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Abstract: In this paper, we consider the following Kirchhoff-type equation:

{−(a+b
∫
RN |∇u|2dx)∆u+V(x)u=(Iα∗F(u)) f (u)+λg(u), in RN ,

u∈H1(RN), where a > 0, b ≥ 0, λ > 0, α ∈ (N − 2, N),

N ≥ 3, V : RN → R is a potential function and Iα is a Riesz potential of order α ∈ (N− 2, N). Under
certain assumptions on V(x), f (u) and g(u), we prove that the equation has at least one nontrivial
solution by variational methods.

Keywords: Kirchhoff equation; no growth conditions; cutoff function
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1. Introduction

In this article, we study the following Kirchhoff-type equation:{
−(a + b

∫
RN |∇u|2dx)∆u + V(x)u = (Iα ∗ F(u)) f (u) + λg(u), in RN ,

u ∈ H1(RN),
(1)

where a > 0, b ≥ 0, λ > 0, α ∈ (N − 2, N), N ≥ 3, F(t) =
∫ t

0 f (s)ds and Iα is a Riesz

potential for which its order is α ∈ (N − 2, N). Here, Iα is defined by Iα= Γ( N−α
2 )

Γ( α
2 )π

N
2 2α |x|N−α

.

Moreover, V(x) : RN → R is a potential function satisfying the following.
(V) inf

x∈RN
V(x) = V0 > 0 and for any M > 0, there exist r > 0 such that:

lim
|y|→+∞

meas{x ∈ RN : |x− y| ≤ r, V(x) ≤ M} = 0.

Additionally, we suppose that the function f ∈ C1(R,R) verifies:
( f 1) f (t) = o(t

α
N ) as t→ 0;

( f 2) lim
|t|→+∞

f (t)

t
α+2
N−2

= 0;

( f 3) f (t)
t is increasing on (0,+∞) and decreasing on (−∞, 0);

( f 4) f (t) is increasing on R.
Furthermore, we assume that the function g ∈ C(R,R) satisfies the following.
(g1) g(t) = o(t) as t→ 0;
(g2) lim

|t|→+∞

g(t)
t = +∞.

It is worth mentioning that, here, g maybe critical or supercritical.
In the past decades, many scholars have studied the existence of nontrivial solutions

for the Kirchhoff-type problem:
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{
−(a + b

∫
R3 |∇u|2dx)∆u + V(x)u = g(x, u), in R3,

u ∈ H1(R3),
(2)

where a > 0, b ≥ 0, V : R3 → R is a potential function and g ∈ C(R3 ×R,R). Problem (2)
is a nonlocal problem due to the presence of the term b

∫
R3 |∇u|2dx, which causes some

mathematical difficulties but, at the same time, renders the research problem particular
interesting. This problem has a profound and interesting physical context. Indeed, if we
set V(x) = 0 and replace R3 by a bounded domain Ω ⊂ R3 in (2), then we obtain the
following Kirchhoff Dirichlet problem.{

−(a + b
∫
R3 |∇u|2dx)∆u = g(x, u), x ∈ Ω,

u = 0 x ∈ ∂Ω.

It is related to the stationary analogue of the equation, as shown as follows:

ρ
∂2u
∂t2 −

(ρ0

h
+

E
2L

∫ L

0

∣∣∂u
∂x
∣∣dx
)∂2u

∂x2 = 0

which was proposed by G.Kirchhoff as an extension of classical D’Alembert’s wave equa-
tions for the free vibration of elastic strings. Kirchhoff’s model takes into account the
changes in the length of the string produced by transverse vibrations. J. L. Lions soon
completed the pioneer work. He introduced a functional analysis approach. Since then,
Kirchhoff equations have attracted the attention of many researchers. The works include
Readers can see [1–11] and the references therein. Unfortunately, most of the studies
assume that the growth condition and the Ambrosetti–Rabinowtiz condition are satisfied.
On the bright side, in [4], Guo studied the following Kirchhoff-type problem.{

−(a + b
∫
R3 |∇u|2dx)∆u + V(x)u = f (u), in R3,

u ∈ H1(R3).
(3)

He proved the existence of a positive ground state solution to (2) without any (A-R)
type condition. Furthermore, in [10], the authors obtained the existence of a nontrivial
solution for the following Kirchhoff-type equation.{

−(a + b
∫
R3 |∇u|2dx)∆u + V(x)u = |u|p−2u + λ f (u), in R3,

u ∈ H1(R3).
(4)

In [10], there is no Ambrosetti–Rabinowtiz and no growth condition. Moreover, their
conclusion holds for general supercritical nonlinearity.

On the other hand, when a = 1, b = 0 and f = 0, the Equation (1) reduces to:

− ∆u + V(x)u = (Iα ∗ |u|p)|u|p−2u, (5)

which is called nonlinear Choquard type equation. Its physical background can be found
in [12] and the references therein. Furthermore, readers can investigate [6,13–20] for recent
achievements.

Motivated by the works mentioned above, especially by [10,21,22], we consider the
combination of the two types of Equations (4) and (5) and extend to the general convolution
case in RN . In our paper, we obtain the nontrivial solution of Equation (1).

The main outcome of our investigation is as follows.

Theorem 1. If (V), ( f 1)–( f 4) and (g1), (g2) hold, then problem (1) has at least one nontrivial
solution for λ small.

For the convenience of expression, hereafter, we use the following notations:
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• X := {u ∈ H1(RN) :
∫
RN V(x)u2dx < ∞} is equipped with an equivalent norm

‖u‖ = [
∫
RN (a|∇u|2 + V(x)u2)dx]

1
2 ;

• Ls(RN)(1 ≤ s ≤ ∞) denotes the Lebesgue space with the norm |u|s = (
∫
RN |u|sdx)1/s;

• For any u ∈ H1(RN) \ {0}, ut is denoted as follows.

ut =

{
0, t = 0,√

tu( x
t ), t > 0,

• For any x ∈ RN and r > 0,Br(x) := {y ∈ RN : |y− x| < r};
• C, C1, C2, . . . represent positive constants that are possibly different in different lines.

Remark 1. According to the condition (V) and [23], X ↪→ Lr(RN) is compact, r ∈ [2, 2∗), where
2∗ = 2N

N−2 if N ≥ 3 and 2∗ = ∞ if N = 1 or 2.

2. Preliminaries

In this section, we will provide the revised functional and some lemmas. Notice that
there is no growth condition and no Ambrosetti–Rabinowitz condition and so we require
the cutoff function.

According to (g2), we have g(M) > 0 as M > 0 large and so we define the cutoff
function as follows.

hM(t) =


g(t), 0 < t ≤ M,
CMtp−1, t > M,
0, t ≤ 0.

Here CM = g(M)

Mp−1 , 2 < p < 2∗. Since g ∈ C(R,R), hM is also continuous. Moreover, by
(g1), hM satisfies the following.

(h1) hM(t) = o(t) as t→ 0;
(h2) lim

t→+∞

HM(t)
t4 = +∞, where HM(t) =

∫ t
0 hM(s)ds;

(h3) |hM(t)| ≤ C
′
M|t|+ CM|t|p−1, where C

′
M = max

t∈[0,M]

|g(t)|
t ;

(h4) there exist θ = θ(M) > 0 such that thM(t)− 4HM(t) ≥ −θt2, t ≥ 0.
Next, we first consider the following revised problem.

−(a + b
∫
RN
|∇u|2dx)∆u + V(x)u = (Iα ∗ F(u)) f (u) + λhM(u), x in RN , (6)

Problem (6) has a variational structure, i.e., the critical points of the functional IM
λ :

X → R is defined as follows:

IM
λ (u) =

1
2

∫
RN

[a|∇u|2 + V(x)u2]dx +
b
4

( ∫
RN
|∇u|2dx

)2

− 1
2

∫
RN

(Iα ∗ F(u))F(u)dx− λ
∫
RN

HM(u)dx, u ∈ X

(7)

which are weak solutions of problem (6).
It is obvious that IM

λ is of class C1 and the following is the case.

〈(IM
λ )′(u), v〉 =

∫
RN

[a∇u∇v + V(x)uv]dx + b
∫
RN
|∇u|2dx

∫
RN
∇u∇vdx

−
∫
RN

(Iα ∗ F(u)) f (u)vdx− λ
∫
RN

hM(u)vdx.
(8)

Lemma 1. Assume (f1)–(f4) are fulfilled, then we have:
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(1) f or all ε > 0, there is a Cε > 0 such that | f (t)| ≤ ε|t| α
N + Cε|t|

α+2
N−2 and |F(t)| ≤

ε|t| N+α
N + Cε|t|

N+α
N−2 ;

(2) f or all ε > 0, there is a Cε > 0 such that f or every p ∈ (2, 2∗), |F(t)| ≤ ε(|t| N+α
N +

|t|
N+α
N−2 ) + Cε|t|

p(N+α)
2N , and |F(t)|

2N
N+α ≤ ε(|t|2 + |t|

2N
N−2 ) + Cε|t|p;

(3) f or any s 6= 0, s f (s) > 2F(s) and F(s) > 0.

Proof. One can easily obtain the results by elementary calculation.

Lemma 2. (Hardy–Littlewood–Sobolev inequality [24]). Let 0 < α < N, p, q > 1 and 1 ≤ r <
s < ∞ be such that

1
p
+

1
q
= 1 +

α

N
,

1
r
− 1

s
=

α

N
.

(1) For any f ∈ Lp(RN) and g ∈ Lq(RN), one has∣∣∣∣ ∫RN

∫
RN

f (x)g(y)
|x− y|N−α

dxdy
∣∣∣∣ ≤ C(N, α, p)‖ f ‖Lp(RN)‖g‖Lq(RN).

(2) For any f ∈ Lr(RN) one has∥∥∥∥ 1
| · |N−α

∗ f
wwww

Ls(RN)

≤ C(N, α, r)‖ f ‖Lr(RN).

Remark 2. By Lemma 1 (1), Lemma 2 (1) and the Sobolev imbedding theorem, we can obtain the
following. ∣∣∣∣ ∫RN

(
Iα ∗ F(u)

)
F(u)dx

∣∣∣∣ ≤ C|F(u)|22N
N+α

≤ C
[ ∫

RN

(
|u|

N+α
N + |u|

N+α
N−2
) (2N)

N+α dx
] N+α

N

≤ C
[ ∫

RN

(
|u|2 + |u|

2N
N−2
)
dx
] N+α

N

≤ C(‖u‖
2N+2α

N + ‖u‖
2N+2α

N−2 )

(9)

3. Variational Formulation

In this section, we will prove the following results.

Lemma 3. IM
λ (u) satisfies (PS) condition.

Proof. Let {un} be (PS)c sequence of IM
λ (u). Then by (h4) we have the following.

c + o(1)‖un‖ ≥ 4IM
λ (un)− 〈(IM

λ )′(un), un〉

=
∫
RN

[a|∇un |2 + V(x)|un |2]dx +
∫
RN

(Iα ∗ F(un))[ f (un)un − 2F(un)]dx + λ
∫
RN

[hM(un)un − 4HM(un)]dx

≥
∫
RN

[a|∇un |2 + V(x)|un |2]dx + λ
∫
RN

[hM(un)un − 4HM(un)]dx

≥
∫
RN

[a|∇un |2 + V(x)|un |2]dx− λ
∫
RN

θ|u+
n |2dx.

(10)

Here u+
n = max{un, 0}, u−n = min{un, 0} and un = u+

n + u−n . If {un} is unbounded,
i.e., ‖un‖ → ∞. Let vn = un

‖un‖ , then vn = v+n + v−n and ‖vn‖ = 1. Thus, we can obtain the
fact that there exist a v ∈ X such that:
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
vn ⇀ v in X,
vn → v in Ls(RN), ∀ s ∈ [2, 2∗)
vn → v a.e. on RN ,

and 
vn

+ ⇀ v+ in X,
vn

+ → v+ in Ls(RN), ∀ s ∈ [2, 2∗)
vn

+ → v+ a.e. on RN .

By (10) we have the following.

o(1) ≥ ‖vn‖2 − λθ
∫
RN
|v+n |2dx = 1− λθ

∫
RN
|v+|2dx + o(1).

Therefore v+ 6= 0. By (10) and (IM
λ )′(un)→ 0, we have the following.

o(1) =
〈(IM

λ )′(un), un〉
‖un‖4

= o(1) + b
( ∫

RN
|∇vn|2dx

)2

− ‖un‖−4
∫
RN

(Iα ∗ F(un)) f (un)undx− λ
∫
RN

hM(u+
n )u+

n

|u+
n |4

|v+n |4

≤ o(1) + b
( ∫

RN
|∇vn|2dx

)2

− λ
∫
RN

hM(u+
n )u+

n

|u+
n |4

|v+n |4.

(11)

It is obvious that u+
n = v+n ‖un‖ → +∞ a.e.x ∈ {x ∈ RN : v+n (x) 6= 0}. Together with

(11) and (h2), we have 0 ≤ −∞, which is a contradiction. Therefore, {un} is bounded in X.
Then, by standard methods we can obtain the convergence of {un}.

Lemma 4. The functional IM
λ possesses the mountain-pass geometry, i.e.:

(1) There exist ρ, δ > 0 such that IM
λ ≥ δ for all ‖u‖ = ρ;

(2) There exist e ∈ H1(R3) such that ‖e‖ > ρ and IM
λ (e) < 0.

Proof. (1) By (h3) and Lemma 1, we have the following.

IM
λ (u) ≥ C1‖u‖2 − C2(‖u‖

2N+2α
N + ‖u‖

2N+2α
N−2 )− Cε‖u‖p.

Thus, there exist ρ, δ > 0 such that IM
λ ≥ δ for all ‖u‖ = ρ > 0 is small enough.

(2) We freely choose u ∈ C∞
0 (R3), then we can obtain:

IM
λ (ut) =

atN−1

2

∫
RN
|∇u|2dx +

tN+1

2

∫
RN

V(x)u2dx +
bt2N−2

4

( ∫
RN
|∇u|2dx

)2

− tN+α

2

∫
RN

(Iα ∗ F(
√

tu))F(
√

tu)dx− λ
∫
RN

HM(
√

tu)dx → −∞,

(12)

as t→ +∞.
Note the following.

‖ut‖2 = atN−1
∫
RN
|∇u|2dx + tN+1

∫
RN

V∞u2dx.

Thus, in taking e = t0u with t0 > 0 large, we have ‖e‖ > ρ and IM
λ (e) < 0.

Remark 3. Now we can define the mountain-pass level of IM
λ :
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cM
λ = inf

γ∈Γ
max
t∈[0,1]

IM
λ (γ(t)) > 0,

where: Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, IM
λ (γ(1)) < 0}. Then, according to [25] and Lemma 3,

IM
λ has a critical point uλ with IM

λ (uλ) = cM
λ .

4. Solution for Equation (1)

In this section, we prove the main theorem. By the similar Moser iteration Lemma
in [21,22], we only need to prove the following lemma.

Lemma 5. There exist two constants B, D > 0 independent on m such that |u0|∞ ≤ B(1 + λ)D.

Proof. Similar to (10), we can obtain the following:

4cM
λ = 4IM

λ (u0)− 〈(IM
λ )′(u0), u0〉

=
∫
RN

[a|∇u0|2 + V(x)|u0|2]dx +
∫
RN

(Iα ∗ F(u0))[ f (u0)u0 − 2F(u0)]dx + λ
∫
RN

[hM(u0)un − 4HM(u0)]dx

≥
∫
RN

[a|∇u0|2 + V(x)|u0|2]dx + λ
∫
RN

[hM(u0)u0 − 4HM(u0)]dx

≥
∫
RN

[a|∇u0|2 + V(x)|u0|2]dx− λ
∫
RN

θ|u+
0 |

2dx.

(13)

then, by similar argument as the proof of Lemma 3, we can know that ‖u0‖ is bounded
and that there exists Q > 0 such that ‖u0‖ ≤ Q.

Next, set T > 2, r > 0 and ũT
0 := b(u0), where b : R → R is a smooth function

satisfying b(s) = s for |s| ≤ T − 1, b(−s) = −b(s); b′(s) = 0 for s ≥ T and b′(s) is
decreasing in [T − 1, T]. This implies the following:

ũT
0 = u0, for |u0| ≤ T − 1,
|ũT

0 | = |b(u0)| ≤ |u0|, for T − 1 ≤ |u0| ≤ T,
|ũT

0 | = CT > 0, for |u0| ≥ T,

where T − 1 ≤ CT ≤ T. Moreover, one can easily obtain the following.

0 ≤ sb′(s)
b(s)

≤ 1, ∀s 6= 0.

Let ψ = u0|ũT
0 |2r. Then ψ ∈ X, hence by taking ψ as the test function, one obtains the

following.∫
RN

(Iα ∗ F(u0)) f (u0)ψdx + λ
∫
RN

hM(u0)ψdx

= a
∫
RN
∇u0∇ψdx + b

∫
RN
|∇u0|2dx

∫
RN
∇u0∇ψdx +

∫
RN

V(x)u0ψdx.
(14)
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Note that the following obtains.∫
RN
∇u0∇ψdx

≥
∫
|u0|≤T−1

(1 + r)|ũT
0 |2r|∇u0|2dx +

∫
|u0|≥T

|ũT
0 |2r|∇u0|2dx

+
∫

T−1<|u0|<T
[|ũT

0 |2r + 2ru0b(u0)b′(u0)|ũT
0 |2r−2]|∇u0|2dx

≥
∫
|u0|≤T−1

|ũT
0 |2r|∇u0|2dx +

∫
|u0|≥T

|ũT
0 |2r|∇u0|2dx

+
∫

T−1<|u0|<T
[|ũT

0 |2r + 2ru0b(u0)b′(u0)|ũT
0 |2r−2]|∇u0|2dx

≥ 1
(1 + r)2

∫
|u0|≤T−1

|∇[u0(ũT
0 )

r]|2dx +
∫
|u0|≥T

|∇[u0(ũT
0 )

r]|2dx

+
∫

T−1<|u0|<T
[|ũT

0 |2r + 2ru2
0(b
′(u0))

2|ũT
0 |2r−2]|∇u0|2dx

≥ 1
(1 + r)2

∫
|u0|≤T−1

|∇[u0(ũT
0 )

r]|2dx +
∫
|u0|≥T

|∇[u0(ũT
0 )

r]|2dx

+
∫

T−1<|u0|<T

[
1

(1 + r)2 |ũ
T
0 |2r +

r
(1 + r)2 2ru2

0(b
′(u0))

2|ũT
0 |2r−2

]
|∇u0|2dx

=
1

(1 + r)2

∫
|u0|≤T−1

|∇[u0(ũT
0 )

r]|2dx +
∫
|u0|≥T

|∇[u0(ũT
0 )

r]|2dx

+
∫

T−1<|u0|<T

[
1

(1 + r)2 b2r(u0)|∇u0|2 +
2

(1 + r)2 u2
0|∇br(u0)|2

]
dx

≥ 1
(1 + r)2

∫
|u0|≤T−1

|∇[u0(ũT
0 )

r]|2dx +
∫
|u0|≥T

|∇[u0(ũT
0 )

r]|2dx

+
2C1

(1 + r)2

∫
T−1<|u0|<T

[
b2r(u0)|∇u0|2 + u2

0|∇br(u0)|2
]
dx

≥ 1
(1 + r)2

∫
|u0|≤T−1

|∇[u0(ũT
0 )

r]|2dx +
∫
|u0|≥T

|∇[u0(ũT
0 )

r]|2dx

+
C1

(1 + r)2

∫
T−1<|u0|<T

|∇[u0(ũT
0 )

r]|2dx

≥ C1

(1 + r)2

∫
RN
|∇[u0(ũT

0 )
r]|2dx.

Hence, by (14), we obtain the following.∫
RN

(Iα ∗ |u0|p)|u0|p|ũT
0 |2rdx + λ

∫
RN

hM(u0)u0|ũT
0 |2rdx

≥ C1

(1 + r)2

∫
RN
|∇[u0(ũT

0 )
r]|2dx +

∫
RN

V(x)|u0|2|ũT
0 |2rdx.

For any ε > 0, by properties of ũT
m and hM, there exists Cε > 0 such that:∫

RN
(Iα ∗ F(u0)) f (u0)u0|ũT

0 |2rdx ≤ T1

∫
RN

(Iα ∗ F(u0)) f (u0)u0dx ≤ T2(‖u‖
2N+2α

N + ‖u‖
2N+2α

N−2 ) ≤ M0.

where T1, T2 and M0 are positive constants and the following applies.

|hM(t)| ≤ C
′
M|t|+ CM|t|2

∗−1

For all t ∈ R. Therefore, for fixed λ > 0 and small ε > 0, we can deduce the following:
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C1

(1 + r)2

∫
RN
|∇[u0(ũT

0 )
r]|2dx

≤
∫
RN

(Iα ∗ F(u0)) f (u0)u0|ũT
0 |2rdx + λ

∫
RN

hM(u0)u0|ũT
0 |2rdx−

∫
RN

V(x)|u0|2|ũT
0 |2rdx

≤ M +
∫
RN

V0|u0|2|ũT
0 |2rdx + λC

∫
RN

up
0 |ũ

T
0 |2rdx−

∫
RN

V0|u0|2|ũT
0 |2rdx

≤ (1 + λ)C
∫
RN

up
0 |ũ

T
0 |2rdx.

Notice that the following is the case.

C2

(1 + r)2

[ ∫
RN
|u0|2

∗ |ũT
0 |2r· 2∗2 dx

] 2
2∗
≤ C1

(1 + r)2

∫
RN
|∇[u0(ũT

0 )
r]|2dx.

Consequently, the following is obtained.

[ ∫
RN
|u0|2

∗ |ũT
0 |2r· 2∗2 dx

] 2
2∗
≤ (1 + λ)C(r + 1)2

∫
RN

u2∗
0 |ũT

0 |2rdx.

Take r0 > 0 and rk = r0(
2∗
2 )k = rk−1 · 2∗

2 . Then,

[ ∫
RN
|u0|2

∗ |ũT
0 |2rk dx

] 1
2rk

≤ [
√

1 + λ
√

C(rk−1 + 1)]
1

rk−1

[ ∫
RN
|u0|2

∗ |ũT
0 |2rk−1dx

] 1
2rk−1

≤
k−1

∏
i=0

[
√

1 + λ
√

C(ri + 1)]
1
ri

[ ∫
RN
|u0|2

∗ |ũT
0 |2r0dx

] 1
2r0

=
k−1

∏
i=0

(1 + λ)
1

2ri

k−1

∏
i=0

[
√

C(ri + 1)]
1
ri

[ ∫
RN
|u0|2

∗ |ũT
0 |2r0dx

] 1
2r0

=
k−1

∏
i=0

(1 + λ)
1

2ri exp
{ k−1

∑
i=0

1
ri

ln[
√

C(ri + 1)]
}[ ∫

RN
|u0|2

∗ |ũT
0 |2r0dx

] 1
2r0

.

(15)

Notice that the following is the case:

[ ∫
RN
|u0|2

∗ |ũT
0 |2r0· N

N−2 dx
] N−2

N

≤ C(r0 + 1)2
∫
RN
|u0|2

∗ |ũT
0 |2r0dx

≤ C(r0 + 1)2
∫
|u0(x)|<ρ

|u0|2
∗ |ũT

0 |2r0dx+

C(r0 + 1)2
( ∫
|u0(x)|≥ρ

|u0|2
∗
dx
) 2

N
( ∫

RN
|u0|2

∗ |ũT
0 |2r0· N

N−2 dx
) N−2

N

.

Take ρ > 0 to be such that:

C(r0 + 1)2
( ∫
|u0(x)|≥ρ

|u0|2
∗
dx
) 2

N

<
1
2

.
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Then the following obtains:

[ ∫
RN
|u0|2

∗ |ũT
0 |2r0· N

N−2 dx
] N−2

N

≤ C(r0 + 1)2
∫
|u0(x)|<ρ

|u0|2
∗ |ũT

0 |2r0dx ≤ C.

Set the following:

dk =
k−1

∏
i=0

[
√

C(ri + 1)]
1
ri = exp

{ k−1

∑
i=0

1
ri

ln[
√

C(ri + 1)]
}

and:

ek =
k−1

∏
i=0

(1 + λ)
1

2ri = (1 + λ)
2∗

(2∗−2)2r0
[1−( 2

2∗ )
k ]

.

Then dk → d∞ as k → ∞ and ek → e∞ = (1 + λ)
2∗

(2∗−2)2r0 as k → ∞. By (15), we know
that the following is the case.

[ ∫
RN
|u0|2

∗ |ũT
0 |2rk dx

] 1
2rk

≤ dkek

[ ∫
RN
|u0|2

∗ |ũT
0 |2r0dx

] 1
2r0

≤ dkek

[( ∫
RN
|u0|2

∗
dx
) 2

N
( ∫

RN
|u0|2

∗ |ũT
0 |2r0· N

N−2 dx
) N−2

N

] 1
2r0

≤ Cdkek

( ∫
RN
|u0|2

∗
dx
) 1

Nr0
≤ Cdkek.

(16)

From (16), by Fatou Lemma with T → +∞, one has the following.

|u0|
2∗+2rk

2rk
2∗+2rk

≤ Cdkek.

Consequently, let k→ ∞ and we obtain the following:

|u0|∞ ≤ Cd∞e∞ = Cd∞(1 + λ)
2∗

(2∗−2)2r0 := B(1 + λ)D,

where B > 0 and D > 0. Thus we complete the proof.

Proof of Theorem 1. By Lemma 5, for large M > 0, we can choose small λ0 > 0 such that
|u0|∞ ≤ B(1+ λ)D ≤ M for all λ ∈ (0, λ0]. The consequence u0 is also a nontrivial solution
of Equation (1) with λ ∈ (0, λ0]. Thus, we complete the proof.
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