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Abstract: Statistical monitoring tools are well established in the literature, creating organizational
cultures such as Six Sigma or Total Quality Management. Nevertheless, most of this literature is
based on the normality assumption, e.g., based on the law of large numbers, and brings limitations
towards truncated processes as open questions in this field. This work was motivated by the register
of elements related to the water particles monitoring (relative humidity), an important source of
moisture for the Copiapó watershed, and the Atacama region of Chile (the Atacama Desert), and
presenting high asymmetry for rates and proportions data. This paper proposes a new control
chart for interval data about rates and proportions (symbolic interval data) when they are not
results of a Bernoulli process. The unit-Lindley distribution has many interesting properties, such
as having only one parameter, from which we develop the unit-Lindley chart for both classical and
symbolic data. The performance of the proposed control chart is analyzed using the average run
length (ARL), median run length (MRL), and standard deviation of the run length (SDRL) metrics
calculated through an extensive Monte Carlo simulation study. Results from the real data applications
reveal the tool’s potential to be adopted to estimate the control limits in a Statistical Process Control
(SPC) framework.

Keywords: Symbolic Data Analysis (SDA) in Statistical Process Control (SPC); rates and proportions
data; unit-Lindley distribution; relative air humidity monitoring; Monte Carlo simulation

1. Introduction

Control charts are often applied to monitor processes in many fields, including ecol-
ogy [1], health [2] and industry [3]. This primary SPC tool is used for various types of
data, such as count [4], attributes [5] and rates/proportions [6]. The latter is a widespread
type of data, having applications in the most diverse areas, for example, climate [7] and
industry [8]. The most widely used control charts for this situation are the p and np charts,
but to use them, the process needs to be completed from Bernoulli experiments [9].

However, there are cases (i.e., processes) where rates and proportions are not results
from Bernoulli experiments (e.g., come from individual measures or continuous number ra-
tio), despite assuming values in the range (0, 1). For these processes, the p and np charts are
not applicable [7,10]. Therefore, it seeks alternatives, some of which are the beta [11], Ku-
maraswamy [7], simplex and unit-gamma [10] charts for monitoring fraction data, although
not suitable in all cases (e.g., overdispersion). Thus, this article will propose an interesting
and useful alternative to the previously mentioned control charts for monitoring processes
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with continuous data in the unit interval (e.g., rates, proportions or indices), the so-called
unit-Lindley chart. Other works, such as [12–15], explored the unit transformation and
showed the importance of the unit distributions class. Moreover, stochastic phenomena can
be approximated, with a clear advantage and simplicity grounds, by summarizing a large
quantity of data by a few numerical values, in the form of parametric models, enabling the
modeller to learn about observable phenomena [16].

Recently, [17] introduced a one-parameter continuous probability distribution defined
on the range (0, 1), which was named the unit-Lindley distribution. Such a model can
describe processes involving data on rates and proportions. It also features many attractive
properties, for example, a single parameter distribution (thus, more straightforward than
the previously mentioned two-parameter distributions, namely the beta, Kumaraswamy,
simplex, and unit-gamma models), a convenient reparameterization of the mean and
closed-form expression for the maximum likelihood estimator. Thus, the unit-Lindley
distribution motivated us to develop a new statistical control chart to monitor rates and
proportions. It is worth pointing out that the main aim of the proposed unit-Lindley chart
is to detect significant shifts in the process parameter (mean).

Our practical motivation came from monitoring the relative humidity in arid condi-
tions of the Atacama Desert, which presents extreme weather with a small precipitation
rate and high-temperature variation in the day regardless of the season. Three main cli-
matic features of this region can be highlighted: (i) the (cold) Humboldt Current in the
Pacific Ocean at the west; (ii) two mountain ranges: the Coastal range to the west, a part
of blocking the moisture coming from the Pacific Ocean, and the long and high Andes
mountain range to the east, which blocks the moisture coming from the Amazon Basin or
the Atlantic Ocean; and (iii) its localization in the air convection cells close to the tropic of
Capricorn (southern or tropical limit of the southern Hadley Cell, characterized by dry air).

Despite this arid environment, there is a particular phenomenon that will allow the
formation of the Camanchaca in some area (in the cities of Copiapó and Huasco): morning
and night sea mist (or fog), which will advance inland and penetrate deeply into the valleys
and can be a source of water [18] in a region that suffers scarcity of this resource. In a
simplified way, marine stratocumulus form over the Pacific Ocean, presenting, on the
Chilean coast, cold temperatures linked to the Humboldt Current [19]. This humid air is
limited in its convection by a low thermal inversion linked to a warm and dry air linked to
the tropical component of the Hadley Cell and located higher up than the colder air close
to the sea surface. Such phenomenon is characteristic of the morning and night, as the
temperatures are lower during that time and pass more easily below the dew point, which
corresponds to the condensation point of the water contained in the atmosphere. Then, the
clouds formed at low altitude can then, under the trade winds, enter deeply into the land
following the west-east oriented valleys.

A classical data representation is infeasible, requiring a symbolic data representation,
set-valued (interval or multi-valued) or modal (weight or probability distribution), contain-
ing more complex information of the phenomenon (humidity in hyper-arid conditions).
These variables are called “symbolic”, account for variability or uncertainty, making the
symbolic data analysis more comprehensive than classical data analyses [20,21], and shall
be extended for SPC reasoning. Thus, this paper proposes a new statistical methodology
to overcome the complexity of monitoring the humidity in Copiapó city, Chile, due it is
located in the Atacama Desert and most days present the Camanchaca phenomenon.

The remainder of this paper is organized as follows. Section 2 describes the practical
motivation and the data acquisition. In Section 3, we first revise the unit-Lindley distribu-
tion and some of its basic properties (Section 3.1), and then present the new control chart
based on this distribution (Section 3.2). Section 4 provides simulation studies designed
to assess the performance of the proposed unit-Lindley chart. Section 5 illustrates the
usefulness of the unit-Lindley chart through several examples. Finally, Section 6 concludes
the paper with a few remarks and discussions on future works.
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2. The Data

In the Atacama Desert, a north-south geographic band located mainly in northern
Chile, precipitation is only a few millimeters per year or sometimes non-existent, making
it one of the driest places on Earth [22,23]. However, the vast expanses of the desert are
punctuated by fertile valleys with rivers originating in the central Andes and flowing
into the Pacific Ocean. Along these rivers, human populations have settled historically,
exploiting more and more, this rare and precious water, especially with the growing
development of the monoculture and mining industry, logically interested in the special
weather conditions and the mineral resources of the Cordillera.

The hydrological regime of the principal rivers of Atacama is characterized by ice
sources: water flows from the peaks following the melting of snowfall, glaciers and
permafrost located in the upper parts of the Andes range [24,25]. In the context of climate
change, it is therefore essential to understand the hydrological cycle of these regions in order
to set up a sustainable management policy [26]. Understand the hydrological cycle requires
the implementation of tools for forecasting river flows, relative humidity, groundwater
reservoirs or any other water-related quantity monitoring, which inevitably needs an
in-depth knowledge of the physical phenomena that govern the entire hydrological cycle
and, more precisely, the complex interaction between atmosphere, climate, landforms, ice,
snow and river flows.

Whereas, an important event occurs in this area, where marine stratocumulus cloud
banks that form on the Chilean coast, called Camanchaca, which is daily the passageway of
“low clouds”, right after sunrise, sequentially for a couple of hours. This event is the source
of water for many types of flora and fauna in the Atacama desert.

For illustrating the relative humidity dynamics in the Atacama, were processed satel-
lite images acquired using MODIS (Moderate Resolution Imaging Spectroradiometer)
sensor from 2000 to 2020, this sensor is available in two satellites, these are Terra (daily
around 11:00 a.m. local time), as well as Aqua (around 3:00 p.m. local time). Figure 1
shows the statistical representation of the cloud occurrence over the Atacama region (Terra
MODIS in panel B, and Aqua MODIS in panel C, adopting the same colour scale), shaded
in dark-red for a high probability of cloud occurrence, and in beige for low probability. At
the same time, a high observation of cloud (moisture source) is noticeable from the Chilean
coast till the beginning of the highlands (this limit is evident in yellow), shown through the
digital elevation model for part of the Copiapó watershed presented in panel A.

Regarding the Camanchaca event, when monitoring the humidity in the Atacama
region of Chile, moreover, in Copiapó city, it is relevant to know that water is a scarce
element (as liquid or vapour). Nonetheless, water vapour flows through the city in the
mornings, almost daily, caused by the dominant winds coming from the west.

The weather station from which the relative humidity data used in this study are
coming from is located on the campus of the University of Atacama (27.359 S/70.353 W)
and belongs to the Chilean Meteorological Directorate (DMC). In addition to relative
humidity, the data measured are atmospheric pressure, temperature, global solar radiation,
precipitation, and wind direction and speed, the last both are installed at 10 meters above
ground level. These data covering a period from 2016 to 2021 (at the time of writing this
article) with, at best, a one-minute recording format. The relative humidity is recorded
thanks to a Vaisala HMP155A-L17-PT probe protected from solar radiation and including
an air filter with a Teflon membrane installed at 2 meters above ground level. The weather
stations managed by the DMC are part of a Chilean national weather data network.

Relative humidity monitoring done for the meteorological purpose could also be
used to assess the potential of the Camanchaca as a source of water in a region that suffers
substantial scarcity of this essential resource.
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Figure 1. Statistics of the cloud occurrence over the Atacama region (panels B and C), shaded from
high probability of cloud occurrence in dark-red to low probability of cloud occurrence in beige.
The bottom left-hand map represents Terra MODIS (panel B), and Aqua MODIS (panel C) is in the
bottom center map. The transaction of the dark-red area, which occurs mainly during the dawn and
morning and is most associated with the Camanchaca increasing the humidity of the Chilean third
region coast up to the beginning of the highlands, turns into the low scale of humidity right in the
afternoons, represented by the full red map. Two bays are to be noticeable: in Copiapó and Huasco,
as convergence points. In panel A, the digital elevation model for part of the Copiapó watershed is
presented. Our data acquisition came from a weather station located at the University of Atacama in
Copiapó, Chile (in the top left-hand picture).

3. Methodology

In this section, we first revise the unit-Lindley distribution and some of its basic
properties (Section 3.1). Then, we present a new control chart based on this distribution
(Section 3.2).

Figure 2 summarizes visually the adopted methodology, where we first transform the
data set records from hourly into four periods per day (considering their minimum and
maximum values). That is, the symbolic representation is given by transforming a time
window of every 6 h observation points into a pairwise (MIN, MAX) representation. Then,
we show the proposed new statistical methodology, which will be adopted as a symbolic
interval data approach, through the unit-Lindley distribution and the control chart based
on it. In this way, we intend to contribute to the understanding of the complexity of
monitoring the humidity in Copiapó city.

Figure 2. Visual representation of the adopted methodology.

3.1. The Unit-Lindley Distribution

Introduced by [17], a random variable Y is said to be unit-Lindley distributed with
parameter θ > 0, denoted by Y ∼ UL(θ), if its cumulative distribution function (CDF) is
given by

F(y; θ) = 1−
(

1− θy
(1 + θ)(y− 1)

)
exp

{
− θy

1− y

}
, for 0 < y < 1.
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The corresponding probability density function (PDF) is

f (y; θ) =
θ2

1 + θ
(1− y)−3 exp

{
− θy

1− y

}
, for 0 < y < 1,

which is unimodal with maximum at Ymax = 1− θ/3 for θ < 3, and Ymax = 0 for θ ≥ 3.
If Y ∼ UL(θ), then the mean and variance of Y are given, respectively, by

E[Y] =
1

1 + θ
and Var[Y] =

1
1 + θ

(
θ2eθEi(1, θ)− θ + 1

)
−
(

1
1 + θ

)2
,

where Ei(a, z) =
∫ ∞

1 x−ae−xz dx is the exponential integral function [27], which can be
computed using the expint(·) function of the expint package [28] in R.

The quantile function, Q(p; θ) = F−1(p; θ), can be written as

Q(p; θ) =
1 + θ + W−1((1 + θ)(p− 1) exp{−(1 + θ)})

1 + W−1((1 + θ)(p− 1) exp{−(1 + θ)}) , for 0 < p < 1,

where W−1 denotes the negative branch of the Lambert W function [29], which can be
computed via the lambertWn(·) function of the pracma package [30] in R.

We can easily estimate the parameter θ using the maximum likelihood method. By
considering the observed random sample y = (y1, y2, . . . , yn)> of size n from Y ∼ UL(θ),
we obtain the likelihood function

L(θ; y) ∝
(

θ2

1 + θ

)n

e−θ t(y),

where t(y) = ∑n
i=1

yi
1−yi

. Mazucheli et al. [17] showed that the maximum likelihood

estimator (MLE) θ̂ of θ has a closed-form expression and is given by

θ̂ =
1

2 t(y)

(
n− t(y) +

√
[t(y)]2 + 6 n t(y) + n2

)
.

In order to achieve substantial bias reduction, especially for small and moderate
sample sizes, the authors derived a bias-corrected MLE θ̃ of θ through the methodology
proposed by Cox and Snell [31]. This estimator is given by

θ̃ = θ̂ − θ̂5 + 7 θ̂4 + 12 θ̂3 + 8 θ̂2 + 2 θ̂

n
(
θ̂2 + 4 θ̂ + 2

)2 .

Mazucheli et al. [17] also presented an alternative and useful reparameterization of
the unit-Lindley distribution, where µ = E[Y] = 1/(1 + θ) and, thus, θ = 1/µ− 1. In this
case, the CDF and PDF of Y ∼ UL(µ), 0 < µ < 1, are written, respectively, as

F(y; µ) = 1−
(

1− y(1− µ)

y− 1

)
exp

{
−y(1− µ)

µ(1− y)

}
, for 0 < y < 1,

and

f (y; µ) =
(1− µ)2

µ(1− y)3 exp
{
−y(1− µ)

µ(1− y)

}
, for 0 < y < 1. (1)

The mean and variance of the reparameterized unit-Lindley distribution are given,
respectively, by

E[Y] = µ and

Var[Y] = µ

[(
1
µ
− 1
)2

exp
{

1
µ
− 1
}

Ei
(

1,
(

1
µ
− 1
))
− 1

µ
+ 2

]
− µ2.
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The quantile function, Q(p; µ) = F−1(p; µ), can be written as

Q(p; µ) =

1
µ + W−1

(
(p−1)

µ exp
{
− 1

µ

})
1 + W−1

(
(p−1)

µ exp
{
− 1

µ

}) , for 0 < p < 1. (2)

Furthermore, the authors showed that the MLE µ̂ of µ is given by

µ̂ = − 1
2 n

(
n + t(y)−

√
[t(y)]2 + 6 n t(y) + n2

)
and the corresponding bias-corrected MLE µ̃ of µ is

µ̃ = µ̂− 2µ̂2(2µ̂− 2)

n(µ̂2 − 2µ̂− 1)2 . (3)

It is worth noting that, in the original work of [17], there was a typo in the µ̂ expression,
with t(y) instead of n in the denominator.

Due to its simplicity and better interpretability, which makes it arguably a more
appealing model to use in practice, we shall hereafter consider this reparameterized version
of the unit-Lindley distribution, as well as the control chart limits expressed in terms of the
mean parameter µ.

3.2. Proposed Unit-Lindley Chart

Suppose that a process (e.g., a hydrological or environmental process) generates data
(e.g., rates or proportions) according to a unit-Lindley distribution. That is, if Y denotes the
monitored variable, then the PDF of Y is given by (1). Also, consider that the probability of
false alarm (or type I error) is α. Thus, we have

P(Y < LCL | µ) = P(Y > UCL | µ) = α/2,

where µ is the in-control process parameter (that is, the mean value of the quality charac-
teristic based on the in-control state), LCL and UCL are the lower and upper control chart
limits, respectively.

Following [32], the control limits and centerline (CL) of the proposed unit-Lindley
chart are given by

LCL = Q(α/2; µ), CL = µ, UCL = Q(1− α/2; µ), (4)

where Q(.) is the quantile function presented in (2).
Table 1 shows these control limits for several values of µ, considering α = 0.1, 0.01 and

0.0027. Note that the latter α value corresponds to the standard three-sigma rule (Six Sigma
program).

When the parameter µ is unknown/unspecified, it can be estimated using all the
available observations (data). Thus, we can replace µ by, e.g., its bias-corrected MLE (3)
in the expressions of the control limits shown in (4), obtaining the so-called “trial control
limits” [9].
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Table 1. Control limits of the unit-Lindley chart for some values of µ and α.

α = 0.1 α = 0.01 α = 0.0027

µ LCL CL UCL LCL CL UCL LCL CL UCL

0.08 0.0048 0.08 0.2190 0.0005 0.08 0.3303 0.0001 0.08 0.3802
0.12 0.0079 0.12 0.3124 0.0008 0.12 0.4428 0.0002 0.12 0.4965
0.16 0.0115 0.16 0.3954 0.0011 0.16 0.5320 0.0003 0.16 0.5846
0.20 0.0158 0.20 0.4688 0.0016 0.20 0.6038 0.0004 0.20 0.6530
0.24 0.0208 0.24 0.5335 0.0021 0.24 0.6623 0.0006 0.24 0.7072
0.28 0.0269 0.28 0.5905 0.0027 0.28 0.7107 0.0007 0.28 0.7512
0.32 0.0341 0.32 0.6407 0.0035 0.32 0.7512 0.0009 0.32 0.7873
0.36 0.0428 0.36 0.6851 0.0044 0.36 0.7854 0.0012 0.36 0.8174
0.40 0.0534 0.40 0.7244 0.0055 0.40 0.8146 0.0015 0.40 0.8429
0.44 0.0662 0.44 0.7592 0.0070 0.44 0.8397 0.0019 0.44 0.8646
0.48 0.0819 0.48 0.7902 0.0088 0.48 0.8616 0.0024 0.48 0.8834
0.52 0.1012 0.52 0.8179 0.0112 0.52 0.8807 0.0030 0.52 0.8997
0.56 0.1250 0.56 0.8426 0.0142 0.56 0.8975 0.0039 0.56 0.9139
0.60 0.1545 0.60 0.8648 0.0183 0.60 0.9124 0.0050 0.60 0.9265
0.64 0.1912 0.64 0.8848 0.0240 0.64 0.9256 0.0066 0.64 0.9377
0.68 0.2366 0.68 0.9029 0.0319 0.68 0.9375 0.0089 0.68 0.9477
0.72 0.2927 0.72 0.9193 0.0433 0.72 0.9481 0.0122 0.72 0.9566
0.76 0.3612 0.76 0.9341 0.0607 0.76 0.9578 0.0174 0.76 0.9647
0.80 0.4433 0.80 0.9477 0.0881 0.80 0.9665 0.0260 0.80 0.9720
0.84 0.5393 0.84 0.9600 0.1339 0.84 0.9744 0.0417 0.84 0.9786
0.88 0.6475 0.88 0.9713 0.2151 0.88 0.9817 0.0739 0.88 0.9847
0.92 0.7642 0.92 0.9817 0.3645 0.92 0.9883 0.1522 0.92 0.9902

4. Statistical Performance

In this section, we use Monte Carlo (MC) simulation studies to evaluate the unit-
Lindley chart’s statistical performance measured in terms of the average run length (ARL),
median run length (MRL), and standard deviation of the run length (SDRL). All computa-
tional routines were implemented using the R software version 3.6.3 [33].

The ARL is a metric widely used to evaluate the efficiency of control charts. The
in-control ARL (or ARL0) is defined as the average number of observations (or monitoring
points) before a signal is given (that is, a single point falls outside the control limits),
assuming that the process is in control. In contrast, the out-of-control ARL (or ARL1) is the
average number of observations that are taken until a mean shift is identified when the
process is out of control [34].

Since the run length (RL) is high asymmetrically distributed, other metrics than the
ARL, such as the SDRL and MRL, can be considered [10]. The SDRL is a useful measure
used to assess the spread (or dispersion) of the RL distribution, whereas the MRL refers to
the midpoint of the RL distribution and is a more credible measure of a chart’s performance
since it is less affected by the skewness of the RL distribution [35]. In addition, we will also
use the in-control (SDRL0 and MRL0) and out-of-control (SDRL1 and MRL1) versions of
these metrics.

Let Y be the result or output of a process that follows a unit-Lindley distribution
reparameterized by its mean: Y ∼ UL(µ). Also, let µs be the shifted mean proportion
parameter after a change occurs in µ, that is, Y ∼ UL(µs).

For the proposed unit-Lindley chart, the in-control ARL, SDRL and MRL are defined as

ARL0 = 1/α, SDRL0 =
√
(1− α)/α2, MRL0 = log(0.5)/ log(1− α),

for α = 1− P(LCL < Y < UCL | µ). While the out-of-control metrics are given by

ARL1 = 1/(1− β), SDRL1 =
√

β/(1− β)2, MRL1 = log(0.5)/ log(β),
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for β = P(LCL < Y < UCL | µs).
Moreover, we will also use the down and up versions of the in-control ARL, MRL

and SDRL, which consider the occurrence of false alarms at the LCL (i.e., sample points
falling below the lower limit) and UCL (i.e., sample points falling above the upper limit),
respectively. These metrics are given by

ARLdown
0 = ARLup

0 =
1

α/2
,

SDRLdown
0 = SDRLup

0 =

√
1− α/2
(α/2)2 ,

MRLdown
0 = MRLup

0 =
log(0.5)

log(1− α/2)
.

In the usual Six Sigma program, α = 0.0027 and, therefore, ARL0 = 1/0.0027 ≈ 370,
SDRL0 =

√
(1− 0.0027)/0.00272 ≈ 370, and MRL0 = log(0.5)/ log(1− 0.0027) ≈ 256.

This means, e.g., for the first measure, that even though the process is in control, an
incorrect out-of-control signal (or false alarm) will be generated every 370 samples, on the
average [9]. On the other hand, values of ARL1 ≈ 1 are desired, mainly for large-size shifts
in the process mean parameter.

4.1. In-Control Processes

Without loss of generality, in this subsection we consider unit-Lindley processes with
mean parameter: µ = 0.2, 0.5 and 0.8 (whose PDF plots are shown in Figure 3), as well
as two distinct values for the probability of false alarm: α = 0.1 (which corresponds to
ARL0 = 10, SDRL0 ≈ 9.487, MRL0 ≈ 6.579, ARLdown

0 = ARLup
0 = 20, SDRLdown

0 =

SDRLup
0 ≈ 19.494, and MRLdown

0 = MRLup
0 ≈ 13.513) and 0.01 (which corresponds to

ARL0 = 100, SDRL0 ≈ 99.499, MRL0 ≈ 68.968, ARLdown
0 = ARLup

0 = 200, SDRLdown
0 =

SDRLup
0 ≈ 199.499, and MRLdown

0 = MRLup
0 ≈ 138.283). We also use different sample

sizes (i.e., different numbers of Phase 1 observations) for each process: n = 10, 30, 50, 100
and 200. According to [9], in the Phase I study (or retrospective analysis), a process data set
is collected and analyzed at once, building trial control limits to decide whether the process
was under control when the first n observations were gathered. Whereas in the Phase II
study (prospective analysis or process monitoring), the control chart constructed from a
process “clean” data set showing control (reliable control limits) is used for monitoring
future production.

The results obtained from 5000 MC simulations (or replicates) with n∗ = 5000 Phase 2
observations each, performed for each scenario studied (that is, by varying the number
of Phase 1 observations, the mean parameter of the unit-Lindley distribution, and the
probability of false alarm), and further information regarding these results, please contact
the correspondence author. Despite some slight to moderate discrepancies between the
theoretical (target) values of the performance measures, and the values calculated through
MC simulations in some cases, which are expected due to the effect of parameter estimation
on control chart properties (see, e.g., [36–38]), the obtained results seem to indicate the
good performance of the proposed control chart.
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Figure 3. Unit-Lindley density function for the different parameter values considered in this study.

4.2. Out-of-Control Processes

In this subsection, we assess the shift-detection ability of the proposed unit-Lindley
chart in terms of ARL1, SDRL1 and MRL1, for the same scenarios as before. We consider
shifts at different levels, representing percentage decreases and increases p in the process
mean parameter µ. The assumed levels are: p = 1% (down-shifted mean: µs = 0.198,
0.495 and 0.792; up-shifted mean: µs = 0.202, 0.505 and 0.808), 10% (down-shifted mean:
µs = 0.18, 0.45 and 0.72; up-shifted mean: µs = 0.22, 0.55 and 0.88) and 20% (down-shifted
mean: µs = 0.16, 0.4 and 0.64; up-shifted mean: µs = 0.24, 0.6 and 0.96).

The results obtained from 5000 MC simulations with n∗ = 5000 Phase 2 observations.
Note that the values of the performance measures fall faster the higher the mean, especially
with increases. With the 1% change, there is practically no difference in the metrics. At
10%, one can already see a significant drop, which is more robust for µ = 0.8. With 20%,
the estimated values are closer to one.

4.3. Comparison with Some Standard Control Charts

The unit-Lindley control chart theory introduced here may be applied in practical
situations as a valuable and exciting alternative to, e.g., the well-known beta [11], sim-
plex [10] and Kumaraswamy [7] charts, when the process data are continuous in the interval
(0, 1). Thus, in-control proportion/rate/index data can be modelled well via the proposed
unit-Lindley chart.

In this subsection, we apply the four above-mentioned control charts to sample data
generated from the unit-Lindley, beta, simplex [39] and Kumaraswamy [40] distributions.
The aim is to investigate, through simulations, the performance (in terms of the same
in-control and out-of-control metrics used before) of these control charts when they are
applied to process data that come from different distributions defined on the range (0, 1).

The simulations were carried out using the same settings as described in the previous
subsections. Nevertheless, we consider only n = 200, n∗ = 5000 and α = 0.1. For the
true data-generating process (which can be unit-Lindley, beta, simplex or Kumaraswamy
distributed), we set the (in-control) mean parameter: µ = 0.2 (case 1), 0.5 (case 2) and 0.8
(case 3). It can be seen, among others, that the proposed unit-Lindley chart has a good
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performance in all scenarios, despite being based on a distribution with a single parameter
(and, thus, more straightforward than the other two-parameter distributions).

5. Application

In this section, we apply the novel unit-Lindley chart to real data on the relative
humidity of the air in the city of Copiapó, Chile. Located in the Atacama Desert, this
important northern Chilean city has 16,681.3 square kilometers and 158,438 inhabitants [41].
Copiapó’s economy is based on mineral exploitation and agriculture, which demands a
significant volume of water in both activities.

The acquired data set is from the Copiapó Station, located at the University of Atacama.
Data were obtained hourly from 21 December 2021 (day/month/year) to 2 February 2021
(n = 35,047 records). Figure 4 shows the dynamic of the data set, where, through the
bimodality of the histogram, at first sight, it is noticeable that at least two phenomena are
happening at once.

Figure 4. Humidity variation, collected per hour, from Copiapó (Chile) in the last five years. Panel A presents the histogram
of the time series (TS), and panel B shows the dynamic of this series in light blue. Also, the solid line represents the TS
average using a LOESS (an acronym for “Locally Estimated Scatterplot Smoothing”) smoothing method [42].

For many real applications, finding hidden structures or properties in complex data
can be computationally costly or problematic due to the messy sets, latent patterns, and
noisily signals. Symbolic Data Analysis (SDA) is a paradigm of Machine Learning and
Statistics areas aiming to build, describe, analyze and extract new knowledge from more
complex data structures. The SDA intends to study and propose methodologies that can
handle more complex data (or symbolic data), such as intervals, sets or histograms, in
order to consider variability and uncertainty that is often inherent to the data [43–47]. SDA
starts summarizing massive classical data and describes the new units of more minor and
smoother data sets by symbolic variables.

Nascimento et al. [21] summarized a database containing more than 1.5 billion ob-
servations that are signals of a multi-channel electroencephalogram (EEG) corresponding
to a frequency over time. A dynamic linear model for EEG interval data was introduced
and applied to a database which, after being condensed, resulted in 15,000,000 total ob-
servations (that is, only 0.98% of the size of the original data set). This kind of model can
incorporate dynamic events regarding more complex data, showing a competitive alterna-
tive to modelling a problem, given its flexibility and speed in data convergence. Moreover,
questions of dynamic accommodation in neuroscience research could be resolved to reveal
brain activity patterns.
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Thus, to adopt the SDA towards the meteorological data, this work uses them as
interval data, minimum-maximum (MIN-MAX) period, holding a physical interpretation
regardless of the data compression. We aim first as a data fusion step to transform the
data granularity by taking the mean of every 6 h into daily periods: day part 1 (from
midnight to 5:59 a.m. UTC), day part 2 (from 6:00 a.m. to 11:59 a.m. UTC), day part 3
(from midday to 5:59 p.m. UTC), and day part 4 (from 6:00 p.m. to 11:59 p.m. UTC). This
is in order to reduce the data noise (justified in terms of increasing the signal-to-noise
ratio). So, the SDA representation transformed 35,047 original records into 11,736 new ones
(5868 observations for the MIN period, and 5868 observations for the MAX period). Table 2
outlines the statistical descriptions per year and highlights in bold the highest values per
statistic.

Table 2. Statistical summary description, per year, highlighting in bold the highest values per statistic.

Min. 1st Quartile Median Mean 3rd Quartile Max.

M
in

im
um

2016 0.33 0.398 0.525 0.544 0.66 0.81

2017 0.10 0.43 0.58 0.581 0.74 0.98

2018 0.072 0.418 0.57 0.575 0.741 0.965

2019 0.015 0.408 0.557 0.563 0.722 0.963

2020 0.059 0.413 0.571 0.571 0.74 0.957

2021 0.295 0.39 0.567 0.559 0.731 0.873

M
ax

im
um

2016 0.50 0.61 0.77 0.726 0.81 0.89

2017 0.24 0.69 0.81 0.774 0.87 0.98

2018 0.182 0.674 0.816 0.771 0.878 0.973

2019 0.079 0.652 0.808 0.755 0.866 0.972

2020 0.216 0.668 0.815 0.77 0.873 0.973

2021 0.449 0.686 0.805 0.753 0.847 0.958

Figure 5 shows the histograms of the acquired minimum (left-hand panel) and maxi-
mum (right-hand panel) daily period of humidity, where the solid black line represents the
unit-Lindley PDF adjusted for these data. It is noticeable the asymmetry present in these
data and the nonexistence of a whole period raining (that is, 6 h of raining, which would
imply observation in the minimum relative humidity equal to one).
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Figure 5. Histogram of the minimum (left-hand panel) and maximum (right-hand panel) observations, after aggregating
the daily humidity representation of the data in day periods (parts 1–4), followed by a black solid line representing the
estimated PDF of the unit-Lindley distribution.
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As the first SPC analysis, we devoted the records from December 2016 to December
2020 for the Phase 1 study (process parameter estimation/assessment of process stabil-
ity/control limits establishment). After that, we reserved all the records of 2021 for doing
the Phase 2 study (online process monitoring). In Phase 1, we randomly selected 200 obser-
vation points to perform statistical inferences, and results suggested that, for both processes
(minimum and maximum daily humidity monitoring), the unit-Lindley distribution as-
sumption is valid (with estimated mean parameter values: µ̂ = 0.584 and 0.760 for the MIN
and MAX periods/processes, respectively). Also, in comparison with other used distribu-
tions (e.g., beta, simplex and Kumaraswamy), the Kolmogorov-Smirnov goodness-of-fit
test (for details on such a test, see, e.g., [48]) corroborates with the unit-Lindley adoption,
for both the minimum and maximum TS, as shown in Table 3.

Table 3. The p-values from the Kolmogorov-Smirnov goodness-of-fit test for some continuous
distributions defined on the range (0, 1) adjusted to the minimum and maximum daily relative
humidity data.

Distribution Minimum Maximum

Unit-Lindley 0.769 0.797
Beta 0.104 0.012
Simplex 0.089 0.038
Kumaraswamy 0.176 0.015

Table 4 shows the control limits of both studied processes (using data from December
2016 to December 2020 only), based on the unit-Lindley distribution (unit-Lindley chart),
and considering different tolerances to false alarms or type 1 error (α).

Table 4. Control limits of the unit-Lindley chart for the minimum and maximum daily humidity
monitoring.

Tolerance Minimum Maximum

(α) LCL CL (µ̂) UCL LCL CL (µ̂) UCL

0.15 0.197 0.584 0.840 0.447 0.760 0.927
0.10 0.142 0.584 0.856 0.361 0.760 0.934
0.01 0.017 0.584 0.906 0.061 0.760 0.958

In Figure 6, we present the control charts for each period of the day (parts 1–4),
adopting the unit-Lindley distribution for the minimum and maximum observations (as
interval data in blue), considering those daily period records (solid black lines, MIN-MAX
respectively), with three tolerance (α) levels (15% as red thick dashed line, 10% as red thin
dashed line, and 1% as solid red line). These control charts were developed for interval
data in SPC, considering the estimated unit-Lindley LCL of the minimum humidity TS and
the estimated unit-Lindley UCL of the maximum TS.

As a next step, we developed a three-dimensional (3D) visualization, considering
both control limits for the maximum/minimum daily humidity. Figure 7 shows an SDA
bivariate control chart for the humidity monitoring, adopting all the 2021 data records
as online process monitoring (i.e., for Phase 2 analysis). This plot contains the maximum
humidity values in the z-axis, the minimum humidity values in the y-axis, and the time
observation points in the x-axis (as dots). Moreover, the z- and x-axes (background series)
project the maximum humidity TS, while the y- and x-axes (bottom series) project the
minimum humidity TS.
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Figure 6. A visualization of the dynamic of Phase 1 (minimum and maximum TS), considering the observation points
as four periods of the day, one in each graphic. Top-left panel: the day period part 1 (from midnight to 5:59 a.m. UTC);
top-right panel: the day period part 2 (from 6:00 a.m. to 11:59 a.m. UTC); bottom-left panel: the day period part 3 (from
midday to 5:59 p.m. UTC); bottom-right panel: the day period part 4 (from 6:00 p.m. to 11:59 p.m. UTC). Thus, the red
lines represent three tolerance (α) levels (15% as thick dashed line, 10% as thin dashed line, and 1% as solid line) for each
estimated control limit (UCL for the maximum TS, and LCL for the minimum TS).

The bivariate plot (minimum-maximum control chart) results in a rectangular box
as a control/expected behaviour. Therefore, any observation point that out-patterns the
expected dynamic (also called out-of-control) will be coloured in red during 3D plotting
(Phase 2), followed by its projections. For instance, by considering the maximum TS
(UCL = 0.927), it is notable that days 8 January 2021 (night), 11 January 2021 (dawn),
11 January 2021 (night), 20 January 2021 (dawn) and 20 January 2021 (night) were high-
lighted, being more significant than the tolerance level of 15%. Whereas, for the minimum
TS (UCL = 0.840), 12 days (all during the night period) were extrapolated to the control
limits (with ten observation points being from January 2021). Further investigations need
to be conducted to appoint a stable tolerance level (α) to estimate these LCL and UCL,
although the presented methodology shows to be competitive to make inferences about
this process.
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Figure 7. SDA bivariate control chart for the daily humidity in Phase II monitoring (records from
2021). Through the 3D plot, the z-axis represents the maximum upper bound and the y-axis the
minimum lower bound from the daily humidity (aggregated per periods), adopting a certain tolerance
level (α = 0.15 or 15%), whereas the x-axis is related to the time observation points (as dots).
The estimated control limits are represented as a shaded box, observed out-of-control points are
highlighted as red points and their projections placed in the control chart projections. Thus, the TS
projection on the bottom (x- and y-axes) is the control chart related to the minimum daily humidity,
and the TS projection on the background (x- and z-axes) is the control chart of the maximum
daily humidity.

6. Concluding Remarks and Future Prospects

In this paper, we developed a new control chart based on the unit-Lindley distribution
by [17], named as unit-Lindley chart, and its inferential properties. Moreover, we also
showed the competitiveness of working with interval data representation (as a SDA) to
contour the missing data problem and the presence of noise.

As demonstrated by the simulation and empirical studies, the proposed control chart
can be an efficient, exciting and valuable alternative to some well-known SPC tools when
dealing with continuous process data in the interval (0, 1), e.g., indices, rates and propor-
tions, not resulting from Bernoulli experiments. For instance, the most common control
charts used to monitor this kind of data are based on the beta, simplex and Kumaraswamy
distributions, which present more parameters and show some limits towards overdispersed
data, confirmed through an extensive MC simulation study (using the ARL, SDRL and
MRL metrics).

The developed parametric SPC tool enlightens the prediction and opens new doors to
discuss extreme events in the Atacama water particles monitoring through probabilistic rea-
soning. Further works shall explore the extension of this work to a unit-Lindley regression
model (which enables to include trend and season components and spatial dependence).



Axioms 2021, 10, 154 15 of 16

Author Contributions: Conceptualization, methodology, software, writing—original draft prepara-
tion, A.F., P.H.F. and D.C.d.N.; validation, R.F.; writing—review and editing, C.U.-C., A.G.-P. and F.L.;
supervision and project administration, F.L. and P.H.F.; funding acquisition, D.C.d.N. All authors
have read and agreed to the published version of the manuscript.

Funding: Anderson Fonseca acknowledges support from Bahia State Research Foundation (FAPESB
Proc. 084.0508.2020.0002837-61). Diego C. Nascimento acknowledges the support from the São
Paulo State Research Foundation (FAPESP process 2020/09174-5). Francisco Louzada acknowledges
support from the São Paulo State Research Foundation (FAPESP Processes 2013/07375-0) and CNPq
(grant no. 301976/2017-1).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available at
https://climatologia.meteochile.gob.cl/application/diario/visorDeDatosEma/270009 (accessed on
4 May 2021). These data were derived from resources available in the public domain.

Acknowledgments: All the authors acknowledge Adrien Tavernier for the technical support and
discussions regarding the research topic.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Petitgas, P. The CUSUM out-of-control table to monitor changes in fish stock status using many indicators. Aquat. Living Resour.

2009, 22, 201–206. [CrossRef]
2. Hanslik, T.; Boelle, P.Y.; Flahault, A. The control chart: An epidemiological tool for public health monitoring. Public Health 2001,

115, 277–281. [CrossRef]
3. Khan, Z.; Gulistan, M.; Hashim, R.; Yaqoob, N.; Chammam, W. Design of S-control chart for neutrosophic data: An application to

manufacturing industry. J. Intell. Fuzzy Syst. 2020, 38, 4743–4751. [CrossRef]
4. Sellers, K.F. A generalized statistical control chart for over-or under-dispersed data. Qual. Reliab. Eng. Int. 2012, 28, 59–65.

[CrossRef]
5. Woodall, W.H. Control charts based on attribute data: Bibliography and review. J. Qual. Technol. 1997, 29, 172–183. [CrossRef]
6. Joekes, S.; Barbosa, E.P. An improved attribute control chart for monitoring non-conforming proportion in high quality processes.

Control. Eng. Pract. 2013, 21, 407–412. [CrossRef]
7. Lima-Filho, L.M.d.A.; Bayer, F.M. Kumaraswamy control chart for monitoring double bounded environmental data. Commun.

Stat.-Simul. Comput. 2019, 1–16. [CrossRef]
8. Abbas, Z.; Nazir, H.Z.; Akhtar, N.; Abid, M.; Riaz, M. On designing an efficient control chart to monitor fraction nonconforming.

Qual. Reliab. Eng. Int. 2020, 36, 547–564. [CrossRef]
9. Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley & Sons: Hoboken, NJ, USA, 2020.
10. Lee Ho, L.; Fernandes, F.H.; Bourguignon, M. Control charts to monitor rates and proportions. Qual. Reliab. Eng. Int. 2019,

35, 74–83. [CrossRef]
11. Sant’Anna, Â.M.O.; Ten Caten, C.S. Beta control charts for monitoring fraction data. Expert Syst. Appl. 2012, 39, 10236–10243.

[CrossRef]
12. Korkmaz, M.Ç.; Chesneau, C.; Korkmaz, Z.S. On the arcsecant hyperbolic normal distribution. Properties, quantile regression

modeling and applications. Symmetry 2021, 13, 117. [CrossRef]
13. Bakouch, H.S.; Nik, A.S.; Asgharzadeh, A.; Salinas, H.S. A flexible probability model for proportion data: Unit-half-normal

distribution. Commun. Stat. Case Stud. Data Anal. Appl. 2021, 7, 271–288.
14. Bantan, R.A.R.; Chesneau, C.; Jamal, F.; Elgarhy, M.; Tahir, M.H.; Ali, A.; Zubair, M.; Anam, S. Some new facts about the

unit-Rayleigh distribution with applications. Mathematics 2020, 8, 1954. [CrossRef]
15. Mazucheli, J.; Menezes, A.; Dey, S. The unit-Birnbaum-Saunders distribution with applications. Chil. J. Stat. 2018, 9, 47–57.
16. Zellner, A.; Keuzenkamp, H.A.; McAleer, M. Simplicity, Inference and Modelling: Keeping It Sophisticatedly Simple; Cambridge

University Press: Cambridge, UK, 2001.
17. Mazucheli, J.; Menezes, A.F.B.; Chakraborty, S. On the one parameter unit-Lindley distribution and its associated regression

model for proportion data. J. Appl. Stat. 2019, 46, 700–714. [CrossRef]
18. Bonnail, E.; Lima, R.C.; Turrieta, G.M. Trapping fresh sea breeze in desert? Health status of Camanchaca, Atacama’s fog. Environ.

Sci. Pollut. Res. 2018, 25, 18204–18212. [CrossRef]
19. Schemenauer, R.S.; Fuenzalida, H.; Cereceda, P. A neglected water resource: The Camanchaca of South America. Bull. Am.

Meteorol. Soc. 1988, 69, 138–147. [CrossRef]
20. Diday, E. Thinking by classes in data science: The symbolic data analysis paradigm. Wiley Interdiscip. Rev. Comput. Stat. 2016,

8, 172–205. [CrossRef]

https://climatologia.meteochile.gob.cl/application/diario/visorDeDatosEma/270009
https://climatologia.meteochile.gob.cl/application/diario/visorDeDatosEma/270009
http://doi.org/10.1051/alr/2009021
http://dx.doi.org/10.1016/S0033-3506(01)00459-0
http://dx.doi.org/10.3233/JIFS-191439
http://dx.doi.org/10.1002/qre.1215
http://dx.doi.org/10.1080/00224065.1997.11979748
http://dx.doi.org/10.1016/j.conengprac.2012.12.005
http://dx.doi.org/10.1080/03610918.2019.1635159
http://dx.doi.org/10.1002/qre.2590
http://dx.doi.org/10.1002/qre.2381
http://dx.doi.org/10.1016/j.eswa.2012.02.146
http://dx.doi.org/10.3390/sym13010117
http://dx.doi.org/10.3390/math8111954
http://dx.doi.org/10.1080/02664763.2018.1511774
http://dx.doi.org/10.1007/s11356-018-2278-6
http://dx.doi.org/10.1175/1520-0477(1988)069<0138:ANWRTC>2.0.CO;2
http://dx.doi.org/10.1002/wics.1384


Axioms 2021, 10, 154 16 of 16

21. Nascimento, D.C.; Pimentel, B.; Souza, R.; Leite, J.P.; Edwards, D.J.; Santos, T.E.; Louzada, F. Dynamic time series smoothing for
symbolic interval data applied to neuroscience. Inf. Sci. 2020, 517, 415–426. [CrossRef]

22. Bull, A.T.; Andrews, B.A.; Dorador, C.; Goodfellow, M. Introducing the Atacama Desert; Springer: Berlin/Heidelberg, Germany,
2018.

23. Grosjean, M.; Veit, H. Water Resources in the Arid Mountains of the Atacama Desert (Northern Chile): Past Climate Changes and
Modern Conflicts. In Global Change and Mountain Regions: An Overview of Current Knowledge; Huber, U.M., Bugmann, H.K.M.,
Reasoner, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 93–104. [CrossRef]

24. García, A.; Ulloa, C.; Amigo, G.; Milana, J.P.; Medina, C. An inventory of cryospheric landforms in the arid diagonal of South
America (high Central Andes, Atacama region, Chile). Quat. Int. 2017, 438, 4–19. [CrossRef]

25. Donoso, G.; Lictevout, E.; Rinaudo, J.D. Groundwater management lessons from Chile. In Sustainable Groundwater Management;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 481–509.

26. Suárez, F.; Muñoz, J.F.; Fernández, B.; Dorsaz, J.M.; Hunter, C.K.; Karavitis, C.A.; Gironás, J. Integrated water resource
management and energy requirements for water supply in the Copiapó river basin, Chile. Water 2014, 6, 2590–2613. [CrossRef]

27. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government
Printing Office: Washington, DC, USA , 1964; Volume 55.

28. Goulet, V. Expint: Exponential Integral and Incomplete Gamma Function; R Package, 2016. Available online: https://cran.r-
project.org/package=expint (accessed on 26 January 2021).

29. Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the LambertW function. Adv. Comput. Math. 1996,
5, 329–359. [CrossRef]

30. Borchers, H.W. Pracma: Practical Numerical Math Functions; R Package Version 2.2.9; 2019. Available online: https://cran.r-
project.org/package=pracma (accessed on 29 January 2021).

31. Cox, D.R.; Snell, E.J. A general definition of residuals. J. R. Stat. Soc. Ser. B (Methodol.) 1968, 30, 248–265. [CrossRef]
32. Bayer, F.M.; Tondolo, C.M.; Müller, F.M. Beta regression control chart for monitoring fractions and proportions. Comput. Ind. Eng.

2018, 119, 416–426. [CrossRef]
33. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2020.
34. Saghir, A.; Lin, Z. Control charts for dispersed count data: an overview. Qual. Reliab. Eng. Int. 2015, 31, 725–739. [CrossRef]
35. Riaz, M.; Ajadi, J.O.; Mahmood, T.; Abbasi, S.A. Multivariate mixed EWMA-CUSUM control chart for monitoring the process

variance-covariance matrix. IEEE Access 2019, 7, 100174–100186. [CrossRef]
36. Jensen, W.A.; Jones-Farmer, L.A.; Champ, C.W.; Woodall, W.H. Effects of parameter estimation on control chart properties: A

literature review. J. Qual. Technol. 2006, 38, 349–364. [CrossRef]
37. Moraes, D.; Oliveira, F.L.P.d.; Quinino, R.d.C.; Duczmal, L.H. Self-oriented control charts for efficient monitoring of mean vectors.

Comput. Ind. Eng. 2014, 75, 102–115. [CrossRef]
38. Paroissin, C.; Penalva, L.; Pétrau, A.; Verdier, G. New control chart for monitoring and classification of environmental data.

Environmetrics 2016, 27, 182–193. [CrossRef]
39. Jorgensen, B. The Theory of Dispersion Models; CRC Press: Boca Raton, FL, USA, 1997.
40. Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol. 1980, 46, 79–88.

[CrossRef]
41. Wikipedia. Copiapó—Wikipedia, The Free Encyclopedia, 2021. Available online: https://en.wikipedia.org/w/index.php?title=

Copiapó&oldid=1013845587 (accessed on 26 April 2021).
42. Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [CrossRef]
43. Bock, H.H.; Diday, E. Analysis of Symbolic Data, Exploratory Methods for Extracting Statistical Information from Complex Data; Springer:

Berlin/Heidelberg, Germany, 2000.
44. Billard, L.; Diday, E. Symbolic Data Analysis: Conceptual Statistics and Data Mining; John Wiley: Hoboken, NJ, USA, 2006.
45. Diday, E.; Noirhomme-Fraiture, M. Symbolic Data Analysis and the SODAS Software; John Wiley & Sons: Hoboken, NJ, USA, 2008.
46. Billard, L.; Diday, E. Clustering Methodology for Symbolic Data; John Wiley & Sons: Hoboken, NJ, USA, 2019.
47. Diday, E.; Guan, R.; Saporta, G.; Wang, H. Advances in Data Science: Symbolic, Complex, and Network Data; John Wiley & Sons:

Hoboken, NJ, USA, 2020.
48. Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999.

http://dx.doi.org/10.1016/j.ins.2019.12.026
http://dx.doi.org/10.1007/1-4020-3508-X_10
http://dx.doi.org/10.1016/j.quaint.2017.04.033
http://dx.doi.org/10.3390/w6092590
https://cran.r-project.org/package=expint
https://cran.r-project.org/package=expint
http://dx.doi.org/10.1007/BF02124750
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=pracma
http://dx.doi.org/10.1111/j.2517-6161.1968.tb00724.x
http://dx.doi.org/10.1016/j.cie.2018.04.006
http://dx.doi.org/10.1002/qre.1642
http://dx.doi.org/10.1109/ACCESS.2019.2928637
http://dx.doi.org/10.1080/00224065.2006.11918623
http://dx.doi.org/10.1016/j.cie.2014.06.008
http://dx.doi.org/10.1002/env.2382
http://dx.doi.org/10.1016/0022-1694(80)90036-0
https://en.wikipedia.org/w/index.php?title=Copiap�&oldid=1013845587
https://en.wikipedia.org/w/index.php?title=Copiap�&oldid=1013845587
http://dx.doi.org/10.1080/01621459.1979.10481038

	Introduction
	The Data
	Methodology
	The Unit-Lindley Distribution
	Proposed Unit-Lindley Chart

	Statistical Performance
	In-Control Processes
	Out-of-Control Processes
	Comparison with Some Standard Control Charts

	Application
	Concluding Remarks and Future Prospects
	References

