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Abstract: Given any sequence a = (an)n≥1 of positive real numbers and any set E of complex
sequences, we can use Ea to represent the set of all sequences y = (yn)n≥1 such that y/a =

(yn/an)n≥1 ∈ E. In this paper, we use the spaces w∞, w0 and w of strongly bounded, summable
to zero and summable sequences, which are the sets of all sequences y such that

(
n−1 ∑n

k=1|yk|
)

n
is bounded and tends to zero, and such that y− le ∈ w0, for some scalarl . These sets were used
in the statistical convergence. Then we deal with the solvability of each of the SSIE F∆ ⊂ E + F′x,
where E is a linear space of sequences, F = c0, c, `∞, w0, w or w∞, and F′ = c0, c or `∞. For
instance, the solvability of the SSIE w∆ ⊂ w0 + s(c)x relies on determining the set of all sequences
x = (xn)n≥1 ∈ U+ that satisfy the following statement. For every sequence y that satisfies the
condition limn→∞ n−1 ∑n

k=1|yk − yk−1 − l| = 0, there are two sequences u and v, with y = u + v such
that limn→∞ n−1 ∑n

k=1|uk| = 0 and limn→∞(vn/xn) = L for some scalars l and L.

Keywords: BK space; matrix transformations; multiplier of sequence spaces; sequence spaces inclu-
sion equations

MSC: 40C05; 46A45

1. Introduction

We write ω for the set of all complex sequences y = (yk)k≥1, `∞, c and c0 for the sets of
all bounded, convergent and null sequences, respectively; and `p =

{
y ∈ ω : ∑∞

k=1|yk|p < ∞
}

for 1 ≤ p < ∞. If y, z ∈ ω, then we write yz = (ynzn)n≥1. Let U = {y ∈ ω : yn 6= 0};
U+ = {y ∈ ω : yn > 0}. We write z/u = (zn/un)n≥1 for all z ∈ ω and all u ∈ U, in partic-
ular, 1/u = e/u, where e is the sequence with en = 1 for all n. Finally, if a ∈ U+ and E is
any subset of ω, then we put Ea = (1/a)−1 ∗ E = {y ∈ ω : y/a ∈ E}. Recall that the spaces
w∞ and w0 of strongly bounded sequences that are summable to zero sequences using the
Cesàro method, are the sets of all y such that

(
n−1 ∑n

k=1|yk|
)

n is bounded and tends to zero.
In this way, Hardy and Littlewood [1], defined the set w of strongly convergent sequences
using the Cesàro method for real numbers as follows. A sequence y is said to be strongly Cesàro
convergent to L, if y− Le ∈ w0. These spaces were studied by Maddox [2], Malkowsky
and Rakočević [3] and Malkowsky and Başar in [4]. In [5], we gave some properties of
well known operators defined by the sets Wa = (1/a)−1 ∗ w∞ and W0

a = (1/a)−1 ∗ w0. In
this paper, we deal with special sequence spaces inclusion equations (SSIE) (cf. [5,6]), which
are determined by an inclusion, for which each term is a sum or a sum of products of sets of
the form (Ea)T and

(
E f (x)

)
T

where f maps U+ to itself, E is any linear space of sequences

and T is a triangle. In [5], we dealt with the class of SSIE of the form F ⊂ Ea + F′x, where
F ∈ {c0, `p, w0, w∞}, and E and F′ are any of the sets c0, c, s1, `p, w0 or w∞ with p ≥ 1.
Then we stated some results on the solvability of the corresponding SSIE in the particular
case of when a = (rn)n, and we dealt with the case of when F = F′. Then we dealt with the
SSIE of the form F ⊂ Ea + F′x with e ∈ F, and we determined the solutions of these SSIE
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when a = (rn)n≥1, F is either c or s1, and E and F′ are any of the sets c0, c, s1, `p, w0 or w∞
with p ≥ 1. Then we solved each of the SSIE c ⊂ Dr ∗ E∆ + cx, with E ∈ {c0, c, s1}, and the
SSIE s1 ⊂ Dr ∗ (s1)∆ + sx. We also studied the SSIE c ⊂ Dr ∗ EC1 + s(c)x with E ∈ {c, s1} and
s1 ⊂ Dr ∗ (s1)C1

+ sx, where C1 is the Cesàro operator defined by (C1)ny = n−1 ∑n
k=1 yk for

all y, and we dealt with the solvability of the SSE associated with the previous SSIE and
defined by Dr ∗ EC1 + s(c)x = c with E ∈ {c0, c, s1} and Dr ∗ EC1 + sx = s1 with E ∈ {c, s1}.
In [6], we dealt with the solvability of the SSIE of the form `∞ ⊂ E + F′x where E is a
given linear space of sequences and F′ is either c0 or `∞. Then, for given linear space E of
sequences, we solved each of the SSIE c0 ⊂ E + sx and c ⊂ E + s(c)x and the SSE E + s(c)x = c.

In this paper, we use the difference sequence spaces (c0)∆, c∆ and (`∞)∆ introduced
by Kizmaz (cf. [7]), and we deal with the solvability of each of the SSIE

F∆ ⊂ E + F′x,

where F = c0, c, `∞, w0, w∞ or w; F′ = c0, c or `∞; and E is a linear space of sequences.
This paper is organized as follows. In Section 2, we recall some well known results on

sequence spaces and matrix transformations. In Section 3, we recall some results on the
multipliers of some sets. In Section 4, we recall some results used for the solvability of the
SSIE. In Section 5, we deal with the solvability of the SSIE with an operator to solve each of
the SSIE of the form c∆ ⊂ E + F′x, (c0)∆ ⊂ E + F′x and (`∞)∆ ⊂ E + F′x with F′ = c0, c or `∞.
In Section 6, we study each of the SSIE (w∞)∆ ⊂ E + F′x, where F′ = c0, c or `∞. Finally, in
Section 7, we study the solvability of the SSIE F∆ ⊂ E + F′x where F = w0 or w, and F′ = c0,
c or `∞.

2. Preliminaries and Notation

An FK space is a complete metric space, for which convergence implies coordinatewise
convergence. A BK space is a Banach space of sequences that is an FK space. A BK space E
is said to have AK if for every sequence y = (yk)k≥1 ∈ E, then y = limp→∞ ∑

p
k=1 yke(k), where

e(k) = (0, . . . , 1, . . . ), 1 being in the k− th position.
For a given infinite matrix A = (ank)n,k≥1 we define the operators An = (ank)k≥1

for any integer n ≥ 1, by Any = ∑∞
k=1 ankyk, where y = (yk)k≥1, and the series are

assumed to be convergent for all n. Hence, we are led to the study of the operator A
defined by Ay = (Any)n≥1 mapping between sequence spaces. When A maps E onto
F, where E and F are subsets of ω, we write A ∈ (E, F) (cf. [2,8–10]). It is well known
that if E has AK, then the set B(E) of all bounded linear operators L mapping onto E, with
norm ‖L‖ = supy 6=0(‖L(y)‖E/‖y‖E), satisfies the identity B(E) = (E, E). We denote by
ω, c0, c and `∞ the sets of all sequences, and the sets of null, convergent and bounded
sequences. For any subset F of ω, we write FA = {y ∈ ω : Ay ∈ F}, and for any subset E
of ω we write AE = {y ∈ ω : there is x ∈ E such that y = Ax}. Then, for given sequence
u ∈ ω we define the diagonal matrix Du by [Du]nn = un for all n. It is interesting to
rewrite the set Eu using a diagonal matrix. Let E be any subset of ω and u ∈ U+ we
have Eu = Du ∗ E = {y = (yn)n≥1 ∈ ω : y/u ∈ E}. We use the sets s0

a, s(c)a and sa defined
as follows (cf. [5], p. 160). For a given a ∈ U+ we put Da ∗ c0 = s0

a, Da ∗ c = s(c)a and
Da ∗ `∞ = sa. We frequently write ca instead of s(c)a to simplify. Each of the spaces Da ∗ E,
where E ∈ {c0, c, `∞} is a BK space normed by ‖y‖sa

= supn≥1(|yn|/an) and s0
a has AK. If

a = (Rn)n≥1 with R > 0, then we write sR, s0
R and s(c)R , for the sets sa, s0

a and s(c)a , respectively.

We can also write DR for D(Rn)n≥1
. When R = 1, we obtain s1 = `∞, s0

1 = c0 and s(c)1 = c.
Recall that S1 = (s1, s1) is a Banach algebra and (c0, s1) = (c, `∞) = (s1, s1) = S1. We have
A ∈ S1 if and only if supn(∑

∞
k=1|ank|) < ∞. Recall the Schur’s result (cf. [10], Theorem

1.17.8, p. 15) on the class (s1, c). We have A ∈ (s1, c) if and only if limn→∞ ank = lk for
some scalar lk, k = 1, 2, . . . , and limn→∞ ∑∞

k=1|ank| = ∑∞
k=1|lk|, where the series ∑∞

k=1|lk|
is convergent.
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We also use the following known lemmas, where the infinite matrix T is said to be a
triangle, if Tnk = 0 for k > n and Tnn 6= 0 for all n.

Lemma 1. Let T ′ and T ′′ be any given triangles, and let E, F ⊂ ω. Then, for any given operator
T represented by a triangle we have T ∈ (ET ′ , FT ′′) if and only if T ′′T T ′−1 ∈ (E, F).

By taking T′ = D1/a and T ′′ = Db for a, b ∈ U+ we obtain the next well-known result.

Lemma 2. Let a, b ∈ U+, and let E, F ⊂ ω be any linear spaces. We have A ∈ (Ea, Fb) if and
only if D1/b ADa ∈ (E, F).

3. On the Triangle C(λ) and on the Multipliers of Special Sets

In this section, we define the spaces of strongly bounded and summable sequences by the
Cesàro method. Then we recall some results on the multipliers of sequence spaces involving
the previous spaces.

3.1. On the Triangles C(λ) and ∆(λ) and the Sets w0, w and w∞

For λ ∈ U, the infinite matrices C(λ) and ∆(λ) are triangles defined as follows. We
have [C(λ)]nk = 1/λn for k ≤ n; this triangle was used, for instance, in [5]; see also the
Rhaly matrix studied by [11,12]). Then, the nonzero entries of ∆(λ) are determined by
[∆(λ)]nn = λn for all n, and [∆(λ)]n,n−1 = −λn−1 for all n ≥ 2. It can be shown that the
matrix ∆(λ) is the inverse of C(λ); that is, C(λ)(∆(λ)y) = ∆(λ)(C(λ)y) = y for all y ∈ ω.
If λ = e we obtain the well known operator of the first difference represented by ∆(e) = ∆.
We then have ∆ny = yn− yn−1 for all n ≥ 1, with the convention y0 = 0. We have Σ = C(e)
and then, we may write C(λ) = D1/λΣ. Note that ∆ = Σ−1. The Cesàro operator is defined
by C1 = C

(
(n)n≥1

)
. In the following, we use the inverse of C1 defined by C−1

1 = ∆(λ)
where λ = (n)n≥1. We use the set of sequences that are a−strongly bounded and a−strongly
convergent to zero, defined for a ∈ U+ by Wa =

{
y ∈ ω : supn

(
n−1 ∑n

k=1|yk|/ak
)
< ∞

}
, and

W0
a =

{
y ∈ ω : limn→∞

(
n−1 ∑n

k=1|yk|/ak
)
= 0

}
(cf. [5], p. 202). For a = (rn)n≥1 the sets

Wa and W0
a are denoted by Wr and W0

r . For r = 1 we obtain the well-known spaces w∞ and
w0 of strongly bounded and strongly null sequences by the Cesàro method (cf. [13]).

3.2. On the Multipliers of Some Sets

First, we need to recall some well known results. Let y and z be sequences, and let
E and F be two subsets of ω. We then write M(E, F) = {y ∈ ω : yz ∈ F for all z ∈ E}; the
set M(E, F) is called the multiplier space of E and F. We will use the next lemmas.

Lemma 3. Let E, Ẽ, F and F̃ be arbitrary subsets of ω. Then (i) M(E, F) ⊂ M
(

Ẽ, F
)

for all

Ẽ ⊂ E. (ii) M(E, F) ⊂ M
(

E, F̃
)

for all F ⊂ F̃.

Lemma 4. Let a, b ∈ U+ and let E and F be two subsets of ω. Then we have Da ∗ E ⊂ Db ∗ F if
and only if a/b ∈ M(E, F).

From Lemma 2 we obtain the next result.

Lemma 5. (ref. [5], Corollary, 4.1, p. 161) Let a, b ∈ U+. Then we have: (i) M
(
s0

a, χ′b
)
= sb/a

where χ′ is any of the symbols s0, s(c) or s. (ii) M(χa, sb) = sb/a where χ is any of the symbols s(c)

or s. (iii) M
(

sa, s(c)b

)
= M

(
sa, s0

b
)
= s0

b/a and M
(

s(c)a , s(c)b

)
= s(c)b/a.

In the following, we use the results stated below (cf. [5], Lemma 5.7, p. 233).

Lemma 6. We have: (i) (a) M(c, c0) = M(`∞, c) = M(`∞, c0) = c0 and M(c, c) = c. (b)
M(E, `∞) = M(c0, F) = `∞ for E, F = c0, c or `∞. (ii) (a) M(w∞, `∞) = M(w0, F) = s(1/n)n≥1
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for F = c0, c or `∞. (b) M(w∞, c0) = M(w∞, c) = s0
(1/n)n≥1

. (c) M(E, w0) = w0 for E = s1 or

c. (d) M(E, w∞) = w∞ for E = c0, s1 or c.

To state results on the multipliers involving the set w, we need the next elementary lemmas.

Lemma 7. We have w ⊂ s0
(n)n≥1

.

Proof. Let y ∈ w. Then, by the inequality n−1|yn − l| ≤ n−1 ∑n
k=1|yk − l| for some scalar

l and for all n, we deduce n−1|yn − l| → 0 (n→ ∞), and since n−1|yn| ≤ n−1|yn − l|+
n−1|l| we conclude y ∈ s0

(n)n≥1
and w ⊂ s0

(n)n≥1
.

Lemma 8. We have M(w, `∞) = M(w, c) = M(w, c0) = s(1/n)n≥1
.

Proof. By Lemma 7, we have M
(

s0
(n)n≥1

, c0

)
⊂ M(w, c0) and by Part (i) of Lemma 5 we have

s(1/n)n≥1
= M

(
s0
(n)n≥1

, c0

)
⊂ M(w, c0). Then, using Part (ii) (a) of Lemma 6, we conclude

s(1/n)n≥1
⊂ M(w, c0) ⊂ M(w, c) ⊂ M(w, `∞) ⊂ M(w0, `∞) = s(1/n)n≥1

,

This completes the proof.

Remark 1. It can easily be shown that M(w0, w∞) = M(w∞, w∞) = `∞.

4. On the Sequence Spaces Inclusions

In this section, we are interested in the study of the set of all positive sequences x
that satisfy the inclusion F ⊂ E + F′x where E , F and F′ are linear spaces of sequences. We
may consider this problem as a perturbation problem. If we know the set M(F, F′), then the
solutions of the elementary inclusion F′x ⊃ F are determined by 1/x ∈ M(F, F′). Now, the
question is: Let E be a linear space of sequences. What are the solutions of the perturbed
inclusion F′x + E ⊃ F? An additional question may be the following one: what are the
conditions on E under which the solutions of the elementary and the perturbed inclusions
are the same ?

4.1. Some Definitions and Results Used for the Solvability of Some SSIE

In the following, we use the notation I(E , F, F′) = {x ∈ U+ : F ⊂ E + F′x}, where E , F
and F′ are linear spaces of sequences and a ∈ U+. We can state the next elementary results.

Lemma 9. Let E , E1, F, F′, F and F′′ be linear spaces of sequences. Then we have: (i) If E1 ⊂ E ,
then I(E1, F, F′) ⊂ I(E , F, F′). (ii) If F ⊂ F, then I(E , F, F′) ⊂ I(E ,F , F′). (iii) If F′ ⊂ F′′,
then I(E , F, F′) ⊂ I(E , F, F′′).

For any set χ of sequences we let χ = {x ∈ U+ : 1/x ∈ χ}. Then we write Φ =
{c0, c, `∞, w0, w, w∞}. By c(1) we define the set of all sequences α ∈ U+ that satisfy the
condition limn→∞ αn = 1. Then we consider the condition

G ⊂ G1/α for all α ∈ c(1), (1)

for any given linear space G of sequences. Notice that condition (1) is satisfied for all G ∈ Φ.
Then we denote by U+

1 the set of all sequences α with 0 < αn ≤ 1 for all n. We consider
the condition

G ⊂ G1/α for all α ∈ U+
1 . (2)

for any given linear space G of sequences. To show some results on the SSIE, we introduce
a linear space of sequences H which contains the spaces E and F′ and we will use the
fact that if H satisfies the condition in (2) then we have Ha + Hb = Ha+b for all a, b ∈ U+
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(cf. [5], Lemma 4.4, p. 162). Notice that c does not satisfy this condition, but each of
the sets c0, `∞, `p, w0 and w∞ satisfies the condition in (2). Thus we have, for instance,
s0

a + s0
b = s0

a+b and Wa + Wb = Wa+b.

4.2. Some Properties of the Set I(E , F, F′)
We need the next lemma involving the multiplier of F and F′, which is an extension of

Lemma 9.

Lemma 10. Let E , E0, F, F and F′ be linear spaces of sequences. Then we have: (i) M(F, F′) ⊂
I(E , F, F′). (ii) If I(E0, F, F′) ⊂ M(F, F′), for any linear space of sequences E ⊂ E0, then
I(E , F, F′) = M(F, F′). (iii) If I(E ,F , F′) ⊂ M(F, F′), for some linear space of sequences
F ⊂ F, then I(E , F, F′) = M(F, F′).

Proof. (i) Let x ∈ M(F, F′). Then, we successively obtain 1/x ∈ M(F, F′), F ⊂ F′x, F ⊂
E + F′x and x ∈ I(E , F, F′). This implies M(F, F′) ⊂ I(E , F, F′), and (i) holds. (ii) We have
I(E , F, F′) ⊂ I(E0, F, F′) ⊂ M(F, F′) and we conclude by (i) that I(E , F, F′) = M(F, F′).
Part (iii) follows from the inclusions M(F, F′) ⊂ I(E , F, F′) ⊂ I(E ,F , F′) ⊂ M(F, F′).

5. On the Solvability of the SSIE with Operator of the form F∆ ⊂ E + F′x , Where F,
F′ ∈ {c0, c, `∞}

In this section, we determine multipliers involving some difference sequence spaces.
Then we state a general result on the solvability of the SSIE with operator F∆ ⊂ E + F′x with
e ∈ F. Then we apply these results to solve each of the SSIE c∆ ⊂ E + F′x and (c0)∆ ⊂ E + F′x
and (`∞)∆ ⊂ E + F′x with F′ = c0, c or `∞.

5.1. On the Multipliers of the form M(X∆, Y) Where X, Y ∈ {c0, c, `∞}
In all that follows, for a ∈ U+, we use the triangle DaΣ, whose the nonzero entries are

defined by (DaΣ)nk = an for k ≤ n. We have (DaΣ)ny = an ∑n
k=1 yk for all y ∈ ω and for

all n. This triangle is also called the Rhaly matrix (cf. [11,12]). We obtain some results on
the multipliers involving the sets of the difference sequence spaces (c0)∆, c∆ and (`∞)∆
introduced by Kizmaz (cf. [7]; see also [14]), and stated in the next lemma.

Lemma 11. (i) M((c0)∆, Y) = s(1/n)n≥1
where Y = c0, c or `∞. (ii) M(c∆, c0) = s0

(1/n)n≥1
,

M(c∆, c) = s(c)
(1/n)n≥1

and M(c∆, `∞) = s(1/n)n≥1
. (iii) M((`∞)∆, c0) = M((`∞)∆, c) =

s0
(1/n)n≥1

and M((`∞)∆, `∞) = s(1/n)n≥1
.

Proof. Part (i) follows from the proof of [5], Proposition 6.8, p. 289. (ii) We have a ∈
M(c∆, c0) if and only if DaΣ ∈ (c, c0) and by the characterization of (c, c0) we have
nan → 0 (n→ ∞) and a ∈ s0

(1/n)n≥1
. In the same way, we have a ∈ M(c∆, c) if and

only if DaΣ ∈ (c, c), and by the characterization of (c, c) we obtain a ∈ s(c)
(1/n)n≥1

. The

identity M(c∆, `∞) = s(1/n)n≥1
can be obtained using similar arguments. (iii) We show

M((`∞)∆, c) ⊂ s0
(1/n)n≥1

. For this, let a ∈ M((`∞)∆, c). Then we have DaΣ ∈ (`∞, c)

which implies DaΣ ∈ (c, c) and (nan)n≥1 ∈ c. This implies limn→∞ an = 0, and by
the Schur theorem we obtain limn→∞(|an|∑n

k=1 1) = 0 and a ∈ s0
(1/n)n≥1

. Thus we

have shown the inclusion M((`∞)∆, c) ⊂ s0
(1/n)n≥1

. Now, it can easily be seen that

D(1/n)n≥1
Σ ∈ (`∞, `∞) which implies (`∞)∆ ⊂ s(n)n≥1

, and using Lemma 5, we obtain

s0
(1/n)n≥1

= M
(

s(n)n≥1
, c0

)
⊂ M((`∞)∆, c0). Thus we have shown the inclusions s0

(1/n)n≥1
⊂

M((`∞)∆, c0) ⊂ M((`∞)∆, c) ⊂ s0
(1/n)n≥1

and we conclude M((`∞)∆, c0) = M((`∞)∆, c) =

s0
(1/n)n≥1

. Using (ii) and the inclusion (`∞)∆ ⊂ s(n)n≥1
, we can obtain
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s(1/n)n≥1
= M

(
s(n)n≥1

, `∞

)
⊂ M((`∞)∆, `∞) ⊂ M(c∆, `∞) = s(1/n)n≥1

and the identity M((`∞)∆, `∞) = s(1/n)n≥1
holds. This completes the proof.

5.2. General Result on the Solvability of the SSIE with Operator F∆ ⊂ E + F′x with e ∈ F

In the following, we use the next result.

Theorem 1. Let F, F′ and E be linear spaces of sequences. Assume e ∈ F, E ⊂ s0
(n)n≥1

and that F′

satisfies the condition in (1). Then, the set I(E , F∆, F′) of all the positive solutions x = (xn)n≥1 of
the SSIE F∆ ⊂ E + F′x satisfies the inclusion I(E , F∆, F′) ⊂ F′

(1/n)n≥1
. Moreover, if F′(1/n)n≥1

⊂
M(F∆, F′) then

I
(
E , F∆, F′

)
= F′

(1/n)n≥1
. (3)

Proof. Let x ∈ I(E , F∆, F′). Then we have F∆ ⊂ E + F′x, and since e ∈ F, we have
(n)n≥1 ∈ F∆, and there are α ∈ E and ϕ ∈ F′ such that n = αn + xn ϕn for all n. Then
we have n

xn

(
1− αn

n

)
= ϕn for all n,

and the condition E ⊂ s0
(n)n≥1

implies limn→∞ αn/n = 0. Since F′ satisfies the condition

in (1), we obtain (n/xn)n≥1 ∈ F′ and x ∈ F′
(1/n)n≥1

. Thus we have shown the inclusion

I(E , F∆, F′) ⊂ F′
(1/n)n≥1

. Using Part (i) of Lemma 10, where M(F∆, F′) ⊂ I(E , F∆, F′), we

conclude F′
(1/n)n≥1

⊂ I(E , F∆, F′). This completes the proof.

5.3. Solvability of the SSIE c∆ ⊂ E + F′x Where F′ = c0, c or `∞

As a direct consequence of Theorem 1 and Lemma 11, we obtain the following results
on the sets of all positive sequences x = (xn)n≥1 that satisfy each of the SSIE with operator
c∆ ⊂ E + F′x with F′ = c0, c or `∞.

Theorem 2. Let E ⊂ s0
(n)n≥1

be a linear space of sequences. We have

I
(
E , c∆, F′

)
=


s0
(1/n)n≥1

for F′ = c0,

s(c)
(1/n)n≥1

for F′ = c,

s(1/n)n≥1
for F′ = `∞.

Proof. The result follows from Part (ii) of Lemma 11 and Theorem 1, where F = c, and
F′ = c0, c and `∞ respectively.

We may state some immediate applications of Theorem 2.

Example 1. Using Lemma 10 and Theorem 2, it can easily be seen that the sets of the positive
solutions x = (xn)n≥1 of each of the SSIE with operator, c∆ ⊂ `∞ + s(c)x and c∆ ⊂ c + s(c)x and

c∆ ⊂ (c0)∆ + s(c)x , are determined by (n/xn)n≥1 ∈ c. Then, the solutions of each of the SSIE
c∆ ⊂ (c0)∆ + s0

x, c∆ ⊂ `∞ + s0
x and c∆ ⊂ c + s0

x are determined by n/xn → 0 (n→ ∞). In a
similar way, the solutions of each of the SSIE c∆ ⊂ (c0)∆ + sx, c∆ ⊂ `∞ + sx and c∆ ⊂ c + sx are
determined by (n/xn)n≥1 ∈ `∞.

Example 2. It can easily be seen that w0 ⊂ s0
(n)n≥1

. This implies that the set of all sequences

x = (xn)n≥1 ∈ U+ that satisfy the SSIE with operator c∆ ⊂ w0 + s0
x is determined by n/xn → 0

(n→ ∞).
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Example 3. The set of all positive sequences that satisfy the SSIE c∆ ⊂ cC1 + s0
x is determined

by I
(
cC1 , c∆, c0

)
= s0

(1/n)n≥1
. Then, the set of all positive sequences that satisfy the SSIE c∆ ⊂

cC1 + sx is determined by I
(
cC1 , c∆, `∞

)
= s(1/n)n≥1

.

5.4. Solvability of the SSIE of the Form (c0)∆ ⊂ E + F′x.

In this part, Theorem 1 cannot be applied since e /∈ c0. Thus, we need to use some
results stated in Section 4.

Theorem 3. Let E ⊂ sθ for some θ ∈ s0
(n)n≥1

be a linear space of sequences, and let F′ = c0, c or

`∞. Then, the set of all the solutions of the SSIE (c0)∆ ⊂ E + F′x is determined by I(E , (c0)∆, F′) =
s(1/n)n≥1

.

Proof. Let x ∈ I(E , (c0)∆, F′) where F′ = c0, c or `∞. Then we have (c0)∆ ⊂ E + F′x, and
since F′ ⊂ s1 and s1 satisfies the condition in (2), we obtain E + F′x ⊂ sθ + sx = sθ+x and
(c0)∆ ⊂ sθ+x. Then we have D1/(θ+x)Σ ∈ (c0, s1), and by the characterization of (c0, s1)

we have n/(θn + xn) = O(1) (n→ ∞). Using the inclusion E ⊂ sθ with θ ∈ s0
(n)n≥1

, we

have n/xn = O(1) (n→ ∞), that is, x ∈ s(1/n)n≥1
. We conclude I(E , (c0)∆, F′) ⊂ s(1/n)n≥1

.
The converse follows from Theorem 1 and Part (i) of Lemma 11, where M((c0)∆, s1) =
s(1/n)n≥1

.

Example 4. By Theorem 3 with θ = e, we deduce that the set of all positive sequences x = (xn)n≥1
that satisfy the SSIE (c0)∆ ⊂ `∞ + F′x is determined by I(`∞, (c0)∆, F′) = s(1/n)n≥1

for F′ = c0,
c or `∞.

We consider another example, where bvp = `
p
∆ with p > 1 is the set of p−bounded

variations (cf. [14]).

Example 5. Let p > 1. The set bvp = `
p
∆ satisfies the inclusion bvp ⊂ sθ if and only if

D1/θΣ ∈ (`p, s1). By the characterization of (`p, s1) (cf. [3], Theorem 1.37, p. 161) we obtain(
n/θ

q
n

)
n≥1
∈ `∞. We may take θn = n1/q with q = p/(p− 1), which implies θ ∈ s0

(n)n≥1
, and

by Theorem 3 we conclude that the set of all positive sequences x = (xn)n≥1 that satisfy the SSIE
(c0)∆ ⊂ bvp + F′x is determined by I

(
bvp, (c0)∆, F′

)
= s(1/n)n≥1

for F′ = c0, c or `∞.

5.5. Solvability of the SSIE of the Form bv∞ ⊂ E + F′x
In this part, we use the notation bv∞ for the difference sequence space (`∞)∆ (cf. [14])

and we study each of the SSIE bv∞ ⊂ E + F′x, where F′ ∈ {c0, c, `∞}.

Theorem 4. Let E ⊂ s0
(n)n≥1

be a linear space of sequences. Then, the sets of all positive sequences

x = (xn)n≥1 that satisfy each of the SSIE bv∞ ⊂ E + sx, bv∞ ⊂ E + s0
x and bv∞ ⊂ E + s(c)x are

determined by

I(E , bv∞, `∞) = s(1/n)n≥1
and I(E , bv∞, c0) = I(E , bv∞, c) = s0

(1/n)n≥1
.

Proof. First, we show the identities I(E , bv∞, `∞) = s(1/n)n≥1
and I(E , bv∞, c0) = s0

(1/n)n≥1
.

From Theorem 1, where E = s0
(n)n≥1

, F = `∞ and F′ = `∞ and c0, respectively, we obtain

I(E , bv∞, `∞) ⊂ s(1/n)n≥1
and I(E , bv∞, c0) ⊂ s0

(1/n)n≥1
. Then, by Part (iii) of Lemma 11,

we have M(bv∞, `∞) = s(1/n)n≥1
and M(bv∞, c0) = s0

(1/n)n≥1
and we conclude by Part (iii)

of Lemma 10. Now we show the identity I(E , bv∞, c) = s0
(1/n)n≥1

. For this, we let x ∈
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I(E , (`∞)∆, c). Then we have (`∞)∆ ⊂ s0
(n)n≥1

+ s(c)x , and by Theorem 1, where E = s0
(n)n≥1

,

F = `∞ and F′ = c, we have I(E , (`∞)∆, c) ⊂ s(c)
(1/n)n≥1

and (n/xn)n≥1 ∈ c. Now, we show

the inclusion (`∞)∆ ⊂ s(c)
(n+xn)n≥1

. We have s0
(n)n≥1

⊂ s(c)
(n+xn)n≥1

since n/(n + xn) = O(1)

(n→ ∞).
Then we have

xn

n + xn
=

1
n
xn

+ 1
for all n,

and as we have just seen, we have limn→∞ n/xn = l for some scalar l and

lim
n→∞

1
n
xn

+ 1
=

1
l + 1

> 0.

Thus, we have shown the inclusion s(c)x ⊂ s(c)
(n+xn)n≥1

. These statements imply the

inclusions (`∞)∆ ⊂ s0
(n)n≥1

+ s(c)x ⊂ s(c)
(n+xn)n≥1

and since M((`∞)∆, c) = s0
(1/n)n≥1

we obtain

(1/(n + xn))n≥1 ∈ s0
(1/n)n≥1

. Then we have n/(n + xn)→ 0 (n→ ∞) and (n/xn)n≥1 ∈ c0,

and we have shown the inclusion I(E , (`∞)∆, c) ⊂ s0
(1/n)n≥1

. Finally, since M((`∞)∆, c) =

s0
(1/n)n≥1

, by Part (i) of Lemma 10, we conclude I(E , (`∞)∆, c) = s0
(1/n)n≥1

. This completes

the proof.

We obtain the following result, where bs = (`∞)Σ is the set of all bounded series.

Example 6. The solutions of each of the SSIE bv∞ ⊂ `∞ + s(c)x and bv∞ ⊂ bs + s(c)x are deter-
mined by I(`∞, bv∞, c) = I(bs, bv∞, c) = s0

(1/n)n≥1
.

By using similar arguments as in Example 5, we obtain the following result.

Corollary 1. Let p ≥ 1. The solutions of the SSIE bv∞ ⊂ bvp + s(c)x are determined by
I
(
bvp, bv∞, c

)
= s0

(1/n)n≥1
.

6. Solvability of the SSIE of the Form (w∞)∆ ⊂ E + F′x
In this part, we deal with each of the SSIE with operators of the form (w∞)∆ ⊂ E + s0

x,

(w∞)∆ ⊂ E + sx and (w∞)∆ ⊂ E + s(c)x . For instance, the solvability of the SSIE (w∞)∆ ⊂
s0
(n)n≥1

+ sx consists of determining the set of all positive sequences x = (xn)n≥1 that

satisfy the next statement. For every y such that n−1 ∑n
k=1|yk − yk−1| = O(1) there are two

sequences u and v with y = u + v where limn→∞ un/n = 0 and vn/xn = O(1) (n→ ∞).

6.1. Determination of the Sets M((w∞)∆, Y) with Y ∈ {c0, c, `∞}
We state the next Lemma.

Lemma 12. We have (i) M((w∞)∆, s1) = s(1/n)n≥1
and (ii) M((w∞)∆, c0) = M((w∞)∆, c) =

s0
(1/n)n≥1

.

Proof. (i) We have ∆ ∈ (w∞, w∞) which implies w∞ ⊂ (w∞)∆ and M((w∞)∆, s1) ⊂
M(w∞, s1) = s(1/n)n≥1

. Then we have w∞ ⊂ (`∞)C1
and (w∞)∆ ⊂

[
(`∞)C1

]
∆

and since

C1∆ = D(1/n)n≥1
Σ∆ = D(1/n)n≥1

I = D(1/n)n≥1
we obtain (w∞)∆ ⊂ (`∞)D(1/n)n≥1

= s(n)n≥1
.

Then, by Part (ii) of Lemma 5, we obtain s(1/n)n≥1
= M

(
s(n)n≥1

, s1

)
⊂ M((w∞)∆, s1).
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Thus we have shown the identity M((w∞)∆, s1) = s(1/n)n≥1
. (ii) First, we show the in-

clusion s0
(1/n)n≥1

⊂ M((w∞)∆, c0). As we have just seen, we have (w∞)∆ ⊂ s(n)n≥1
and

s0
(1/n)n≥1

= M
(

s(n)n≥1
, c0

)
⊂ M((w∞)∆, c0). Then, by the inclusion if w∞ ⊂ (w∞)∆ we

deduce M((w∞)∆, c0) ⊂ M(w∞, c0) = s0
(1/n)n≥1

, and we conclude that M((w∞)∆, c0) =

s0
(1/n)n≥1

. Now, we show the identity M((w∞)∆, c) = s0
(1/n)n≥1

. As above, the inclusion

of w∞ ⊂ (w∞)∆ implies M((w∞)∆, c) ⊂ M(w∞, c). Then, by Part (ii) (b) of Lemma 6, we
have M(w∞, c) = s0

(1/n)n≥1
and we obtain M((w∞)∆, c) ⊂ s0

(1/n)n≥1
. Using the identity

M((w∞)∆, c0) = s0
(1/n)n≥1

and the inclusion of M((w∞)∆, c0) ⊂ M((w∞)∆, c), we obtain

M((w∞)∆, c0) = M((w∞)∆, c) = s0
(1/n)n≥1

. This completes the proof.

6.2. Application to the Solvability of the SSIE of the form (w∞)∆ ⊂ E + F′x.

In the following theorem, we solve each of the SSIE (w∞)∆ ⊂ E + F′x, where F′ ∈
{c0, c, `∞}.

Theorem 5. Let E ⊂ s0
(n)n≥1

be a linear space of sequences. Then,

(i) The set of all positive sequences x = (xn)n≥1 that satisfy the SSIE (w∞)∆ ⊂ E + sx is
determined by I(E , (w∞)∆, s1) = s(1/n)n≥1

.
(ii) The sets of all positive sequences x = (xn)n≥1 that satisfy each of the SSIE (w∞)∆ ⊂

E + s0
x and (w∞)∆ ⊂ E + s(c)x are determined by

I(E , (w∞)∆, c0) = I(E , (w∞)∆, c) = s0
(1/n)n≥1

. (4)

Proof. (i) By Part (i) of Theorem 4 and since (`∞)∆ ⊂ (w∞)∆ we have I(E , (w∞)∆, s1) ⊂
I(E , (`∞)∆, s1) = s(1/n)n≥1

. Then, by Lemma 11 and Lemma 12, we have M((w∞)∆, s1) =

M((`∞)∆, s1) = s(1/n)n≥1
. We conclude by Part (i) of Lemma 10 that I(E , (w∞)∆, s1) =

s(1/n)n≥1
. (ii) From Part (ii) of Theorem 4 and Lemma 12, we obtain the next two statements:

s0
(1/n)n≥1

= M((w∞)∆, c0) ⊂ I(E , (w∞)∆, c0) and I(E , (w∞)∆, c0) ⊂ I(E , (w∞)∆, c) ⊂

I(E , (`∞)∆, c) = s0
(1/n)n≥1

. This implies the identities in (4) and completes the proof.

Example 7. Since w0 ⊂ s0
(n)n≥1

, the set of all positive sequences x = (xn)n≥1 that satisfy the

SSIE (w∞)∆ ⊂ w0 + sx is determined by xn ≥ Kn for all n and for some K > 0. Similarly, the
sets of all positive sequences x = (xn)n≥1 that satisfy the SSIE (w∞)∆ ⊂ w0 + s0

x is determined
by limn→∞ xn/n = ∞.

Example 8. By the characterization of (c, c0), we can see that D(1/n)n≥1
C−1

1 ∈ (c, c0), which
implies the inclusion cC1 ⊂ s0

(n)n≥1
. This implies that the solutions of the SSIE (w∞)∆ ⊂ cC1 + s0

x

are determined by limn→∞ xn/n = ∞.

In the following, we solve the SSIE (w∞)∆ ⊂ W0
r + s(c)x , where W0

r = Drw0 for
r > 0. This solvability consists of determining the set of all sequences x = (xn)n≥1 ∈
U+ that satisfy the following statement. For every sequence y = (yn)n≥1 for which
n−1 ∑n

k=1|yk − yk−1| ≤ K for some K > 0 and for all n, there are two sequences u and v,
with y = u + v such that n−1 ∑n

k=1|uk|/rk → 0 (n→ ∞) and limn→∞(vn/xn) = L for some
scalar L.

Corollary 2. Let r > 0. The set Iw
r of all the positive sequences x = (xn)n≥1 that satisfy the SSIE

(w∞)∆ ⊂W0
r + s(c)x is determined by Iw

r =

{
s0
(1/n)n≥1

if r ≤ 1,

U+ if r > 1.
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Proof. The inclusion W0
r ⊂ s0

(n)n≥1
holds if and only if (rn/n)n≥1 ∈ M(w0, c0), and from

the identity M(w0, c0) = s(1/n)n≥1
this inclusion holds for all r ≤ 1. Thus, by Theorem 5 we

have Iw
r = s0

(1/n)n≥1
for all r ≤ 1. Let r > 1. Then we have r−n ∑n

k=1 k = o(1) (n→ ∞) and

D1/rΣ ∈
(

s(n)n≥1
, c0

)
. Since

(
s(n)n≥1

, c0

)
⊂ (w∞, w0) this implies D1/rΣ ∈ (w∞, w0) and

the inclusion (w∞)∆ ⊂W0
r holds for all r > 1. This completes the proof.

7. On the Solvability of the SSIE of the Form F∆ ⊂ E + F′x Involving the Sets w0, or w

In this section, we determine the multipliers M(w∆, Y) and M((w0)∆, Y) where
Y = c0, c or `∞. Then we apply these results to the solvability of the SSIE with opera-
tor F∆ ⊂ E + F′x where F = w0 or w and F′ = c0, c or `∞.

7.1. On the Multipliers of the form M(w∆, Y) and M((w0)∆, Y)
In this part, we determine the multipliers M(w∆, Y) and M((w0)∆, Y) where Y = c0,

c, or `∞.

Lemma 13. (i) M((w0)∆, Y) = s(1/n)n≥1
for Y = c0, c or `∞. (ii) (a) M(w∆, c0) = s0

(1/n)n≥1
, (b)

M(w∆, c) = s(c)
(1/n)n≥1

and (c) M(w∆, `∞) = s(1/n)n≥1
.

Proof. Part (i) follows from the proof of [5], Proposition 6.10, p. 291. (ii) (a) We show
M(w∆, c0) = s0

(1/n)n≥1
. Since c ⊂ w, c∆ ⊂ w∆, and by Part (i) we obtain M(w∆, c0) ⊂

M(c∆, c0) = s0
(1/n)n≥1

. Then, by Part (ii) of Lemma 12, we have M((w∞)∆, c0) = s0
(1/n)n≥1

and by Part (iii) of Lemma 5, the inclusion of w∆ ⊂ (w∞)∆ implies s0
(1/n)n≥1

= M((w∞)∆, c0)

⊂ M(w∆, c0). Thus we have shown M(w∆, c0) = s0
(1/n)n≥1

. (ii) (b) We show M(w∆, c) =

s(c)
(1/n)n≥1

. We have c∆ ⊂ w∆, and by Part (ii) of Lemma 11, we obtain M(w∆, c) ⊂ M(c∆, c) =

s(c)
(1/n)n≥1

. Then we show the inclusion s(c)
(1/n)n≥1

⊂ M(w∆, c). We have w ⊂ cC1 and

w∆ ⊂
(
cC1

)
∆, and since C1∆ = D(1/n)n≥1

we obtain
(
cC1

)
∆ = s(c)

(n)n≥1
and we conclude w∆ ⊂

cD(1/n)n≥1
= s(c)

(n)n≥1
. Then, by Part (iii) of Lemma 5, we have s(c)

(1/n)n≥1
= M

(
s(c)
(n)n≥1

, c
)
⊂

M(w∆, c) and we have shown the identity M(w∆, c) = s(c)
(1/n)n≥1

. (ii) (c) From Part (i) and

Lemma 12, we obtain

s(1/n)n≥1
= M((w∞)∆, `∞) ⊂ M(w∆, `∞) ⊂ M((w0)∆, `∞) = s(1/n)n≥1

.

This shows the identity M(w∆, `∞) = s(1/n)n≥1
. This completes the proof.

7.2. Application to the Solvability of the SSIE F∆ ⊂ E + F′x where F = w0 or w and F′ = c0, c
or `∞

In this part, under some conditions on E we solve each of the SSIE with operator
(1) (w0)∆ ⊂ E + s0

x, (2) (w0)∆ ⊂ E + s(c)x , (3) (w0)∆ ⊂ E + sx and (1’) w∆ ⊂ E + s0
x, (2’)

w∆ ⊂ E + s(c)x , (3’) w∆ ⊂ E + sx.
We can state the following theorem.

Theorem 6. Let E be a linear space of sequences. Then we have:
(i) Assume E ⊂ sθ for some θ ∈ s0

(n)n≥1
. Then I(E , (w0)∆, F′) = s(1/n)n≥1

for F′ = c0, c
or `∞.

(ii) Assume E ⊂ s0
(n)n≥1

. Then (a) I(E , w∆, c0) = s0
(1/n)n≥1

, (b) I(E , w∆, c) = s(c)
(1/n)n≥1

and (c) I(E , w∆, `∞) = s(1/n)n≥1
.
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Proof. (i) By Part (i) of Lemma 13 we have s(1/n)n≥1
= M((w0)∆, c0), and by Part (i) of

Lemma 10 we have s(1/n)n≥1
⊂ I(E , (w0)∆, c0). Then, by the inclusion (c0)∆ ⊂ (w0)∆ and

using Theorem 3, we have I(E , (w0)∆, `∞) ⊂ I(E , (c0)∆, `∞) = s(1/n)n≥1
. We conclude

s(1/n)n≥1
⊂ I(E , (w0)∆, c0) ⊂ I(E , (w0)∆, c) ⊂ I(E , (w0)∆, `∞) ⊂ s(1/n)n≥1

and we have shown (i). Part (ii) follows from including M(w∆, F′) ⊂ I(E , w∆, F′) ⊂
I(E , c∆, F′) = M(c∆, F′), and from Part (ii) of Lemma 13 and Part (ii) of Lemma 11, where
we have M(w∆, F′) = M(c∆, F′) for F′ = c0, c or `∞.

Example 9. By Part (ii) of Theorem 6, the solutions of the SSIE w∆ ⊂ w0 + s(c)x are determined by
(n/xn)n≥1 ∈ c. As we have seen in Example 8, we have the inclusion cC1 ⊂ s0

(n)n≥1
, and by Part

(ii) (b) of Theorem 6, the solutions of the SSIE w∆ ⊂ cC1 + s(c)x are determined by (n/xn)n≥1 ∈ c.
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