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Abstract: In the paper we establish some conditions under which a given sequence of polynomials
on a Banach space X supports entire functions of unbounded type, and construct some counter
examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions
of unbounded type can be represented as a union of infinite dimensional linear subspaces (without
the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type
generated by a given sequence of polynomials contains an infinite dimensional algebra (without the
origin). Some applications for symmetric analytic functions on Banach spaces are obtained.
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1. Introduction and Preliminaries

Let X be an infinite dimensional complex Banach space. A continuous function
f : X → C is said to be an entire analytic function (or just an entire function) if its restriction
on any finite dimensional subspace is analytic. If an entire function f satisfies f (λx) =
λn f (x) for every x ∈ X and λ ∈ C, then f is called an n-homogeneous polynomial. It is
well known that for an n-homogeneous polynomial f there exists a unique symmetric
n-linear mapping B : Xn → C associated with f such that f (x) = B(x, . . . , x). Each zero-
homogeneous polynomial is a constant. A finite sum of homogeneous polynomials is a
polynomial. The space of all entire analytic functions on X is denoted by H(X), the space of
all polynomials on X is denoted by P(X) and the space of all n-homogeneous polynomials
on X is denoted by P(nX). For every entire function f there exists a sequence of continuous
n-homogeneous polynomials { fn}∞

n=1 (so-called Taylor polynomials) such that

f (x) =
∞

∑
n=0

fn(x) (1)

and the series converges for every x ∈ X. The Taylor series expansion (1) uniformly
converges on the open ball rB centered at zero with radius r = $0( f ), where

$0( f ) =
1

lim sup
n→∞

‖ fn‖1/n .

The radius r = $0( f ) is called the radius of uniform convergence of f at zero or the radius
of boundedness of f at zero because the ball rB is the largest open ball at zero such that f
is bounded on every closed subset of it. If $0( f ) = ∞, then f is bounded on all bounded
subsets of X and is called a function of bounded type. The algebra of all functions of bounded
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type on X is denoted by Hb(X). Functions in H(X) \ Hb(X) are called entire functions of
unbounded type. Note that $0( f ) > 0 for every f ∈ H(X).

It is well-known that every infinite dimensional Banach space X admits entire func-
tions of unbounded type. For example, for a given weak*-null sequence φn ∈ X∗, ‖φ‖ = 1,
which always exists (see p. 157 [1]), the function

f (x) =
∞

∑
n=1

φn
n(x) (2)

is an entire function of unbounded type on X. We say that a sequence of functions gn on X
(not necessary linear) is weak*-null if gn(x)→ 0 as n→ ∞ for every x ∈ X.

Entire functions of unbounded type were studied by many authors. In [2] Aron
constructed an entire function f on a Banach space X such that for every r > 0 there is
a point x0 ∈ X such that f is unbounded on the ball of radius r, centered at x0. In [3,4]
Ansemil, Aron, and Ponte constructed entire functions f on a Banach space which are
bounded on any given finite collection of balls and unbounded on another given finite
collection of balls. The set H(X) \Hb(X) is not linear and is not closed under multiplication
of functions. However, Lopez–Salazar Codes in [5] show that for every infinite-dimensional
Banach space X the set H(X) \Hb(X) contains an infinite-dimensional linear space (without
zero) and even an infinite-dimensional algebra (without zero).

Let P = {P1, P2, . . . , Pn, . . .} be a sequence of polynomials on X. We denote by PP(X)
the smallest unital algebra containing all polynomials in P. Let HbP(X) be the closure
of PP(X) in Hb(X) with respect to the metrizable topology of the uniform convergence
on bounded subsets of X, and HP(X) is the subalgebra of all entire functions f on X
such that their Taylor polynomials fn are in PP(X). The algebras HbP(X) and PP(X) were
investigated in [6,7]. A typical example of PP(X) is the algebra of symmetric polynomials.
Let S be a group of isometric operators on a Banach space X. A function f on X is S-
symmetric if it is invariant with respect to the action of S. Symmetric polynomials and
analytic functions on Banach spaces with respect to various groups were studied in [8–18].

Symmetric entire functions of unbounded type on `1 were studied in [19]. In [20] the
authors considered the question: Let P0(

nX) be subspaces of P(nX), n ∈ N. Under which

conditions is there a function f =
∞

∑
n=0

fn ∈ H(X) \ Hb(X) such that fn ∈ P0(
nX)? In this

paper we show that some natural subspaces P0(
nX) do not support entire functions of

unbounded type. In particular, we show that there are no symmetric entire functions of
unbounded type on L∞[a; b].

In Section 2 we propose some conditions under which PP(X) supports entire functions
of unbounded type and construct some counterexamples. In Section 3 we show that if X is
an infinite dimensional Banach space, then H(x) \ Hb(X) can be represented as a union
of infinite dimensional linear subspaces (without the origin). Furthermore, we show that
for some cases HbP(X) \ HP(X) contains infinite dimensional algebras (without the origin).
Some results of this paper were announced in [21].

We refer the reader to the books of Dineen [1] and Mujica [22] for extensive studies of
analytic functions on Banach spaces.

2. Conditions of the Unboundedness

Proposition 1. Let {Q1, Q2, . . . , Qn, . . .} be a weak*-null sequence of polynomials on X such that
‖Qn‖ = 1 and deg Q1 ≤ deg Q2 ≤ . . . . Then for every strictly increasing sequence of positive
integers {kn}, the function

f (x) =
∞

∑
n=1

Qkn
n (x)

is a function of unbounded type.
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Proof. Let x ∈ X. Since Qn(x)→ 0 as n→ ∞, there exists a number m such that |Qn(x)| ≤

ε for some 0 < ε < 1, all n > m. Hence the series
∞

∑
n=1
|Qn|kn converges. Thus

f (x) =
∞

∑
n=1

Qkn
n (x)

is well-defined for every x ∈ X. On the other hand, ‖Qkn
n ‖ = 1 and so $0( f ) = 1. Therefore,

f is an entire function of unbounded type.

Let us notice the condition “{Qn} is a weak*-null sequence of polynomials on X such

that ‖Qn‖ = 1” is not sufficient to claim that
∞

∑
n=1

Qn(x) is a function of unbounded type.

For example, if deg Qn = deg Qm for all n, m ∈ N, then the series may be divergent.
Throughout the paper we will use the notations a1/n for the principal root of a and

n
√

a for the multi-valued root function of a.

Proposition 2. Let {Q1, Q2, . . . , Qn, . . .} be a sequence of polynomials on X such that ‖Qn‖ = 1
and deg Q1 < deg Q2 < . . . . The function

f (x) =
∞

∑
n=1

Qn(x)

is of unbounded type if and only if for every x ∈ X

|Qn(x)|
1

deg Qn → 0 as n→ ∞. (3)

Proof. Let us suppose that {Qn}∞
n=1 satisfies (3). Then for every 0 < ε < 1 there is a

number n0 ∈ N such that for every n > n0, |Qn(x)|
1

deg Qn < ε. Thus,∣∣∣∣∣ ∞

∑
n=n0+1

Qn(x)

∣∣∣∣∣ ≤ ∞

∑
n=n0+1

|Qn(x)| ≤ 1
1− ε

< ∞.

Hence, f (x) is well-defined for every x ∈ X. On the other hand, $0( f ) = 1 and so f is
an entire function of unbounded type.

Conversely, let f ∈ H(X) \ Hb(X). Then for every x0 ∈ X, ‖x0‖ = 1 the series

f (λx0) =
∞

∑
n=1

Qn(λx0) =
∞

∑
n=1

λdeg Qn Qn(x0)

converges for every λ ∈ C. This implies

|Qn(x0)|
1

deg Qn → 0 as n→ ∞

and so
|λ||Qn(x0)|

1
deg Qn = |Qn(λx0)|

1
deg Qn → 0 as n→ ∞.

Since, every vector x ∈ X can be represented by x = λx0, ‖x0‖ = 1, λ ∈ C, the
proposition is proved.

In [20] the following theorem was proved.
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Theorem 1. Let us suppose that there is a dense subset Ω ⊂ X and a sequence of polynomials
Pn ∈ P(nX), lim supn→∞ ‖Pn‖1/n = c, 0 < c < ∞ such that for every z ∈ Ω there exists
m ∈ N with the property that for every y ∈ X,

BPn(z, . . . , z︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
n−k

) = 0

for all k > m and n > k, where BPn is the symmetric n-linear mapping associated with Pn. Then

g(x) =
∞

∑
n=1

Pn(x) ∈ H(X) \ Hb(X).

It is not difficult to show that if a sequence of polynomials Pn satisfies the conditions
of Theorem 1, then it is weak*-null. From Proposition 2 it follows that if Pn satisfies the
conditions of Theorem 1, then |Pn|1/n is weak*-null.

For a given sequence of polynomials P = {P1, P2, . . . , Pn, . . .} on X, ‖Pn‖ = 1, deg Pn =
n, n ∈ N we denote by P a multi-valued map from X to `∞ defined by

P(x) =
(

P1(x),
√

P2(x), . . . , n
√

Pn(x), . . .
)

.

Let In be polynomials on `∞ defined by In(z) = zn
n, z = (z1, . . . , zn, . . .), n ∈ N. The

algebra, generated by polynomials {In} was considered in [7]. Let us fix some evident
properties of P.

Proposition 3. For every sequence of polynomials P = {Pn}∞
n=1 on X, ‖Pn‖ = 1, deg Pn = n,

n ∈ N the following statements hold:

1. The range P(X) of X under P is in `∞.
2. P maps the ball rBX into the ball rB`∞ , r ≥ 0.
3. If z is in the range of P(x), then Pn(x) = In(z).

Proof. Since ‖Pn‖ = 1, |Pn(x)|1/n ≤ ‖x‖ for every x ∈ X. So if zn ∈ n
√

Pn(x), then
z = (z1, . . . , zn, . . .) ∈ `∞ and ‖z‖`∞ ≤ ‖x‖X . In addition, In(z) = zn

n = Pn(x).

Lemma 1. Let f ∈ H(`∞). Then the restriction f0 of f to c0 belongs to Hb(c0).

Proof. According to the Aron–Berner result [23], a function f0 ∈ H(c0) can be extended to
an analytic function f on `∞ if and only if f0 ∈ Hb(c0).

We say that the polynomial algebra PP(X) supports analytic functions of unbounded
type if there exists a function f ∈ HP(X) \ HbP(X).

Theorem 2. Let P = {Pn}∞
n=1 be as in Proposition 3.

1. If P maps X onto `∞, then the algebra PP(X) does not support analytic functions of un-
bounded type.

2. If P maps X to c0, then
∞

∑
n=1

Pn(x) ∈ H(X) \ Hb(X).

3. If there is x ∈ X such that P(x) ⊂ `∞ \ c0, then

∞

∑
n=1

Pn(x) /∈ H(X).
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Proof. (1) Let us prove first that PI(`∞) does not support analytic functions of unbounded
type on `∞, where PI(`∞) is PP(`∞) for P = I = {In}∞

n=1. Suppose that

f (z) =
∞

∑
n=0

fn(z) ∈ H(`∞) \ Hb(`∞), and fn ∈ PI(`∞).

Since each fn is an algebraic combination of I1, I2, . . . , In and Ik(z) = zk
k, we have that fn(z)

depends of finitely many coordinates z1, z2, . . . , zn. Thus, there is s = (s1, s2, . . . , sn, 0, 0 . . .)
such that ‖ fn‖ = | fn(s)|. In other words, the norm of fn in `∞ is equal to the norm of the
restriction of fn on c0. Let f0 be the restriction of f on c0. Hence we have that

$0( f ) = $0( f0).

So if f is a function of unbounded type, then f0 is a function of unbounded type.
However, it contradicts Lemma 1.

Let f now be an arbitrary function of unbounded type in HP(X). Since all polynomials
fn belong to PP(X), there are polynomials qn of n complex variables, n ∈ N such that

fn(x) = qn(P1(x), P2(x), . . . , Pn(x)) = qn(I1(z), I2(z), . . . , In(z)) =: Qn(z)

for every z ∈ P(x). Clearly every Qn is an n-homogeneous continuous polynomial. Since
P maps bounded sets to bounded sets,

g(z) =
∞

∑
n=0

Qn(z)

must be a function of unbounded type. However, it is impossible because of the first part
of the proof.

(2) If z = (z1, z2, . . .) ∈ P(x), then

f (x) =
∞

∑
n=1

Pn(x) =
∞

∑
n=1

zn
n =

∞

∑
n=1

In(z) ∈ H(c0).

Thus f is well defined on X and so belongs to H(X). Since ‖Pn‖ = 1, $0( f ) = 1. Hence,
f ∈ H(X) \ Hb(X).

(3) If P(x) 6⊂ c0 for some fixed x ∈ X, then there exists a constant c > 0 and a
subsequence nk ∈ N such that

∣∣ nk
√

Pnk (x)
∣∣ > c for all k. Let us consider the following

function of one complex variable

γ(t) =
∞

∑
n=1

Pn(tx) =
∞

∑
n=1

tnPn(x).

The radius of convergence of this series satisfies $0(γ(t)) ≤ 1/c, so if t0 > 1/c, then
the series

∞

∑
n=1

Pn(tx)

diverges. Thus it does not belong to H(X).

Remark 1. Formally, we do not assume in Theorem 2 that X is infinite dimensional. However, any
finite dimensional space does not admit entire functions of unbounded type. Thus, if P(X) ⊂ c0,
then X must be infinite dimensional.

Example 1. In [19] (see also [20]) it is shown that if Pn(x) = n!Gn(x), where

Gn(x) = ∑
k1<k2<···<kn

xk1 · · · xkn , x = (x1, x2, . . .) ∈ `1,
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then

f (x) =
∞

∑
n=1

Pn(x)

is an entire function of unbounded type on `1. It is known [13] that ‖Gn‖ = 1/n!. Thus, Theorem 2
implies that P(x) ∈ c0 for every x ∈ `1. The algebra PP(`1) coincides with the algebra of all symmet-
ric polynomials on `1 (see e.g., [12]) and admits another algebraic basis of homogeneous polynomials

Fn(x) =
∞

∑
k=1

xn
k , n = 1, 2, . . . .

It is easy to see that 1‖Fn‖ = 1 and Fn(e1) = 1 for every n ∈ N, where e1 = (1, 0, 0, . . .).
Hence,

(
n
√

Fn(e1))
∞
n=1 6⊂ c0. However, as we observed, the algebra of symmetric polynomials

supports entire functions of unbounded type. Therefore, if c0 6⊃ P(X) 6= `∞, then
∞

∑
n=1

Pn /∈ H(X),

but PP(X) may still support entire functions of unbounded type.

Note that the existence of an isomorphism of HbP(X) and HbI(`∞) does not imply that
PP(X) does not support analytic functions of unbounded type.

Example 2. It is known [7] that there is an isomorphism J : HbI(c0) → HbI(`∞) such that
J : In 7→ In but PI(c0) supports analytic functions of unbounded type. For example

f (x) =
∞

∑
n=0

In(x) =
∞

∑
n=0

xn
n ∈ H(c0) \ Hb(c0).

In other words, the isomorphism J can not be extended to an isomorphism between H(c0)
and H(`∞).

Let us recall that a function on L∞[0, 1] is symmetric if it is invariant with respect to
measuring and measure preserving automorphisms of the interval [0, 1]. The polynomials

Rn(x) =
∫
[0, 1]

(x(t))n dt, x(t) ∈ L∞[0, 1], n ∈ N

form an algebraic basis in the space of all symmetric polynomials on L∞[0, 1] Thus, the al-
gebra of symmetric polynomials Ps(L∞[0, 1]) is a partial case of PP(X) if X = L∞[0, 1] and
Pn = Rn. In [20] the authors asked: Does an entire symmetric analytic function of unbounded
type exist on L∞[0, 1]? Now we have a negative answer to this question.

Corollary 1. All entire symmetric functions on L∞[0, 1] are functions of bounded type.

Proof. Let

f (x) =
∞

∑
n=0

fn(x)

be an entire symmetric function on L∞[0, 1]. Then each Taylor’s polynomial fn must be
symmetric and so can be represented as an algebraic combination of polynomials R1, . . . , Rn.
In [14] is proved that the map

x 7→
(

R1(x),
√

R2(x), . . . , n
√

Rn(x), . . .
)

is onto `∞. Thus, by Theorem 2, the algebra of symmetric polynomials on L∞[0; 1] does not
support entire functions of unbounded type. Hence f (x) is of bounded type.



Axioms 2021, 10, 150 7 of 10

3. Lineability of HP(X) \ HbP(X)

Theorem 3. If PP(X) supports analytic functions of unbounded type, then for every f ∈ HP(X) \
HbP(X) there exists an infinite dimensional linear subspace in HP(X) which consists (excepting
zero) of analytic functions of unbounded type and contains f .

Proof. Let

f (x) =
∞

∑
n=0

fn(x) ∈ HP(X) \ HbP(X).

Then $0( f ) = r for some 0 < r < ∞. Let δ > 0 and δ < c = 1/r. Denote by N0 the
subset of all nonnegative integers Z+ such that ‖ fm‖1/m < δ. In other words, if n ∈ Z+ \N0,
then δ ≤ ‖ fn‖1/n ≤ c, that is, for every subsequence {nk}∞

k=1 ⊂ Z+ \ N0

r ≤ $0

(
∞

∑
k=1

fnk

)
≤ 1

δ
< ∞.

Let

Z+ =
∞

ä
k=0

Nk

be a partition of the set Z+ into infinite many disjoint subsets Nk so that |Nk| = ∞ for k > 0
and N0 is the finite or infinite set defined above. Let N0 = (j1, j2, . . .). We denote

Nk =

{
Nk
⋃{jk} if k ≤ |N0|
Nk otherwise.

Thus N = (N1,N2, . . .) is a partition of Z+ into infinitely many disjoint subsets of
infinite cardinality.

For any bounded sequence of numbers a = (a1, a2, . . .) we assign a function

ga(x) =
∞

∑
k=1

ak ∑
j∈Nk

f j(x).

For every a ∈ `∞, a 6= 0 the function ga is well defined on X and is of unbounded type.
Indeed, for the Taylor polynomials (ga)n of ga we have∣∣(ga)m(x)

∣∣1/m ≤ ‖a‖1/m
`∞
| fm(x)|1/m → 0 as m→ ∞.

Moreover, since a 6= 0 there is a number j such that aj 6= 0. Thus

lim sup
m→∞

∥∥(ga)m
∥∥1/m ≥ lim sup

m∈Nj

∥∥(ga)m
∥∥1/m

= lim sup
m∈Nj

|aj|1/m‖ fm‖1/m ≥ δ

and so
$0(ga) ≤

1
δ
< ∞.

Since f ∈ HP(X), ga ∈ HP(X) for every a ∈ `∞. On the other hand, the set which
depends on the choice of f , δ, and N

V f ,δ,N = {ga : a ∈ `∞}

is a linear space because ga + λgb = ga+λb for all a, b ∈ `∞, λ ∈ C. Clearly f = ga for
a = (1, 1, . . .).

Note that the subspace V f ,δ,N is not maximal. Indeed, if N ′ is a subpartition of N ,
then V f ,δ,N ′ ⊃ V f ,δ,N . It is easy to deduce by the Zorn Lemma that there is a maximal linear
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subspace in H(x) \ Hb(X) containing a given function of unbounded type. So we have the
following corollary.

Corollary 2. Let X be an infinite dimensional Banach space. The set H(x) \ Hb(X) can be
represented as a union of infinite dimensional linear subspaces (without the origin).

It is known (see [5]) that for every infinite dimensional Banach space X there are
sequences {ek}∞

k=1 ⊂ X and {ϕk}∞
k=1 ⊂ X∗ such that

1. lim
k→∞

ϕk(x) = 0 for every x ∈ X,

2. ‖ϕk‖ = 1, k ∈ N,
3. supk∈N ‖ek‖ < ∞,
4. ϕk(ej) = δkj, where k, j ∈ N and δkj is the Kronecker delta.

In Theorem 2 of [5], actually it was proved that if the functionals ϕk are as above, then
for every strictly increasing sequence of prime numbers {aj}∞

j=1 the following functions

f j =
∞

∑
k=1

ak
j ϕk

k

generate an infinite dimensional algebra A such that every nonzero element h in A is an
entire function of unbounded type and sup

n
|h(en)| = ∞. In particular, it is so if X = c0,

{ek}∞
k=1 is the basis in c0 and {ϕk}∞

k=1 is the sequence of coordinate functionals.

Theorem 4. Let {Pn}∞
n=1, ‖Pn‖ = 1, n ∈ N be a sequence of n-homogeneous polynomials on

a Banach space X such that P(X) ⊂ c0 and there exists a sequence {zk}∞
k=1 in X such that

sup
k
‖zk‖ < ∞ and Pn(zk) = δnk. Then for every strictly increasing sequence of prime numbers

{aj}∞
j=1 the functions

gj =
∞

∑
k=1

ak
j Pk

generate an infinite-dimensional algebra B such that every nonzero element in u ∈ B is an entire
function of unbounded type and sup

n
|u(zn)| = ∞.

Proof. Let us consider the algebra A generated by functions

f j(x) =
∞

∑
k=1

ak
j
(

ϕk(x)
)k

=
∞

∑
k=1

ak
j xk

k, where x =
∞

∑
n=1

xnen ∈ c0 and j ∈ N.

Note that
(

ϕk
(
P(zk)

))k
= ek for every evaluation of P(zk). From Theorem 2 of [5]

mentioned above, it follows that if h ∈ A and h 6= 0, then sup
n
|h(en)| = ∞. Every function

u ∈ B can be represented as a finite algebraic combination of functions gj,

u(x) = ∑
j1<···<jm<N

λj1 ...jm
(

gj1(x)
)pj1 · · ·

(
gjm(x)

)pjm

= ∑
j1<···<jm<N

λj1 ...jm

(
f j1
(
P(x)

))pj1 · · ·
(

f jm
(
P(x)

))pjm
,

where N ∈ N, λj1 ...jm ∈ C \ {0} and pjk ∈ N for all jk. In other words,

u(x) = h
(
P(x)

)
for some h ∈ A and u(zk) = h(ek).
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Hence, sup
n
|u(zn)| = ∞ and so all functions in B \ {0} are unbounded on some

bounded subsets. On the other hand, since P(X) ⊂ c0, all functions gj by Theorem 2 are
well-defined on X and so their finite algebraic combinations are well-defined on X too.
Thus, B \ {0} ⊂ H(X) \ Hb(X).

Corollary 3. Let Pn(x) = n!Gn(x), x ∈ `1 be the basis of symmetric polynomials on `1 as in
Example 1. Then for every strictly increasing sequence of prime numbers {aj}∞

j=1 the functions

gj =
∞

∑
k=1

(−1)k+1ak
j Pk

generate an infinite-dimensional subalgebra in the algebra of symmetric analytic functions compris-
ing (excepting zero) of analytic functions of unbounded type.

Proof. We need to construct a sequence {zn}∞
n=1, biorthogonal to {Pk}∞

k=1. Let us define

zn =
1

(n!)1/n (α1, . . . , αn, 0, 0, . . .),

where {α1, . . . , αn} = n
√

1 are the roots of the unity. From the Vieta formulas it follows that

Pn(zn) =
n!
n!

α1 · · · αn = (−1)n+1

and
Pk(zn) =

n!
(n!)k/n Gk(zn) = 0 if k < n.

If k > n, then Gk(zn) = 0 because zn has only n nonzero coordinates. Thus Pk(zn) =
δkn. In addition, using the Stirling formula, we can estimate

‖zn‖ =
n

(n!)1/n ≤ n
( en

nn

)1/n
= e < ∞.

Thus, we can apply Theorem 4 for the sequence of polynomials {(−1)k+1Pk}∞
k=1.

4. Discussion and Conclusions

One of the main results of the paper is that not every infinitely generated algebra of
polynomials on a Banach space supports entire functions of unbounded type. We found
some necessary conditions and some sufficient conditions of this property but we have
no conditions which are simultaneously necessary and sufficient. The mapping P allows
us to reduce this question to polynomial algebras on subsets of `∞. However, we do not
know whether PI(c) supports entire functions of unbounded type, where c is the space
of all convergent sequences. Moreover, we do not know if there exists a supersymmetric
entire function of unbounded type (supersymmetric analytic functions and their properties
were considered in [16]).

The theorems on linear subspaces and subalgebras are interesting in the context of
the general question about linear structures in nonlinear sets [24] and are extensions of
Lopez–Salazar Codes’ results [5] for more special cases.
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