functions f , g on [0, T]×R×R can be used
to claim that the operator P is continuous. Now, we let Φ be the bounded subset of X×Y.
Then, there exist positive constants G1 and G2 such that

| f (t, x, y)| ≤ G1, |g(t, x, y)| ≤ G2, ∀(x, y) ∈ Φ.

For any (x, y) ∈ Φ, we have

|P1(x, y)(t)| ≤ 1
|Λ|

m

∑
i=1
|αi| RL Iβi

(
H Iq2

(
RL Ip2 |gx,y|

))
(ξi) +

1
|Λ|

H Iq1
(

RL Ip1 | fx,y|
)
(T)

+
|Ω1|
|Λ|

H Iq2
(

RL Ip2 |gx,y|
)
(T) +

|Ω1|
|Λ|

k

∑
j=1
|λj| RL Iδj

(
H Iq1

(
RL Ip1 | fx,y|

))
(ηj)

+ H Iq1
(

RL Ip1 | fx,y|
)
(T)

≤ 1
|Λ|

(
p−q2

2

m

∑
i=1

|αi|ξ
p2+βi
i

Γ(p2 + βi + 1)

)
G2 +

1
|Λ|

(
p−q1

1 Tp1

Γ(p1 + 1)

)
G1

+
|Ω1|
|Λ|

(
p−q2

2 Tp2

Γ(p2 + 1)

)
G2 +

|Ω1|
|Λ|

p−q1
1

k

∑
j=1

|λj|η
p1+δj
j

Γ(p1 + δj + 1)

G1

+

(
p−q1

1 Tp1

Γ(p1 + 1)

)
G1,

which leads to

‖P1(x, y)‖ ≤ G1M1 + G2M2.

Furthermore, we get
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‖P2(x, y)‖ ≤ |Ω2|
|Λ|

m

∑
i=1
|αi| RL Iβi

(
H Iq2

(
RL Ip21

))
G2 +

|Ω2|
|Λ|

H Iq1
(

RL Ip11
)
(T)G1

+
1
|Λ|

H Iq2
(

RL Ip21
)
(T)G2 +

1
|Λ|

k

∑
j=1
|λj| RL Iδj

(
H Iq1

(
RL Ip11

))
(ηj)G1

+ H Iq2
(

RL Ip21
)
(T)G2

= G1M3 + G2M4.

Therefore, from above two results, we deduce that the set PΦ is uniformly bounded. The
next is to prove that the set PΦ is equicontinuous. Choosing two points τ1, τ2 ∈ [0, T] such
that τ1 < τ2, we have, for any (x, y) ∈ Φ, that

|P1(x, y)(τ2)−P1(x, y)(τ1)| =
∣∣∣H Iq1

(
RL Ip1 fx,y

)
(τ2)− H Iq1

(
RL Ip1 fx,y

)
(τ1)

∣∣∣
≤ G1

∣∣∣H Iq1
(

RL Ip11
)
(τ2)− H Iq1

(
RL Ip11

)
(τ1)

∣∣∣
= G1

p−q1
1

Γ(p1 + 1)

∣∣∣τp1
2 − τ

p1
1

∣∣∣,
which implies

|P1(x, y)(τ2)−P1(x, y)(τ1)| → 0, as τ1 → τ2.

In addition, we obtain

|P2(x, y)(τ2)−P2(x, y)(τ1)| =
∣∣∣H Iq2

(
RL Ip2 gx,y

)
(τ2)− H Iq2

(
RL Ip2 gx,y

)
(τ1)

∣∣∣
≤ G2

∣∣∣H Iq2
(

RL Ip21
)
(τ2)− H Iq2

(
RL Ip21

)
(τ1)

∣∣∣
= G2

p−q2
2

Γ(p2 + 1)

∣∣∣τp2
2 − τ

p2
1

∣∣∣.
Then,

|P2(x, y)(τ2)−P2(x, y)(τ1)| → 0, as τ1 → τ2.

Thus, the set PΦ is equicontinuous. By taking into account the Arzelá-Ascoli theorem, the
set PΦ is relatively compact. Then, operator P is completely continuous.

Finally, we will claim that the set µ = {(x, y) ∈ X×Y : (x, y) = θP(x, y), 0 ≤ θ ≤ 1}
is bounded. For any (x, y) ∈ µ, then (x, y) = θP(x, y). Hence, for t ∈ [a, b], we have

x(t) = θP1(x, y)(t) and y(t) = θP2(x, y)(t).

Therefore, we obtain

‖x‖ ≤ (a0 + a1‖x‖+ a2‖y‖)M1 + (b0 + b1‖x‖+ b2‖y‖)M2,

‖y‖ ≤ (a0 + a1‖x‖+ a2‖y‖)M3 + (b0 + b1‖x‖+ b2‖y‖)M4,

which lead to

‖x‖+ ‖y‖ ≤ (M1 + M3)a0 + (M2 + M4)b0 + [(M1 + M3)a1 + (M2 + M4)b1]‖x‖
+[(M1 + M3)a2 + (M2 + M4)b2]‖y‖.

Thus, the following inequality holds:

‖(x, y)‖ ≤ (M1 + M3)a0 + (M2 + M4)b0

M∗
, (20)
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where M∗ = min{1− (M1 + M3)a1 − (M2 + M4)b1, 1− (M1 + M3)a2 − (M2 + M4)b2}.
Hence, the set µ is a bounded set. Then, by using Lemma 6, the operator P has at least one
fixed point. Therefore, we conclude that problem (4) has at least one solution on [0, T]. The
proof is complete.

If ar, br = 0, r = 1, 2, in Theorem 2, we have following corollary.

Corollary 2. Assume that | f (t, x, y)| ≤ a0 and |g(t, x, y)| ≤ b0, where a0, b0 > 0, ∀(t, x, y) ∈
[0, T]×R2. Then, problem (4) has at least one solution on [0, T].

Next, we present examples to illustrate our results.

Example 1. Consider the following sequential Riemann–Liouville and Hadamard–Caputo frac-
tional differential system with coupled fractional integral boundary conditions of the form

RLD
1
5

(
HCD

4
5 x
)
(t) = f (t, x(t), y(t)), t ∈ [0, 7/4],

RLD
2
5

(
HCD

3
5 y
)
(t) = g(t, x(t), y(t)), t ∈ [0, 7/4],

HCD
4
5 x(0) = 0, x

(
7
4

)
=

1
3

RL I
3
4 y
(

1
2

)
+

2
7

RL I
5
4 y
(

5
4

)
,

HCD
3
5 y(0) = 0, y

(
7
4

)
=

3
11

RL I
1
2 x
(

1
4

)
+

4
17

RL I
7
8 x
(

3
4

)
+

5
19

RL I
11
8 x
(

3
2

)
.

(21)

Here, p1 = 1/5, p2 = 2/5, q1 = 4/5, q2 = 3/5, T = 7/4, m = 2, α1 = 1/3, α2 = 2/7,
β1 = 3/4, β2 = 5/4, ξ1 = 1/2, ξ2 = 5/4, k = 3, λ1 = 3/11, λ2 = 4/17, λ3 = 5/19,
δ1 = 1/2, δ2 = 7/8, δ3 = 11/8, η1 = 1/4, η2 = 3/4, η3 = 3/2. Form all constants, we
find that Ω1 ≈ 0.5489581728, Ω2 ≈ 0.7217268652, |Λ| ≈ 0.6038021388, M1 ≈ 13.82028787,
M2 ≈ 3.420721316, M3 ≈ 9.093047627, M4 ≈ 7.354860071.

Let the two nonlinear Lipschitzian functions f , g : [0, 7/4]×R2 −→ R be defined by

f (t, x, y) =
1

12(t + 12)

(
x2 + 2|x|
1 + |x|

)
+

e−t sin y
15(3t + 5)

+
1
2

, (22)

g(t, x, y) =
cos πt

6(2t + 9)
tan−1 x +

1
36(4t + 7)

(
3y2 + 4|y|

1 + |y|

)
+

3
4

. (23)

From (22)–(23), we see that

| f (t, x1, y1)− f (t, x2, y2)| ≤
1
72
|x1 − x2|+

1
75
|y1 − y2|

and
|g(t, x1, y1)− g(t, x2, y2)| ≤

1
54
|x1 − x2|+

1
63
|y1 − y2|,

for all xr, yr ∈ R, r = 1, 2, we obtain (M1 + M3)(1/72 + 1/75) + (M2 + M4)(1/54 +
1/63) ≈ 0.9943406888 < 1. From the benefits of Theorem 1, the problem of a sequential
Riemann–Liouville and Hadamard–Caputo fractional differential system with coupled
fractional integral boundary conditions (21) with f and g given by (22)–(23), respectively,
has a unique solution on [0, 7/4].
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Example 2. Consider the sequential Riemann–Liouville and Hadamard–Caputo fractional differ-
ential system with coupled fractional integral boundary conditions of the Example 1, where the
nonlinear functions f , g : [0, 7/4]×R2 −→ R are defined by

f (t, x, y) =
2e−t

13
+

1
2(5t + 23)

(
x16

1 + |x|15

)
+

cos πt
3(2t + 15)

y sin2 x, (24)

g(t, x, y) =
4t
3
+

xe−y2

2(4t + 11)
+

|y|19 cos4 x
3(3t + 8)(1 + y18)

. (25)

It is easy to obtain that | f (t, x, y)| ≤ (2/13) + (1/46)|x|+ (1/45)|y| and |g(t, x, y)| ≤ (7/3) +
(1/22)|x|+ (1/24)|y|. By setting a0 = 2/13, a1 = 1/46, a2 = 1/45, b0 = 7/3, b1 = 1/22
and b2 = 1/24, we can find that (M1 + M3)a1 + (M2 + M4)b1 ≈ 0.9879151432 < 1 and
(M1 + M3)a2 + (M2 + M4)b2 ≈ 0.9581677912 < 1. The conclusion of Theorem 2 can be implied
that system (21) with f and g given by (24)–(25), respectively, has at least one solution on [0, 7/4].

Example 3. Consider the sequential Riemann–Liouville and Hadamard–Caputo fractional differ-
ential system with coupled fractional integral boundary conditions of the Example 1, where the
nonlinear functions f , g : [0, 7/4]×R2 −→ R are given by

f (t, x, y) =
1
2
(1 + cos2 t) +

|x|e−t

(1 + |x|) +
2
π

tan−1 y, (26)

g(t, x, y) =
1
4
(3 + sin2 πt) + e−x4

+
3y22

1 + y22 . (27)

We can check that | f (t, x, y)| ≤ 3, |g(t, x, y)| ≤ 5 for all x, y ∈ R. Using the Corollary 2, the
problem (21) with f and g given by (26) and (27), respectively, has at least one solution on [0, 7/4].

4. Conclusions

In this paper, we studied a new system of sequential fractional differential equa-
tions which consists of mixed fractional derivatives of Riemann–Liouville and Hadamard–
Caputo types, supplemented with nonlocal coupled fractional integral boundary conditions.
To the best of our knowledge, this is the first system of this type that appeared in the liter-
ature. After proving a basic lemma, helping us to transform the considered system into
a fixed point problem, we use the standard tools from functional analysis to establish
existence and uniqueness results. We use a Banach contraction mapping principle to derive
the uniqueness result and Leray–Schauder alternative to obtain an existence result. The
obtained results are well illustrated by numerical examples. The obtained results enrich
the existing literature on sequential systems of fractional differential equations. Other cases
of fractional systems with other types of mixed fractional derivatives or other types of
boundary conditions can be studied using the methodology of this paper.
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