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Abstract: A finite-horizon two-person non-zero-sum differential game is considered. The dynamics
of the game is linear. Each of the players has a quadratic functional on its own disposal, which
should be minimized. The case where weight matrices in control costs of one player are singular in
both functionals is studied. Hence, the game under the consideration is singular. A novel definition
of the Nash equilibrium in this game (a Nash equilibrium sequence) is proposed. The game is
solved by application of the regularization method. This method yields a new differential game,
which is a regular Nash equilibrium game. Moreover, the new game is a partial cheap control game.
An asymptotic analysis of this game is carried out. Based on this analysis, the Nash equilibrium
sequence of the pairs of the players’ state-feedback controls in the singular game is constructed. The
expressions for the optimal values of the functionals in the singular game are obtained. Illustrative
examples are presented.
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1. Introduction

Differential games, which cannot be solved by application of the first-order solvability
conditions, are called singular. For instance, a zero-sum differential game is called singular
if it cannot be solved using the Isaacs MinMax principle [1,2] and the Bellman–Isaacs
equation method [1,3]. Similarly, Nash equilibrium set of controls in a singular non-zero-
sum differential game cannot be derived using the first-order variational method and the
generalized Hamilton-Jacobi-Bellman equation method [3,4].

Singular differential games appear in various applications. For example, such games
appear in pursuit-evasion problems (see, e.g., Ref. [5]), in robust controllability problems
(see, e.g., Ref. [6]), in robust interception problems of maneuvering targets (see e.g., Ref. [7]),
in robust tracking problems (see, e.g., Ref. [8]), in biology processes (see, e.g., Ref. [9]), and
in robust investment problems (see, e.g., Ref. [10]).

Treating a singular differential game, one can try to use higher order solvability
conditions. However, such conditions are useless for the game, which does not have an
optimal control of at least one player in the class of regular (non-generalized) functions.

Singular zero-sum differential games were extensively analyzed in the literature by
different methods (see, e.g., Refs. [7,11–18] and references therein). Thus, in Refs [7,15,16],
various singular zero-sum differential games were solved by regularization method.
In Reference [11], a numerical method was proposed to solve one class of zero-sum differ-
ential games with singular control. In Reference [12], a class of zero-sum differential games
with singular arcs was considered. For this class of the games, sufficient conditions for the
existence of a saddle-point solution were established. In Reference [13], the Riccati matrix
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inequality was applied to establish the existence of an almost equilibria in a singular zero-
sum differential game. In Reference [14], a saddle-point solution of a singular zero-sum
differential game was derived in the class of generalized functions. In Reference [17], a
class of zero-sum stochastic differential games was studied. Each player of this game has
a control consisting of regular and singular parts. Necessary and sufficient saddle-point
optimality conditions were derived for the considered game. In Reference [18], a singular
zero-sum linear-quadratic differential game was considered. This game was treated by its
regularization and numerical solution of the regularized game.

Singular non-zero-sum Nash equilibrium differential games also were studied in the
literature, but mostly in various stochastic settings (see, e.g., Refs. [10,19–22] and references
therein). Deterministic singular non-zero-sum Nash equilibrium differential games were
studied only in few works. Thus, in Reference [23], a two-person non-zero-sum differential
game with a linear second order dynamics and scalar controls of both players was consid-
ered. Each player controls one equation of the dynamics. The infinite horizon quadratic
functionals of the players do not contain control costs. The admissible class of controls for
both players is the set of linear state-feedbacks. The notion of asymptotic (with respect to
time) ε-Nash equilibrium was introduced, and this equilibrium was designed subject to
some condition. In Reference [9], a finite-horizon two-person non-zero-sum differential
game was studied. This game models a biological process. Its fourth-order dynamics is
linear with respect to scalar controls of the players, and these controls are bounded. The
players’ functionals depend only on the state variables, and this dependence is quadratic.
For this singular game, a Nash equilibrium set of open-loop controls was derived in the
class of regular functions. In Reference [24], an infinite horizon two-person non-zero-sum
differential game with n-order linear dynamics and vector-valued unconstrained players’
controls was considered. Functionals of both players are quadratic, and these functionals
do not contain control costs of one (the same) player. This singular game was solved by the
regularization approach.

In the present paper, we consider a deterministic finite-horizon two-person non-zero-
sum differential game. The dynamics of this game is linear and time-dependent. The
controls of the players are unconstrained. Each player aims to minimize its own quadratic
functional. We look for the Nash equilibrium in this game, and we treat the case where
weight matrices in control costs of one player (the “singular” player) in both functionals
are singular but non-zero. Such a feature means that the game under the consideration is
singular. However, since the aforementioned singular weight matrices are non-zero, the
control of the “singular” player contains both, singular and regular, coordinates. For this
game, in general, the Nash equilibrium pair of controls, in which singular coordinates of
the “singular” player’s control are regular (non-generalized) functions, does not exist. To
the best of our knowledge, such a game has not yet been studied in the literature. The aims
of the paper are the following: (A) to define the solution (the Nash equilibrium) of the
considered game; (B) to derive this solution. Thus, we propose for the considered singular
game a novel notion of the Nash equilibrium (a Nash equilibrium sequence). Based on
this notion, we solve the game by application of the regularization method. Namely, we
associate the original singular game with a new differential game. This new game has the
same equation of the dynamics and a similar functional of the “singular” player augmented
by a finite-horizon integral of the square of its singular control coordinates with a small
positive weight (a small parameter). The functional of the other (“regular”) player remains
unchanged. Thus, the new game is a finite-horizon regular linear-quadratic game.

The regularization method was applied for solution of singular optimal control prob-
lems in many works (see, e.g., Refs. [25–27] and references therein). This method also was
applied for solution of singular H∞ control problems (see, e.g., Refs. [28,29] and references
therein) and for solution of singular zero-sum differential games (see, e.g., Refs. [7,15,16]).
However, to the best of our knowledge, the application of the regularization method to
analysis and solution of singular non-zero-sum differential games was considered only in
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two short conference papers [24,30]. In each of these papers, the study of the game was
presented in a brief form and without detailed analysis and proofs of assertions.

The aforementioned new game, obtained by the regularization of the original sin-
gular game, is a partial cheap control game. Using the solvability conditions of a Nash
equilibrium finite-horizon linear-quadratic regular game, the solution of this partial cheap
control game is reduced to solution of a set of two matrix Riccati-type differential equations,
singularly perturbed by the small parameter. Using an asymptotic solution of this set,
a Nash equilibrium sequence of the pairs of the players’ state-feedback controls in the
original singular game is constructed. The expressions for the optimal values of the players’
functionals in this game are obtained. Note that a particular case of the differential game,
studied in the present paper, was considered briefly and without detailed proofs in the
short conference paper [30].

The paper is organized as follows. In the next section, the initial formulation of the
singular differential game is presented. The main definitions also are formulated. The
transformation of the initially formulated game is carried out in Section 3. It is shown that
the initially formulated game and the transformed game are equivalent to each other. Due
to this equivalence, in the rest of the paper the transformed game is analyzed as an original
singular differential game. The regularization of the original singular game, which is made
in Section 4, yields a partial cheap control regular game. Nash equilibrium solution of the
latter is presented in Section 5. Asymptotic analysis of the partial cheap control regular
game is carried out in Section 6. In Section 7, the reduced differential game, associated with
the original singular game, is presented along with its solvability conditions. The Nash
equilibrium sequence for the original singular differential game and the expressions of the
functionals’ optimal values of this game are derived in Section 8. Two illustrative examples
are considered in Section 9. Section 10 is devoted to concluding remarks. Some technically
complicated proofs are placed in appendices.

The following main notations are used in the paper:

1. En is the n-dimensional real Euclidean space.
2. The Euclidean norm of either a vector or a matrix is denoted by ‖ · ‖.
3. The upper index “T” denotes the transposition either of a vector x (xT) or of a matrix

A (AT).
4. In denotes the identity matrix of dimension n.
5. On×m denotes zero matrix of dimension n× m; however, if the dimension of zero

matrix is clear, it is denoted as 0.
6. L2[t1, t2; En] denotes the space of all functions x(·) : [t1, t2]→ En square integrable in

the interval [t1, t2].
7. col(x, y), where x ∈ En, y ∈ Em, denotes the column block-vector of the dimension

n + m with the upper block x and the lower block y, i.e., col(x, y) = (xT , yT)T .
8. ⊗ denotes the Kronecker product of matrices.
9. For a given n×m-matrix A, vec(A) means its vectorization, i.e., the nm-dimensional

block vector in which the first (upper) block is the first (upper) row of A, the second
block is the second row of A, and so on, the lower block of vec(A) is the last (lower)
row of A.

2. Initial Game Formulation

The game’s dynamics is described by the following system:

dZ(t)
dt

= A(t)Z(t) + Bu(t)u(t) + Bv(t)v(t), t ∈ [0, t f ], Z(0) = Z0, (1)

where t f > 0 is a given final time instant; Z(t) ∈ En is the state vector, u(t) ∈ Er, (r < n),
v(t) ∈ Es are the players’ controls;A(t), Bu(t) and Bv(t), t ∈ [0, t f ] are given matrix-valued
functions of corresponding dimensions; Z0 ∈ En is a given constant vector.
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The functionals of the player “u” with the control u(t) and the player “v” with the
control v(t) are, respectively,

Ju(u, v) = ZT(t f )CuZ(t f )

+
∫ t f

0
[
ZT(t)Du(t)Z(t) + uT(t)Ruu(t)u(t) + vT(t)Ruv(t)v(t)

]
dt,

(2)

Jv(u, v) = ZT(t f )CvZ(t f )

+
∫ t f

0
[
ZT(t)Dv(t)Z(t) + vT(t)Rvv(t)v(t) + uT(t)Rvu(t)u(t)

]
dt,

(3)

where Cu and Cv are given symmetric positive semi-definite matrices of corresponding
dimensions; Di(t), Rij(t), (i = u, v; j = u, v), t ∈ [0, t f ] are given matrix-valued functions
of corresponding dimensions; the matrix Rvv(t) is symmetric positive definite; the matrices
Du(t), Dv(t), Ruu(t), Ruv(t), and Rvu(t) are symmetric positive semi-definite.

In what follows, we assume that the weight matrices Ruu(t) and Rvu(t) of the costs of
the control u(t) in both functionals have the block form

Ruu(t) =
(

R̄uu(t) 0
0 0

)
, Rvu(t) =

(
R̄vu(t) 0
0 0

)
, t ∈ [0, t f ], (4)

where the matrices R̄uu(t) and R̄vu(t) are of the dimension q× q, (0 < q < r); the matrix
R̄uu(t) is positive definite; the matrix R̄vu(t) is positive semi-definite.

The player “u” aims to minimize the functional (2) by a proper choice of the control
u(t), while the player “v” aims to minimize the functional (3) by a proper choice of the
control v(t).

We study the game (1)–(3) with respect to its Nash equilibrium, and subject to the
assumption that both players know perfectly the current game state.

Remark 1. Due to the assumption (4), the first-order Nash-equilibrium solvability conditions (see,
e.g., Refs. [3,4]) cannot be applied to analysis and solution of the game (1)–(3), i.e., this game is
singular. Moreover, this game does not have, in general, its solution (a Nash-equilibrium pair of
controls) in the class of regular (non-generalized) functions.

Consider the set UZ of all functions Fu(Z, t) : En × [0, t f ]→ Er, which are measurable
w.r.t. t ∈ [0, t f ] for any fixed Z ∈ En and satisfy the local Lipschitz condition w.r.t.
Z ∈ En uniformly in t ∈ [0, t f ]. In addition, consider the set VZ of all functions Fv(Z, t) :
En × [0, t f ]→ Es with the same properties.

Definition 1. By (UV)Z, we denote the set of all pairs
(

Fu(Z, t), Fv(Z, t)
)

of functions satisfying
the following conditions:

(i) Fu(Z, t) ∈ UZ, Fv(Z, t) ∈ VZ;
(ii) the initial-value problem (1) for u(t) = Fu(Z, t), v(t) = Fv(Z, t) and any Z0 ∈ En has the

unique absolutely continuous solution ZF(t; Z0), t ∈ [0, t f ];
(iii) Fu

(
ZF(t; Z0), t

)
∈ L2[0, t f ; Er];

(iv) Fv
(
ZF(t; Z0), t

)
∈ L2[0, t f ; Es].

In what follows, (UV)Z is called the set of all admissible pairs of players’ state-feedback
controls (strategies)

(
u = Fu(Z, t), v = Fv(Z, t)

)
in the game (1)–(3).

For any given functions F̃u(Z, t) ∈ UZ and F̃v(Z, t) ∈ VZ, we consider the sets

Ev
(

F̃u(Z, t)
) 4
=
{

Fv(Z, t) ∈ VZ :
(

F̃u(Z, t), Fv(Z, t)
)
∈ (UV)Z

}
, (5)

Eu
(

F̃v(Z, t)
) 4
=
{

Fu(Z, t) ∈ UZ :
(

Fu(Z, t), F̃v(Z, t)
)
∈ (UV)Z

}
. (6)

Consider the sequence of the pairs
(

F∗u,k(Z, t), F∗v (Z, t)
)
∈ (UV)Z, (k = 1, 2, ...).
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Definition 2. The sequence
{(

F∗u,k(Z, t), F∗v (Z, t)
)}+∞

k=1 is called a Nash equilibrium strategies’
sequence (or simply, a Nash equilibrium sequence) in the game (1)–(3) if:

(a) for any Z0, there exist finite limits limk→+∞ Ju
(

F∗u,k(Z, t), F∗v (Z, t)
)

and limk→+∞ Jv(
F∗u,k(Z, t), F∗v (Z, t)

)
in the game (1)–(3);

(b) limk→+∞ Ju
(

F∗u,k(Z, t), F∗v (Z, t)
)
≤ Ju

(
Fu(Z, t), F∗v (Z, t)

)
for all Fu(Z, t) ∈ Eu

(
F∗v (Z, t)

)
;

(c) limk→+∞ Jv
(

F∗u,k(Z, t), F∗v (Z, t)
)
≤ lim infk→+∞ Jv

(
F∗u,k(Z, t), Fv(Z, t)

)
for all Fv(Z, t) ∈ M∗

v
4
=
⋂+∞

k=1 Ev
(

F∗u,k(Z, t)
)
.

The values
J ∗u

4
= lim

k→+∞
Ju
(

F∗u,k(Z, t), F∗v (Z, t)
)

and
J ∗v

4
= lim

k→+∞
Jv
(

F∗u,k(Z, t), F∗v (Z, t)
)

are called optimal values of the functionals (2) and (3), respectively, in the game (1)–(3).

3. Transformation of the Game (1)–(3)

Let us represent the matrix Bu(t) in the block form

Bu(t) =
(
Bu,1(t),Bu,2(t)

)
, t ∈ [0, t f ], (7)

where the matrices Bu,1(t) and Bu,2(t) have the dimensions n× q and n× (r− q), respectively.
In what follows, we assume:
AI. The matrix Bu(t) has full column rank r for all t ∈ [0, t f ].
AII. det

(
BT

u,2(t)D(t)Bu,2(t)
)
6= 0, t ∈ [0, t f ].

AIII. CuBu,2(t f ) = 0, CvBu,2(t f ) = 0.
AIV. The matrix-valued functions A(t), Bv(t), R̄uu(t), Ruv(t), Rvv(t), R̄vu(t), and

Dv(t) are continuously differentiable in the interval [0, t f ].
AV. The matrix-valued functions Bu(t) andDu(t) are twice continuously differentiable

in the interval [0, t f ].
Let the n × (n − r)-matrix Bu,c(t) be a complement matrix to Bu(t) in the interval

[0, t f ], i.e., the block matrix
(
Bu,c(t),Bu(t)

)
is invertible for all t ∈ [0, t f ]. Therefore, the

n× (n− r + q)-matrix B̃u,c(t) =
(
Bu,c(t),Bu,1(t)

)
is a complement matrix to Bu,2(t) in the

interval [0, t f ].
In what follows, we also assume:
AVI. The matrix-valued function Bu,c(t) is twice continuously differentiable in the

interval [0, t f ].
Using the matrices Bu,2(t) and B̃u,c(t), we construct the following matrices:

Hu(t) =
(
BT

u,2(t)Du(t)Bu,2(t)
)−1BT

u,2(t)Du(t)B̃u,c(t), t ∈ [0, t f ],
Lu(t) = B̃u,c(t)−Bu,2(t)Hu(t), Ru(t) =

(
Lu(t),Bu,2(t)

)
, t ∈ [0, t f ]. (8)

Now, using the matrix Ru(t), we make the following transformation of the state
variable Z(t) in the game (1)–(3):

Z(t) = Ru(t)z(t), t ∈ [0, t f ], (9)

where z(t) ∈ En is a new state variable.
Due to the results of Reference [31], the transformation (9) is invertible.
For the sake of the further analysis, we partition the matrixHu(t) into blocks as:

Hu(t) =
(
Hu,1(t),Hu,2(t)

)
, t ∈ [0, t f ], (10)
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where the matrices Hu,1(t) and Hu,2(t) have the dimensions (r − q) × (n − r) and
(r− q)× q, respectively.

Quite similarly to the results of Reference [15,29], we have the following assertion.

Proposition 1. Let the assumptions AI-AVI be valid. Then, the state transformation (9) converts
the system (1) to the system

dz(t)
dt

= A(t)z(t) + Bu(t)u(t) + Bv(t)v(t), t ∈ [0, t f ], z(0) = z0, (11)

and the functionals (2), (3) to the functionals

Ju(u, v) = zT(t f )Cuz(t f )

+
∫ t f

0
[
zT(t)Du(t)z(t) + uT(t)Ruu(t)u(t) + vT(t)Ruv(t)v(t)

]
dt,

(12)

Jv(u, v) = zT(t f )Cvz(t f )

+
∫ t f

0
[
zT(t)Dv(t)z(t) + vT(t)Rvv(t)v(t) + uT(t)Rvu(t)u(t)

]
dt,

(13)

where

A(t) = R−1
u (t)

[
A(t)Ru(t)− dRu(t)/dt

]
, Bv(t) = R−1

u (t)Bv(t), t ∈ [0, t f ], (14)

Bu(t) = R−1
u (t)Bu(t) =

 O(n−r)×q O(n−r)×(r−q)
Iq Oq×(r−q)
Hu,2(t) Ir−q

, t ∈ [0, t f ], (15)

Ci = RT
u(t f )CiRu(t f ) =

(
Ci1 O(n−r+q)×(r−q)
O(r−q)×(n−r+q) O(r−q)×(r−q)

)
, i = u, v,

Ci1 = LT(t f )CiL(t f ), i = u, v,
(16)

Du(t) = RT
u(t)Du(t)Ru(t) =

(
Du1(t) O(n−r+q)×(r−q)
O(r−q)×(n−r+q) Du2(t)

)
,

Du1(t) = LT
u(t)Du(t)Lu(t), Du2(t) = BT

u,2(t)Du(t)Bu,2(t), t ∈ [0, t f ],
(17)

Dv(t) = RT
u(t)Dv(t)Ru(t), t ∈ [0, t f ], (18)

z0 = R−1
u (0)Z0. (19)

The matrices Du1(t) and Dv(t) are symmetric positive semi-definite, while the matrix Du2(t)
is symmetric positive definite for all t ∈ [0, t f ]. The matrices Cu1 and Cv1 are symmetric positive
semi-definite. Moreover, the matrix-valued functions A(t), Bu(t), Bv(t), Du(t), and Dv(t) are
continuously differentiable in the interval [0, t f ].

Remark 2. In the new (transformed) game with the dynamics (11) and the functionals (12), (13),
the player “u” aims to minimize the functional (12) by a proper choice of the control u(t), while the
player “v” aims to minimize the functional (13) by a proper choice of the control v(t). Since in the
game (1)–(3) both players know perfectly the current state Z(t), then due to the invertibility of the
transformation (9), in the game (11)–(13) both players also know perfectly the current state z(t).
Like the game (1)–(3), the new game (11)–(13) also is singular.

Consider the set Uz of all functions Gu(z, t) : En × [0, t f ]→ Er, which are measurable
w.r.t. t ∈ [0, t f ] for any fixed z ∈ En and satisfy the local Lipschitz condition w.r.t. z ∈ En

uniformly in t ∈ [0, t f ]. In addition, consider the set Vz of all functions Gv(z, t) : En ×
[0, t f ]→ Es with the same properties.
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Definition 3. By (UV)z, we denote the set of all pairs
(
Gu(z, t), Gv(z, t)

)
of functions satisfying

the following conditions:

(i) Gu(z, t) ∈ Uz, Gv(z, t) ∈ Vz;
(ii) the initial-value problem (11) for u(t) = Gu(z, t), v(t) = Gv(z, t) and any z0 ∈ En has the

unique absolutely continuous solution zG(t; z0), t ∈ [0, t f ];
(iii) Gu

(
zG(t; z0), t

)
∈ L2[0, t f ; Er];

(iv) Gv
(
zG(t; z0), t

)
∈ L2[0, t f ; Es].

In what follows, (UV)z is called the set of all admissible pairs of players’ state-feedback controls
(strategies)

(
u = Gu(z, t), v = Gv(z, t)

)
in the game (11)–(13).

Corollary 1. Let the assumptions AI-AVI be valid. Let
(

Fu(Z, t), Fv(Z, t)
)
∈ (UV)Z and

ZF(t; Z0), t ∈ [0, t f ] be the solution of the initial-value problem (1) generated by this pair of the play-

ers’ controls. Then,
(

Fu
(
Ru(t)z, t

)
, Fv
(
Ru(t)z, t

))
∈ (UV)z and ZF(t; Z0) = Ru(t)zG(t; z0),

t ∈ [0, t f ], where zG(t; z0), t ∈ [0, t f ] is the unique solution of the initial-value problem (11) gener-

ated by the players’ controls u(t) = Gu(z, t)
4
= Fu

(
Ru(t)z, t

)
, v(t) = Gv(z, t)

4
= Fv

(
Ru(t)z, t

)
.

Vice versa: let
(
Gu(z, t), Gv(z, t)

)
∈ (UV)z and zG(t; z0), t ∈ [0, t f ] be the solution of the

initial-value problem (11) generated by this pair of the players’ controls.

Then,
(

Gu
(
R−1

u (t)Z, t
)
, Gv

(
R−1

u (t)Z, t
))
∈ (UV)Z and zG(t; Z0) = R−1

u (t)ZF(t; Z0),

t ∈ [0, t f ], where ZF(t; Z0), t ∈ [0, t f ] is the unique solution of the initial-value problem (1)

generated by the players’ controls u(t) = Fu(Z, t)
4
= Gu

(
R−1

u (t)Z, t
)
, v(t) = Fv(Z, t)

4
=

Gv
(
R−1

u (t)Z, t
)
.

Proof. The statements of the corollary directly follow from Definitions 1 and 3 and
Proposition 1.

For any given G̃u(z, t) ∈ Uz and G̃v(z, t) ∈ Vz, consider the sets

Kv
(
G̃u(z, t)

) 4
=
{

Gv(z, t) ∈ Vz :
(
G̃u(z, t), Gv(z, t)

)
∈ (UV)z

}
, (20)

Ku
(
G̃v(z, t)

) 4
=
{

Gu(z, t) ∈ Uz :
(
Gu(z, t), G̃v(z, t)

)
∈ (UV)z

}
. (21)

Consider the sequence of the pairs
(
G∗u,k(z, t), G∗v(z, t)

)
∈ (UV)z, (k = 1, 2, ...).

Definition 4. The sequence
(
G∗u,k(z, t), G∗v(z, t)

)+∞
k=1 is called a Nash equilibrium strategies’

sequence (or simply, a Nash equilibrium sequence) in the game (11)–(13) if:

(I) for any z0 ∈ En, there exist finite limits limk→+∞ Ju
(
G∗u,k(z, t), G∗v(z, t)

)
and

limk→+∞ Jv
(
G∗u,k(z, t), G∗v(z, t)

)
in the game (11)–(13);

(II) limk→+∞ Ju
(
G∗u,k(z, t), G∗v(z, t)

)
≤ Ju

(
Gu(z, t), G∗v(z, t)

)
for all Gu(z, t) ∈ Ku

(
G∗v(z, t)

)
;

(III) limk→+∞ Jv
(
G∗u,k(z, t), G∗v(z, t)

)
≤ lim infk→+∞ Jv

(
G∗u,k(z, t), Gv(z, t)

)
for all Gv(z, t) ∈ N ∗v

4
=
⋂+∞

k=1Kv
(
G∗u,k(z, t)

)
.

The values
J∗u
4
= lim

k→+∞
Ju
(
G∗u,k(z, t), G∗v(z, t)

)
and

J∗v
4
= lim

k→+∞
Jv
(
G∗u,k(z, t), G∗v(z, t)

)
are called optimal values of the functionals (12) and (13), respectively, in the game (11)–(13).
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Lemma 1. Let the assumptions AI-AVI be valid. Let
(

F∗u,k(Z, t), F∗v (Z, t)
)+∞

k=1 be the Nash equi-

librium sequence in the game (1)–(3). Then,
(

F∗u,k
(
Ru(t)z, t

)
, F∗v
(
Ru(t)z, t

))+∞

k=1
is the Nash

equilibrium sequence in the game (11)–(13).
Vice versa: let

(
G∗u,k(z, t), G∗v(z, t)

)+∞
k=1 be the Nash equilibrium sequence in the game (11)–(13).

Then,
(

G∗u,k
(
R−1

u (t)Z, t
)
, G∗v

(
R−1

u (t)Z, t
))+∞

k=1
is the Nash equilibrium sequence in the game (1)–(3).

Proof of the lemma is presented in Appendix A.

Corollary 2. Let the assumptions AI-AVI be valid. Then, the optimal values J ∗u and J ∗v of
the functionals (2) and (3) in the game (1)–(3) coincide with the optimal values J∗u and J∗v of the
corresponding functionals (12) and (13) in the game (11)–(13), i.e., J ∗u = J∗u and J ∗v = J∗v .

Proof. The statement of the corollary is a direct consequence of the expressions for J ∗u ,
J ∗v , J∗u and J∗v (see Definitions 2 and 4), and the proof of Lemma 1 (see Equations (A2)
and (A3)–(A6) in Appendix A).

Remark 3. Due to Lemma 1 and Corollary 2, the initially formulated differential game (1)–(3) is
equivalent to the new (transformed) differential game (11)–(13). Moreover, due to Proposition 1, the
new game is simpler than the initial game. Due to this observation, in what follows of this paper,
we consider the game (11)–(13) as an original game. We call this game the Singular Differential
Game (SDG).

4. Regularization of the SDG

We are going to solve the SDG by regularization method. This method consists in
replacing the SDG with a regular differential game. The latter depends on a small positive
parameter ε. When we set formally ε = 0, the new (regular) game becomes the SDG.
Based on this observation, we construct the regular differential game, associated with the
SDG, as follows. We keep for this regular game the dynamic Equation (11) and the cost
functional (13) of the player “v”, while we construct the functional of the player “u” in the
new game to be of the regular form

Ju,ε(u, v) = zT(t f )Cuz(t f )

+
∫ t f

0
[
zT(t)Du(t)z(t) + uT(t)

(
Ruu(t) + Λ(ε)

)
u(t) + vT(t)Ruv(t)v(t)

]
dt,

(22)

where
Λ(ε) = diag

(
0, ..., 0︸ ︷︷ ︸

q

, ε2, ..., ε2︸ ︷︷ ︸
r−q

)
. (23)

Due to (4) and (23), the matrix Ruu(t) + Λ(ε) is positive definite for any t ∈ [0, t f ]
and any ε 6= 0. In addition, it is seen that, for ε = 0, the functional (22) becomes the
functional (12).

Remark 4. Since the parameter ε > 0 is small, the game (11), (13), (22) is a differential game with
a partial cheap control of the player “u” in its functional (22). In what follows, the game (11), (13),
(22) is called the Partial Cheap Control Differential Game (PCCDG). Zero-sum differential games
with a complete/partial cheap control of at least one player were studied in many works (see
e.g., Refs. [7,8,15,16,32] and references therein). Non zero-sum differential games with a complete
cheap control of one player were considered only in few works (see Reference [4,24,30]). However, to
the best of our knowledge, a non-zero-sum differential game with a partial cheap control of at least
one player has not yet been considered in the literature. Since, for any ε > 0, the weight matrix for
the control cost of the player “u” in the functional (22) is positive definite, the PCCDG is a regular
differential game. The set of all admissible pairs of players’ state-feedback controls (strategies) in
this game is the same as in the SDG; namely, it is (UV)z.
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Definition 5. For a given ε > 0, the pair
(
G∗u,ε(z, t), G∗v,ε(z, t)

)
∈ (UV)z is called a Nash

equilibrium in the PCCDG if:

(I) Ju,ε
(
G∗u,ε(z, t), G∗v,ε(z, t)

)
≤ Ju,ε

(
Gu(z, t), G∗v,ε(z, t)

)
for all Gu(z, t) ∈ Ku

(
G∗v,ε(z, t)

)
;

(II) Jv
(
G∗u,ε(z, t), G∗v,ε(z, t)

)
≤ Jv

(
G∗u,ε(z, t), Gv(z, t)

)
for all Gv(z, t) ∈ Kv

(
G∗u,ε(z, t)

)
.

The values
J∗u,ε

4
= Ju,ε

(
G∗u,ε(z, t), G∗v,ε(z, t)

)
and

J∗v,ε
4
= Jv

(
G∗u,ε(z, t), G∗v,ε(z, t)

)
are called optimal values of the functionals (22) and (13), respectively, in the PCCDG.

5. Nash Equilibrium Solution of the PCCDG

Let us consider the following terminal-value problem for the set of two Riccati-type
differential equations with respect to the symmetric matrix-valued functions Ku(t) and
Kv(t), t ∈ [0, t f ]:

dKu(t)
dt = −Ku(t)A(t)− AT(t)Ku(t) + Ku(t)Su(t, ε)Ku(t)

+Ku(t)Sv(t)Kv(t) + Kv(t)Sv(t)Ku(t)− Kv(t)Suv(t)Kv(t)− Du(t),
(24)

dKv(t)
dt = −Kv(t)A(t)− AT(t)Kv(t) + Ku(t)Su(t, ε)Kv(t)

+Kv(t)Su(t, ε)Ku(t) + Kv(t)Sv(t)Kv(t)− Ku(t)Svu(t, ε)Ku(t)− Dv(t),
(25)

Ku(t f ) = Cu, Kv(t f ) = Cv, (26)

where

Su(t, ε) = Bu(t)
(

Ruu(t) + Λ(ε)
)−1BT

u (t),
Suv(t) = Bv(t)R−1

vv (t)Ruv(t)R−1
vv (t)BT

v (t), Sv(t) = Bv(t)R−1
vv (t)BT

v (t),
Svu(t, ε) = Bu(t)

(
Ruu(t) + Λ(ε)

)−1Rvu(t)
(

Ruu(t) + Λ(ε)
)−1BT

u (t).
(27)

By virtue of the results of Reference [3,4], we have the following assertion.

Proposition 2. Let, for a given ε > 0, the terminal-value problem (24)–(26) have the solution(
Ku(t, ε), Kv(t, ε)

)
, t ∈ [0, t f ]. Then, thePCCDGhas theNashequilibrium

(
G∗u,ε(z, t), G∗v,ε(z, t)

)
,where

G∗u,ε(z, t) = −
(

Ruu(t) + Λ(ε)
)−1BT

u (t)Ku(t, ε)z,
G∗v,ε(z, t) = −R−1

vv (t)BT
v (t)Kv(t, ε)z.

(28)

The corresponding (optimal) values J∗u,ε and J∗v,ε of the functionals (22) and (13), respectively,
have the form

J∗u,ε = zT
0 Ku(0, ε)z0,

J∗v,ε = zT
0 Kv(0, ε)z0.

(29)

6. Asymptotic Analysis of PCCDG

We begin this analysis with the asymptotic solution of the terminal-value problem (24)–(26).

6.1. Zero-Order Asymptotic Solution of the Problem (24)–(26)
6.1.1. Transformation of the Problem (24)–(26)

First of all, let us represent the matrices Su(t, ε) and Svu(t, ε) (see Equation (27)) in the
block form. Namely, based on the block form of the matrix Bu(t) (see the Equation (15))
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and the block-diagonal form of the matrices Ruu(t) and Λ(ε) (see the Equations (4) and
(23)), we obtain:

Su(t, ε) =

 Su1(t) Su2(t)

ST
u2
(t) (1/ε2)Su3(t, ε)

, (30)

where the (n− r + q)× (n− r + q)-matrix Su1(t), the (n− r + q)× (r− q)-matrix Su2(t),
and (r− q)× (r− q)-matrix Su3(t, ε) are

Su1(t) =

 0 0

0 R̄−1
uu (t)

, Su2(t) =

 0

R̄−1
uu (t)HT

u,2(t)

,

Su3(t, ε) = ε2Hu,2(t)R̄−1
uu (t)HT

u,2(t) + Ir−q.

(31)

Similarly, we have

Svu(t, ε) = Svu(t) =

 Svu1(t) Svu2(t)

ST
vu2

(t) Svu3(t)

, (32)

where the (n− r + q)× (n− r + q)-matrix Svu1(t), the (n− r + q)× (r− q)-matrix Svu2(t),
and (r− q)× (r− q)-matrix Svu3(t) are of the form

Svu1(t) =

 0 0

0 R̄−1
uu (t)R̄vu(t)R̄−1

uu (t)

,

Svu2(t) =

 0

R̄−1
uu (t)R̄vu(t)R̄−1

uu (t)HT
u,2(t)

,

Svu3(t) = Hu,2(t)R̄−1
uu (t)R̄vu(t)R̄−1

uu (t)HT
u,2(t).

(33)

Due to the block form of the matrix Su(t, ε) (see Equations (30) and (31)), the right-
hand sides of Equations (24) and (25) have the singularities at ε = 0. To remove these
singularities and to represent the set (24)–(25) in an explicit singular perturbation form, we
look for the solution

(
Ku(t, ε), Kv(t, ε)

)
, t ∈ [0, t f ] of the terminal-value problem (24)–(26)

in the block form

Ki(t, ε) =

(
Ki1(t, ε) εKi2(t, ε)

εKT
i2
(t, ε) εKi3(t, ε)

)
,(

Kij(t, ε)
)T

= Kij(t, ε), i = u, v, j = 1, 3,
(34)

where the matrices Ki1(t, ε), Ki2(t, ε), and Ki3(t, ε), (i = u, v) are of the dimensions (n− r +
q)× (n− r + q), (n− r + q)× (r− q) and (r− q)× (r− q), respectively.

In addition, we represent the matrices A(t), Dv(t), Sv(t), and Suv(t) in the block form

A(t) =
(

A1(t) A2(t)
A3(t) A4(t)

)
, Dv(t) =

(
Dv1(t) Dv2(t)
DT

v2
(t) Dv3(t)

)
, (35)

Sv(t) =
(

Sv1(t) Sv2(t)
ST

v2
(t) Sv3(t)

)
, Suv(t) =

(
Suv1(t) Suv2(t)
ST

uv2
(t) Suv3(t)

)
. (36)

The blocks of the matrices in (35) and (36) are of the same dimensions as the corre-
sponding blocks of the matrices in (34).

Now, substitution of (17), (30), (32), and (34)–(36) into the set (24)–(25) yields, after
a routine matrix algebra, the following set of six Riccati-type differential equations with
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respect to the matrices Ki1(t, ε), Ki2(t, ε), and Ki3(t, ε), (i = u, v) (in this set, for simplicity,
we omit the designation of the dependence of the unknown matrix-valued functions on ε):

dKu1 (t)
dt = −Ku1(t)A1(t)− εKu2(t)A3(t)− AT

1 (t)Ku1(t)− εAT
3 (t)K

T
u2
(t)

+Ku1(t)Su1(t)Ku1(t) + εKu2(t)S
T
u2
(t)Ku1(t) + εKu1(t)Su2(t)K

T
u2
(t)

+Ku2(t)Su3(t, ε)KT
u2
(t) + Ku1(t)Sv1(t)Kv1(t) + εKu2(t)S

T
v2
(t)Kv1(t)

+εKu1(t)Sv2(t)K
T
v2
(t) + ε2Ku2(t)Sv3(t)K

T
v2
(t) + Kv1(t)Sv1(t)Ku1(t)

+εKv1(t)Sv2(t)K
T
u2
(t) + εKv2(t)S

T
v2
(t)Ku1(t) + ε2Kv2(t)Sv3(t)K

T
u2
(t)

−Kv1(t)Suv1(t)Kv1(t)− εKv2(t)S
T
uv2

(t)Kv1(t)− εKv1(t)Suv2(t)K
T
v2
(t)

−ε2Kv2(t)Suv3(t)K
T
v2
(t)− Du1(t), t ∈ [0, t f ],

(37)

ε
dKu2 (t)

dt = −Ku1(t)A2(t)− εKu2(t)A4(t)− εAT
1 (t)Ku2(t)− εAT

3 (t)Ku3(t)

+εKu1(t)Su1(t)Ku2(t) + ε2Ku2(t)S
T
u2
(t)Ku2(t) + εKu1(t)Su2(t)Ku3(t)

+Ku2(t)Su3(t, ε)Ku3(t) + εKu1(t)Sv1(t)Kv2(t) + ε2Ku2(t)S
T
v2
(t)Kv2(t)

+εKu1(t)Sv2(t)Kv3(t) + ε2Ku2(t)Sv3(t)Kv3(t) + εKv1(t)Sv1(t)Ku2(t)

+εKv1(t)Sv2(t)Ku3(t) + ε2Kv2(t)S
T
v2
(t)Ku2(t) + ε2Kv2(t)Sv3(t)Ku3(t)

−εKv1(t)Suv1(t)Kv2(t)− ε2Kv2(t)S
T
uv2

(t)Kv2(t)− εKv1(t)Suv2(t)Kv3(t)

−ε2Kv2(t)Suv3(t)Kv3(t), t ∈ [0, t f ],

(38)

ε
dKu3 (t)

dt = −εKT
u2
(t)A2(t)− εKu3(t)A4(t)− εAT

2 (t)Ku2(t)− εAT
4 (t)Ku3(t)

+ε2KT
u2
(t)Su1(t)Ku2(t) + ε2Ku3(t)S

T
u2
(t)Ku2(t) + ε2KT

u2
(t)Su2(t)Ku3(t)

+Ku3(t)Su3(t, ε)Ku3(t) + ε2KT
u2
(t)Sv1(t)Kv2(t) + ε2Ku3(t)S

T
v2
(t)Kv2(t)

+ε2KT
u2
(t)Sv2(t)Kv3(t) + ε2Ku3(t)Sv3(t)Kv3(t) + ε2KT

v2
(t)Sv1(t)Ku2(t)

+ε2KT
v2
(t)Sv2(t)Ku3(t) + ε2Kv3(t)S

T
v2
(t)Ku2(t) + ε2Kv3(t)Sv3(t)Ku3(t)

−ε2KT
v2
(t)Suv1(t)Kv2(t)− ε2Kv3(t)S

T
uv2

(t)Kv2(t)− ε2KT
v2
(t)Suv2(t)Kv3(t)

−ε2Kv3(t)Suv3(t)Kv3(t)− Du2(t), t ∈ [0, t f ],

(39)
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dKv1 (t)
dt = −Kv1(t)A1(t)− εKv2(t)A3(t)− AT

1 (t)Kv1(t)− εAT
3 (t)K

T
v2
(t)

+Ku1(t)Su1(t)Kv1(t) + εKu2(t)S
T
u2
(t)Kv1(t) + εKu1(t)Su2(t)K

T
v2
(t)

+Ku2(t)Su3(t, ε)KT
v2
(t) + Kv1(t)Su1(t)Ku1(t) + εKv2(t)S

T
u2
(t)Ku1(t)

+εKv1(t)Su2(t)K
T
u2
(t) + Kv2(t)Su3(t, ε)(t)KT

u2
(t) + Kv1(t)Sv1(t)Kv1(t)

+εKv2(t)S
T
v2
(t)Kv1(t) + εKv1(t)Sv2(t)K

T
v2
(t) + ε2Kv2(t)Sv3(t)K

T
v2
(t)

−Ku1(t)Svu1(t)Ku1(t)− εKu2(t)S
T
vu2

(t)Ku1(t)− εKu1(t)Svu2(t)K
T
u2
(t)

−ε2Ku2(t)Svu3(t)K
T
u2
(t)− Dv1(t), t ∈ [0, t f ],

(40)

ε
dKv2 (t)

dt = −Kv1(t)A2(t)− εKv2(t)A4(t)− εAT
1 (t)Kv2(t)− εAT

3 (t)Kv3(t)

+εKu1(t)Su1(t)Kv2(t) + ε2Ku2(t)S
T
u2
(t)Kv2(t) + εKu1(t)Su2(t)Kv3(t)

+Ku2(t)Su3(t, ε)Kv3(t) + εKv1(t)Su1(t)Ku2(t) + ε2Kv2(t)S
T
u2
(t)Ku2(t)

+εKv1(t)Su2(t)Ku3(t) + Kv2(t)Su3(t, ε)Ku3(t) + εKv1(t)Sv1(t)Kv2(t)

+ε2Kv2(t)S
T
v2
(t)Kv2(t) + εKv1(t)Sv2(t)Kv3(t) + ε2Kv2(t)Sv3(t)Kv3(t)

−εKu1(t)Svu1(t)Ku2(t)− ε2Ku2(t)S
T
vu2

(t)Ku2(t)− εKu1(t)Svu2(t)Ku3(t)

−ε2Ku2(t)Svu3(t)Ku3(t)− Dv2(t), t ∈ [0, t f ],

(41)

ε
dKv3 (t)

dt = −εKT
v2
(t)A2(t)− εKv3(t)A4(t)− εAT

2 (t)Kv2(t)− εAT
4 (t)Kv3(t)

+ε2KT
u2
(t)Su1(t)Kv2(t) + ε2KT

u3
(t)ST

u2
(t)Kv2(t) + ε2KT

u2
(t)Su2(t)Kv3(t)

+Ku3(t)Su3(t, ε)Kv3(t) + ε2KT
v2
(t)Su1(t)Ku2(t) + ε2KT

v3
(t)ST

u2
(t)Ku2(t)

+ε2KT
v2
(t)Su2(t)Ku3(t) + Kv3(t)Su3(t, ε)Ku3(t) + ε2KT

v2
(t)Sv1(t)Kv2(t)

+ε2Kv3(t)S
T
v2
(t)Kv2(t) + ε2KT

v2
(t)Sv2(t)Kv3(t) + ε2Kv3(t)Sv3(t)Kv3(t)

−ε2KT
u2
(t)Svu1(t)Ku2(t)− ε2Ku3(t)S

T
vu2

(t)Ku2(t)− ε2KT
u2
(t)Svu2(t)Ku3(t)

−ε2KT
u3
(t)Svu3(t)Ku3(t)− Dv3(t), t ∈ [0, t f ].

(42)

It is clear that the set of Equations (37)–(42) is equivalent to the set of Equations (24) and (25).
The set (37)–(42) has the explicit singular perturbation form. To obtain the terminal con-
ditions for the set (37)–(42), we substitute (16) and (34) into the terminal conditions (26),
which yields

Ku1(t f ) = Cu1 , Ku2(t f ) = 0, Ku3(t f ) = 0,
Kv1(t f ) = Cv1 , Kv2(t f ) = 0, Kv3(t f ) = 0.

(43)
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6.1.2. Zero-Order Asymptotic Solution of the Terminal-Value Problem (37)–(42), (43):
Formal Construction

To construct this asymptotic solution, we adapt the Boundary Function Method,
Ref. [33]. Namely, we seek the zero-order asymptotic solution Kij ,0(t, ε), (i = u, v), (j = 1, 2, 3)
of the problem (37)–(42), (43) in the form

Kij ,0(t, ε) = Ko
ij ,0(t) + Kb

ij ,0(τ), τ = (t− t f )/ε i = u, v, j = 1, 2, 3, (44)

where the terms with the superscript o are so-called outer solution terms, while the terms
with the superscript b are boundary-layer correction terms in a left-hand neighborhood
of the boundary t = t f ; the variable τ is called the stretched time and, for any t ∈ [0, t f ),
τ → −∞ as ε→ +∞..

Equations and conditions for the terms of the zero-order asymptotic solution are
obtained by substitution of (44) into the problem (37)–(42), (43) instead of Kij , (i = u, v),
(j = 1, 2, 3), and equating coefficients for the same power of ε on both sides of the resulting
equations, separately for the coefficients depending on t and on τ.

Let us start the construction of the zero-order asymptotic solution with obtaining the
terms Kb

i1,0(τ), (i = u, v). For these terms, we have the differential equations

dKb
i1,0(τ)

dτ
= 0, τ ≤ 0, i = u, v. (45)

Following the Boundary Function Method, we require that Kb
i1,0(τ)→ 0 for τ → −∞,

(i = u, v). Subject to this requirement, Equations in (45) yield the unique solutions

Kb
i1,0(τ) = 0, τ ≤ 0, i = u, v. (46)

We proceed with obtaining the terms of the outer solution. Using the equality
Su3(t, 0) = Ir−q, t ∈ [0, t f ], we derive the following set of equations and conditions
for these terms:

dKo
u1,0(t)
dt = −Ko

u1,0(t)A1(t)− AT
1 (t)K

o
u1,0(t) + Ko

u1,0(t)Su1(t)K
o
u1,0(t)

+Ko
u2,0(t)

(
Ko

u2,0(t)
)T

+ Ko
u1,0(t)Sv1(t)K

o
v1,0(t) + Ko

v1,0(t)Sv1(t)K
o
u1,0(t)

−Ko
v1,0(t)Suv1(t)K

o
v1,0(t)− Du1(t), t ∈ [0, t f ], Ko

u1,0(t f ) = Cu1 ,

(47)

0 = −Ko
u1,0(t)A2(t) + Ko

u2,0(t)K
o
u3,0(t), t ∈ [0, t f ], (48)

0 =
(
Ko

u3,0(t)
)2 − Du2(t), t ∈ [0, t f ], (49)

dKo
v1,0(t)
dt = −Ko

v1,0(t)A1(t)− AT
1 (t)K

o
v1,0(t) + Ko

u1,0(t)Su1(t)K
o
v1,0(t)

+Ko
u2,0(t)

(
Ko

v2,0(t)
)T

+ Ko
v1,0(t)Su1(t)K

o
u1,0(t) + Ko

v2,0(t)
(
Ko

u2,0(t)
)T

+Ko
v1,0(t)Sv1(t)K

o
v1,0(t)− Ko

u1,0(t)Svu1(t)K
o
u1,0(t)

−Dv1(t), t ∈ [0, t f ], Ko
v1,0(t f ) = Cv1 ,

(50)

0 = −Ko
v1,0(t)A2(t) + Ko

u2,0(t)K
o
v3,0(t) + Ko

v2,0(t)K
o
u3,0(t)− Dv2(t), t ∈ [0, t f ], (51)

0 = Ko
u3,0(t)K

o
v3,0(t) + Ko

v3,0(t)K
o
u3,0(t)− Dv3(t), t ∈ [0, t f ]. (52)

Equation (49) yields the unique symmetric positive definite solution

Ko
u3,0(t) =

(
Du2(t)

)1/2, t ∈ [0, t f ], (53)
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where the superscript “1/2” denotes the unique symmetric positive definite square root of
the corresponding symmetric, positive definite matrix.

Substituting (53) into (52), we obtain, after some rearrangement, the Lyapunov alge-
braic equation with respect to the matrix Ko

v3,0(t):(
Du2(t)

)1/2Ko
v3,0(t) + Ko

v3,0(t)
(

Du2(t)
)1/2

= Dv3(t), t ∈ [0, t f ]. (54)

Since the matrix
(

Du2(t)
)1/2 is symmetric positive definite, and the matrix Dv3(t) is

symmetric, then, by virtue of the results of Reference [34], Equation (54) has the unique
symmetric solution

Ko
v3,0(t) =

∫ +∞

0
exp

[(
− Du2(t)

)1/2
σ
]
Dv3(t) exp

[(
− Du2(t)

)1/2
σ
]
dσ, t ∈ [0, t f ]. (55)

Substitution of (53) into (48) yields the linear algebraic equation with respect to Ko
u2,0(t),

in which the solution is

Ko
u2,0(t) = Ko

u1,0(t)A2(t)
(

Du2(t)
)−1/2, t ∈ [0, t f ], (56)

where the superscript ” − 1/2” denotes the inverse matrix for the unique symmetric
positive definite square root of the corresponding symmetric positive definite matrix.

Similarly, substituting (53) and (56) into (51) and solving the resulting algebraic
equation with respect to Ko

v2
(t) yield

Ko
v2,0(t) =

[
Ko

v1,0(t)A2(t)− Ko
u1,0(t)A2(t)

(
Du2(t)

)−1/2Ko
v3,0(t)

+Dv2(t)
](

Du2(t)
)−1/2, t ∈ [0, t f ].

(57)

Now, we substitute (56) into (47), which yields

dKo
u1,0(t)
dt = −Ko

u1,0(t)A1(t)− AT
1 (t)K

o
u1,0(t) + Ko

u1,0(t)Su,0(t)Ko
u1,0(t)

+Ko
u1,0(t)Sv1(t)K

o
v1,0(t) + Ko

v1,0(t)Sv1(t)K
o
u1,0(t)

−Ko
v1,0(t)Suv1(t)K

o
v1,0(t)− Du1(t), t ∈ [0, t f ], Ko

u1,0(t f ) = Cu1 ,

(58)

where
Su,0(t) = Su1(t) + A2(t)D−1

u2
(t)AT

2 (t). (59)

Further, substituting (56)–(57) into (50) and using (52), we have, after a routine matrix algebra,

dKo
v1,0(t)
dt = −Ko

v1,0(t)A1(t)− AT
1 (t)K

o
v1,0(t) + Ko

u1,0(t)A2(t)D−1
u2

(t)DT
v2
(t)

+Dv2(t)D−1
u2

(t)AT
2 (t)K

o
u1,0(t) + Ko

u1,0(t)Su,0(t)Ko
v1,0(t)

+Ko
v1,0(t)Su,0(t)Ko

u1,0(t) + Ko
v1,0(t)Sv1(t)K

o
v1,0(t)

−Ko
u1,0(t)Svu,0(t)Ko

u1,0(t)− Dv1(t), t ∈ [0, t f ], Ko
v1,0(t f ) = Cv1 ,

(60)

where
Svu,0(t) = Svu1(t) + A2(t)D−1

u2
(t)Dv3(t)D−1

u2
(t)AT

2 (t). (61)

In what follows, we assume:
AVII. The terminal-value problem (58), (60) has the solution

(
Ko

u1,0(t), Ko
v1,0(t)

)
in the

entire interval [0, t f ].
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Now, let us obtain the boundary-layer correction terms Kb
ij ,0

(τ), (i = u, v), (j = 2, 3).

Using (46) and the equality Su3(t, 0) ≡ Ir−q, we have for these terms the following terminal-
value problem in the interval τ ∈ (−∞, 0]:

dKb
u2,0(τ)

dτ
= Ko

u2,0(t f )Kb
u3,0(τ) + Kb

u2,0(τ)K
o
u3,0(t f ) + Kb

u2,0(τ)K
b
u3,0(τ), (62)

dKb
u3,0(τ)

dτ
= Ko

u3,0(t f )Kb
u3,0(τ) + Kb

u3,0(τ)K
o
u3,0(t f ) +

(
Kb

u3,0(τ)
)2, (63)

dKb
v2,0(τ)

dτ = Ko
u2,0(t f )Kb

v3,0(τ) + Kb
u2,0(τ)K

o
v3,0(t f ) + Kb

u2,0(τ)K
b
v3,0(τ)

+Ko
v2,0(t f )Kb

u3,0(τ) + Kb
v2,0(τ)K

o
u3,0(t f ) + Kb

v2,0(τ)K
b
u3,0(τ),

(64)

dKb
v3,0(τ)

dτ = Ko
u3,0(t f )Kb

v3,0(τ) + Kb
u3,0(τ)K

o
v3,0(t f ) + Kb

u3,0(τ)K
b
v3,0(τ)

+Ko
v3,0(t f )Kb

u3,0(τ) + Kb
v3,0(τ)K

o
u3,0(t f ) + Kb

v3,0(τ)K
b
u3,0(τ).

(65)

Kb
u2,0(0) = −Ko

u2,0(t f ), Kb
u3,0(0) = −Ko

u3,0(t f ), (66)

Kb
v2,0(0) = −Ko

v2,0(t f ), Kb
v3,0(0) = −Ko

v3,0(t f ). (67)

This problem consists of two subproblems, which can be solved consecutively: first,
the subproblem with respect to

(
Kb

u2,0(τ), Kb
u3,0(τ)) is solved, then the subproblem with

respect to
(
Kb

v2,0(τ), Kb
v3,0(τ)) is solved. Let us start with the first subproblem. Using (53),

(56) and the equality Ko
u1,0(t f ) = Cu1 (see Equation (58)), we can rewrite the subproblem

(62)–(63), (66) as:

dKb
u2,0(τ)

dτ = Kb
u2,0(τ)

[(
D2(t f )

)1/2
+ Kb

u3,0(τ)
]

+Cu1 A2(t f )
(

D2(t f )
)−1/2Kb

u3,0(τ), τ ∈ (−∞, 0],

Pb
2,0(0) = −Cu1 A2(t f )

(
D2(t f )

)−1/2,

(68)

dKb
u3,0(τ)

dτ =
(

D2(t f )
)1/2Kb

u3,0(τ) + Kb
u3,0(τ)

(
D2(t f )

)1/2

+
(
Kb

u3,0(τ)
)2, τ ∈ (−∞, 0], Pb

3,0(0) = −
(

D2(t f )
)1/2.

(69)

The terminal-value problem (68)–(69) also can be solved consecutively: first, the
problem (69) is solved, then the problem (68) is solved. Let us observe that the differential
equation in (69) is a Bernoulli-type matrix differential equation, as in Ref. [35]. Using this
observation, we directly obtain the solution of the problem (69)

Kb
u3,0(τ) = −2

(
D2(t f )

)1/2 exp
(

2
(

D2(t f )
)1/2

τ
)[

Ir−q

+ exp
(

2
(

D2(t f )
)1/2

τ
)]−1

, τ ∈ (−∞, 0].
(70)

Substituting (70) into the problem (68) and solving the obtained terminal-value prob-
lem with respect to Kb

u2,0(τ), we have

Kb
u2,0(τ) = −2Cu1 A2(t f )

(
D2(t f )

)−1/2 exp
(

2
(

D2(t f )
)1/2

τ
)[

Ir−q

+ exp
(

2
(

D2(t f )
)1/2

τ
)]−1

, τ ∈ (−∞, 0].
(71)
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Since the matrix
(

D2(t f )
)1/2 is positive definite, the solution (70)–(71) to the problem

(68)–(69) (and, therefore, to the subproblem (62)–(63), (66) of the problem (62)–(67)) satisfies
the inequality

max
{
‖Kb

u2,0(τ)‖, ‖Kb
u3,0(τ)‖

}
≤ cu exp(βuτ), τ ∈ (−∞, 0], (72)

where cu > 0 and βu > 0 are some constants.
Proceed to the solution of the subproblem (64)–(65), (67). First, we solve the differential

Equation (65) with the corresponding terminal condition from (67). This terminal-value
problem can be rewritten as:

dKb
v3,0(τ)

dτ =
[(

D2(t f )
)1/2

+ Kb
u3,0(τ)

]
Kb

v3,0(τ)

+Kb
v3,0(τ)

[(
D2(t f )

)1/2
+ Kb

u3,0(τ)
]
+ Kb

u3,0(τ)K
o
v3,0(t f )

+Ko
v3,0(t f )Kb

u3,0(τ), τ ∈ (−∞, 0], Kb
v3,0(0) = −Ko

v3,0(t f ).

(73)

The differential equation in (73) is the Lyapunov matrix differential equation, as in
Ref. [36]. Using the results of this work, we obtain the solution of the problem (73)

Kb
v3,0(τ) = −Φ(τ, 0)Ko

v3,0(t f )ΦT(τ, 0) +
∫ τ

0 Φ(τ, σ)
[
Kb

u3,0(σ)K
o
v3,0(t f )

+Ko
v3,0(t f )Kb

u3,0(σ)
]
ΦT(τ, σ)dσ, τ ∈ (−∞, 0],

(74)

where, for any σ ≤ 0, the matrix-valued function Φ(τ, σ) is the solution of the following
terminal-value problem:

dΦ(τ, σ)

dt
=
[(

D2(t f )
)1/2

+ Kb
u3,0(τ)

]
Φ(τ, σ), τ ∈ (−∞, σ], Φ(σ, σ) = Ir−q. (75)

Using the positive definiteness of the matrix
(

D2(t f )
)1/2, the inequality (72), and the

results of Reference [33], we obtain the estimate of the matrix Φ(τ, σ)

‖Φ(τ, σ)‖ ≤ c exp
(

β(τ − σ)
)
, −∞ < τ ≤ σ ≤ 0, (76)

where c > 0 and 0 < β < βu are some constants.
Now, let us solve the differential Equation (64) with the corresponding terminal

condition from (67). This terminal-value problem can be rewritten as:

dKb
v2,0(τ)

dτ = Kb
v2,0(τ)

[(
D2(t f )

)1/2
+ Kb

u3,0(τ)
]
+ Ko

u2,0(t f )Kb
v3,0(τ)

+Kb
u2,0(τ)K

o
v3,0(t f ) + Kb

u2,0(τ)K
b
v3,0(τ)

+Ko
v2,0(t f )Kb

u3,0(τ), τ ∈ (−∞, 0], Kb
v2,0(0) = −Ko

v2,0(t f ).

(77)

This problem yields the solution

Kb
v2,0(τ) = −Ko

v2,0(t f )ΦT(τ, 0) +
∫ τ

0

[
Ko

u2,0(t f )Kb
v3,0(σ) + Kb

u2,0(σ)K
o
v3,0(t f )

+Kb
u2,0(σ)K

b
v3,0(σ) + Ko

v2,0(t f )Kb
u3,0(σ)

]
ΦT(τ, σ)dσ, τ ∈ (−∞, 0].

(78)

Using the inequalities (72) and (76), we directly obtain the following inequality for the
above obtained matrix-valued functions Kb

v3,0(τ) and Kb
v2,0(τ):

max
{
‖Kb

v2,0(τ)‖, ‖Kb
v3,0(τ)‖

}
≤ cv exp(βvτ), τ ∈ (−∞, 0], (79)

where cv > 0 and 0 < βv < β are some constants.
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6.1.3. Justification of the Asymptotic Solution to the Problem (37)–(42), (43)

Lemma 2. Let the assumptions AI-AVII be valid. Then, there exists a number ε0 > 0 such that
for all ε ∈ (0, ε0], the terminal-value problem (37)–(42), (43) has the unique solution

{
Kij(t, ε),

(i = u, v), (j = 1, 2, 3)
}

in the entire interval t ∈ [0, t f ]. Moreover, for all t ∈ [0, t f ] and
ε ∈ (0, ε0], the following inequalities are satisfied:

‖Kij(t, ε)− Kij ,0(t, ε)‖ ≤ aε, i = u, v, j = 1, 2, 3, (80)

where Kij ,0(t, ε), (i = u, v), (j = 1, 2, 3) are given by (44), and their terms are obtained in
Section 6.1.2; a > 0 is some constant independent of ε.

Proof of the lemma is presented in Appendix B.
As a direct consequence of Lemma 2, we have the following two assertions.

Corollary 3. Let the assumptions AI-AVII be valid. Then, for all ε ∈ (0, ε0], the terminal-value
problem (24)–(26) has the unique solution

(
Ku(t, ε), Kv(t, ε)

)
, t ∈ [0, t f ]. The matrices Ku(t, ε)

and Kv(t, ε) have the block form (34), where the blocks are the corresponding components of the
solution to the terminal-value problem (37)–(42), (43) mentioned in Lemma 2.

Corollary 4. Let the assumptions AI-AVII be valid. Then, for all ε ∈ (0, ε0], the PCCDG has the
Nash equilibrium mentioned in Proposition 2.

6.2. Asymptotic Representations of the Optimal Values of the Functionals in the PCCDG

Let us represent the initial state position z0 of the PCCDG in the block form

z0 = col(x0, y0), x0 ∈ En−r+q, y0 ∈ Er−q. (81)

Using the upper block x0 of the vector z0 and the solution
(
Ko

u1,0(t), Ko
v1,0(t)

)
of

the terminal-value problem (58), (60) mentioned in the assumption AVII, we construct
the values

J∗u,0 = xT
0 Ko

u1,0(0)x0, J∗v,0 = xT
0 Ko

v1,0(0)x0. (82)

Corollary 5. Let the assumptions AI-AVII be valid. Then, for all ε ∈ (0, ε0], the optimal values
J∗u,ε and J∗v,ε of the functionals (22) and (13) in the PCCDG satisfy the inequalities∣∣J∗i,ε − J∗i,0

∣∣ ≤ χ(z0)ε, i = u, v,

where χ(z0) > 0 is some constant independent of ε but depending on z0.

Proof. The corollary follows immediately from Proposition 2, Lemma 2, and Corollaries 3 and 4.

7. Reduced Differential Game

To construct this game, we introduce into the consideration the following block-
form matrices:

B1,0(t)
4
=
(

B̃, A2(t)
)
, B̃

4
=

(
O(n−r)×q

Iq

)
, D̃v(t)

4
=
(
O(n−r+q)×q, Dv2(t)

)
,

Θuu(t)
4
=

(
R̄uu(t) Oq×(r−q)
O(r−q)×q Du2(t)

)
, Θvu(t)

4
=

(
R̄vu(t) Oq×(r−q)
O(r−q)×q Dv3(t)

)
.

(83)

Consider the following finite-horizon non-zero-sum differential game with the dy-
namics of the form

dxr(t)
dt

= A1(t)xr(t) + B1,0(t)ur(t) + Bv1(t)vr(t), t ∈ [0, t f ], xr(0) = x0, (84)
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where xr(t) ∈ En−r+q is a state variable; ur(t) ∈ Er and vr(t) ∈ Es are controls of the game’s
players; Bv1(t) is the upper block of the matrix Bv(t) of the dimension (n− r + q)× s.

The functionals of the game, to be minimized by ur(t) and vr(t), respectively, are

Jur(ur, vr) = xT
r (t f )Cu1 xr(t f )

+
∫ t f

0
[
xT

r (t)Du1(t)xr(t) + uT
r (t)Θuu(t)ur(t) + vT

r (t)Ruv(t)vr(t)
]
dt

(85)

and

Jvr(ur, vr) = xT
r (t f )Cv1 xr(t f ) +

∫ t f
0
[
xT

r (t)Dv1(t)xr(t) + vT
r (t)Rvv(t)vr(t)

+uT
r (t)Θvu(t)ur(t) + 2xT

r (t)D̃v(t)ur(t)
]
dt.

(86)

More precisely, in the game (84)–(86), the player with the control ur(t) aims to min-
imize the functional (85) by a proper choice of ur(t), while the player with the control
vr(t) aims to minimize the functional (86) by a proper choice of vr(t). We consider this
game with respect to its Nash equilibrium, and subject to the assumption that both players
know perfectly the current game state. We call the game (84)–(86) the Reduced Differential
Game (RDG).

Remark 5. Since the matrices R̄uu(t), Du2(t), and Rvv(t) are positive definite in the entire
interval [0, t f ], then the RDG is regular. Nash equilibrium pair of state-feedback controls in the
RDG is defined quite similarly to such an equilibrium pair in the PCCDG.

By virtue of the results of Reference [3,4], we have the following assertion.

Proposition 3. Let the assumptions AI-AVII be valid. Then, the RDG has the Nash equilibrium(
u∗r (xr, t), v∗r (xr, t)

)
, where

u∗r (xr, t) = −Θ−1
uu (t)BT

1,0(t)K
o
u1,0(t)xr,

v∗r (xr, t) = −R−1
vv (t)BT

v1
(t)Ko

v1,0(t)xr,
(87)

and
(
Ko

u1,0(t), Ko
v1,0(t)

)
, t ∈ [0, t f ] is the solution of the terminal-value problem (58), (60) men-

tioned in the assumption AVII.
The optimal values of the functionals (85) and (86) in the RDG coincides with the values J∗u,0

and J∗v,0, respectively, given in (82).

Remark 6. Using the block form of the matrices B1,0(t) and Θuu(t) (see Equation (83)), we can
represent the control u∗r (xr, t) in the Nash equilibrium of the RDG as:

u∗r (xr, t) =
(

u∗r,1(xr, t)
u∗r,2(xr, t)

)
, (88)

where

u∗r,1(xr, t) = −R̄−1
uu (t)B̃TKo

u1,0(t)xr, u∗r,2(xr, t) = −D−1
u2

(t)AT
2 (t)K

o
u1,0(t)xr.

(89)

8. Nash Equilibrium Sequence of the SDG

For a given ε ∈ (0, ε0], consider the following vector-valued function of (z, t) ∈
En × [0, t f ]:

u∗ε,0(z, t) =

(
u∗r,1(x, t)

− 1
ε

[(
Ko

u2,0(t)
)Tx + Ko

u3,0(t)y
] ), (90)
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where z = col(x, y), x ∈ En−r+q, y ∈ Er−q; Ko
u2,0(t) and Ko

u3,0(t) are given by (56) and
(53), respectively.

Lemma 3. Let the assumptions AI-AVII be valid. Then, for any given ε ∈ (0, ε0], the pair(
u∗ε,0(z, t), v∗r (x, t)

)
is an admissible pair of the players’ state-feedback controls in the SDG (11)–(13),

i.e.,
(
u∗ε,0(z, t), v∗r (x, t)

)
∈ (UV)z.

Proof. The statement of the lemma directly follows from the linear dependence of u∗ε,0(z, t)
on z ∈ En, v∗r (x, t) on x ∈ En−r+q, and the continuity with respect to t ∈ [0, t f ] of the gain
matrices in u∗ε,0(z, t) and v∗r (x, t).

Lemma 4. Let the assumptions AI-AVII be valid. Then, in the SDG (11)–(13), the following limit
equalities are satisfied:

lim
ε→+0

Ju
(
u∗ε,0(z, t), v∗r (x, t)

)
= J∗u,0, lim

ε→+0
Jv
(
u∗ε,0(z, t), v∗r (x, t)

)
= J∗v,0, (91)

where J∗u,0 and J∗v,0 are given in (82).

Proof of the lemma is presented in Appendix C.
Let us substitute the control u∗ε,0(z, t) instead of u(t) into the system (11) and the

functional (13). Due to this substitution, we obtain the following optimal control problem
with the state variable z(t) ∈ En and the control v(t) ∈ Es:

dz(t)
dt = A(t)z(t) + Bu(t)u∗ε,0(z, t) + Bv(t)v(t), t ∈ [0, t f ], z(0) = z0,

J̃(v)
4
= zT(t f )Cvz(t f ) +

∫ t f
0
[
zT(t)Dv(t)z(t)

+vT(t)Rvv(t)v(t) +
(
u∗ε,0(z, t)

)T Rvu(t)u∗ε,0(z, t)
]
dt→ minv .

(92)

We seek the optimal control of the problem (92) in the state-feedback form v = v(z, t)
among all such controls belonging to the set Kv

(
u∗ε,0(z, t)

)
, where Kv(·) is given in (20).

Let J̃∗ε be the optimal value of the functional in the problem (92).

Lemma 5. Let the assumptions AI-AVII be valid. Then, there exists a positive number ε̃0 ≤ ε0
such that, for all ε ∈ (0, ε̃0], the following inequality is satisfied:

∣∣ J̃∗ε − J∗v,0

∣∣ ≤ κ̃(z0)ε, where J∗v,0 is
given in (82); κ̃(z0) > 0 is some constant independent of ε but depending on z0.

Proof. The lemma is proven similarly to the results of Reference [7] (see Lemmas 1, 4
and their proofs).

Now, let us replace v(t) with v∗r (x, t) in the system (11) and the functional (12). Due
to such a replacement, we obtain the following optimal control problem with the state
variable z(t) ∈ En and the control u(t) ∈ Er:

dz(t)
dt = A(t)z(t) + Bu(t)u(t) + Bv(t)v∗r (x, t), t ∈ [0, t f ], z(0) = z0,

Ĵ(u) = zT(t f )Cuz(t f ) +
∫ t f

0
[
zT(t)Du(t)z(t)

+uT(t)Ruu(t)u(t) +
(
v∗r (x, t)

)T Ruv(t)v∗r (x, t)
]
dt→ infu .

(93)

We seek the infimum of the functional Ĵ(u) in the optimal control problem (93) for the
state-feedback controls u = u(z, t) belonging to the set Ku

(
v∗r (x, t)

)
, where Ku(·) is given

in (21). Let Ĵ∗ be the infimum value of the functional in the problem (93).

Lemma 6. Let the assumptions AI-AVII be valid. Then, the following equality is satisfied:
Ĵ∗ = J∗u,0, where J∗u,0 is given in (82).
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Proof. The lemma is proven similarly to the results of Reference [7] (see Lemma 5 and
its proof).

Let {εk}, (k = 1, 2, ...) be a sequence of numbers such that: (i) εk ∈ (0, ε̃0], (k = 1, 2,. . . );
(ii) limk→+∞ εk = 0.

Theorem 1. Let the assumptions AI-AVII be valid. Then, the sequence of the state-feedback controls(
u∗εk ,0(z, t), v∗r (x, t)

)
, (k = 1, 2, ...), where v∗r (x, t) and u∗ε,0(z, t) are defined in (87) and (90), is the

Nash equilibrium sequence in the SDG. Moreover, the optimal values J∗u and J∗v of the functionals
in this game are

J∗u = J∗u,0, J∗v = J∗v,0,

where J∗u,0 and J∗v,0 are the optimal values of the functionals in the RDG (84)–(86) given by
Equation (82).

Proof. First of all let us note that, due to Lemma 3, the pair
(
u∗εk ,0(z, t), v∗r (x, t)

)
is ad-

missible in the SDG for any k ∈ {1, 2, ...}. Therefore, to prove the first statement of
the theorem, we should show the fulfillment of all the items of Definition 4 for the se-
quence

(
u∗εk ,0(z, t), v∗r (x, t)

)
, (k = 1, 2, ...). Lemma 4 yields the fulfillment of the item (I)

of this definition. The fulfillment of the item (II) directly follows from the first equality
in (91) and Lemma 6. The fulfillment of the item (III) follows immediately from the sec-
ond equality in (91) and Lemma 5. Namely, from this lemma, we have the inequality
J∗v,0− κ̃(z0)εk ≤ J̃∗εk

≤ J∗v,0 + κ̃(z0)εk, (k = 1, 2, ...), while, from the definition of the value J̃∗εk
,

we have the inequality J̃∗εk
≤ Jv

(
u∗εk

(z, t), v(z, t)
)
, (k = 1, 2, ...), v(z, t) ∈ ⋂+∞

k=1K
(
u∗εk

(z, t)
)
.

The left-hand side of the first inequality, along with the second inequality and the sec-
ond equality in (91), yields limk→+∞ Jv

(
u∗εk ,0(z, t), v∗r (x, t)

)
− κ̃(z0)εk ≤ Jv

(
u∗εk

(z, t), v(z, t)
)
,

(k = 1, 2, ...), v(z, t) ∈ ⋂+∞
k=1K

(
u∗εk

(z, t)
)
. Calculating lim infk→+∞ of both sides of the lat-

ter inequality, we obtain the fulfillment of the item (III) of Definition 4 for the sequence(
u∗εk ,0(z, t), v∗r (x, t)

)
, (k = 1, 2, ...). Thus, this sequence satisfies all the items of Definition 4.

The second statement of the theorem is a direct consequence of the expressions for J∗u
and J∗v in Definition 4, as well as Lemma 4 and Proposition 3.

Remark 7. Due to Theorem 1, to design the Nash equilibrium sequence in the SDG and to obtain
the optimal values of its functionals, one has to solve the lower dimension regular RDG and to
construct the gain matrices Ko

u2,0(t), Ko
u3,0(t), t ∈ [0, t f ].

9. Examples
9.1. Example 1

Consider the particular case of the SDG (11)–(13), where n = 2, r = 2, s = 1, q = 1, and

A(t) =
(

1 t + 1
t2 t− 1

)
, Bu(t) =

(
1 0
t 1

)
, Bv(t) = Bv =

(
1
2

)
,

Cu1 = 1, Cv1 = 2, Du(t) =
(

1 0
0 (t + 1)2

)
, Dv(t) =

(
2 0
0 2(t + 1)2

)
,

Ruu(t) = Ruu =

(
1 0
0 0

)
, Rvu(t) = Rvu =

(
2 0
0 0

)
,

Ruv(t) = Ruv = 0.5, Rvv(t) = Rvv = 1, z0 = col(2,−1), t f = 4.

(94)
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In this example, the terminal-value problem (58), (60) becomes as:

dKo
u1,0(t)

dt
= −2Ko

u1,0(t) + 2
(
Ko

u1,0(t)
)2

+ 2Ko
u1,0(t)K

o
v1,0(t)

−0.5
(
Ko

v1,0(t)
)2 − 1, t ∈ [0, 4], Ko

u1,0(4) = 1,

dKo
v1,0(t)

dt
= −2Ko

v1,0(t) + 4Ko
u1,0(t)K

o
v1,0(t)

+
(
Ko

v1,0(t)
)2 − 4

(
Ko

u1,0(t)
)2 − 2, t ∈ [0, 4], Ko

v1,0(4) = 2.

This problem has the unique solution{
Ko

u1,0(t), Ko
v1,0(t)

}
=
{

S(t), 2S(t)
}

, t ∈ [0, 4],

S(t) =
[(

(1− γ)−1 − 2
1− 4γ

)
exp

(
2(1− 4γ)(t− 4)

)
+

2
1− 4γ

]−1

+ γ,

γ =
1 +
√

5
4

.

Using this solution, as well as Equations (53), (56), and (94), we obtain

Ko
u2,0(t) = S(t), Ko

u3,0(t) = t + 1, t ∈ [0, 4].

Now, using the above obtained Ko
uj ,0

(t), (j = 1, 2, 3) and Ko
v1,0(t), as well as Theorem 1, we

design the Nash equilibrium sequence
(
u∗εk ,0(z, t), v∗r (x, t)

)
, (k = 1, 2, ...) in the game (11)–(13)

with the data (94), where

u∗εk ,0(z, t) =
(
−S(t)x
−
(
1/εk

)(
S(t)x + (t + 1)y

) ), z = col(x, y),

v∗r (x, t) = −2S(t)x,

εk > 0 and limk→+∞ εk = 0. Moreover, by virtue of Theorem 1, the optimal values of the
game’s functionals are

J∗u = 4S(0), J∗v = 8S(0).

9.2. Example 2

First of all, let us make two remarks which are used in this example.

Remark 8. Due to the results of Reference [4], Propositions 2 and 3 hold also in the case where the
matrices Cv, Dv(t), Ruv(t), t ∈ [0, t f ] are negative semi-definite. Therefore, all the other assertions
of the present paper (including Theorem 1) also are valid for such matrices.

Remark 9. If all the coordinates of the “singular” player are singular (q = 0), then the upper
block of the control u∗ε,0(z, t) (see Equation (90)) vanishes, while the lower block remains unchanged.

Thus, in this case we have u∗ε,0(z, t) = − 1
ε

[(
Ko

u2,0(t)
)Tx + Ko

u3,0(t)y
]
, z = col(x, y), x ∈ En−r,

y ∈ Er, t ∈ [0, t f ].

In this example, we consider a singular non-zero-sum game, which is an extension
of the singular zero-sum planar pursuit-evasion game studied in Reference [7], as well as
a singular version of the non-zero-sum pursuit-evasion game analyzed in Reference [4].
Namely, we consider the following particular case of the SDG:

dx(t)
dt = y(t), t ∈ [0, t f ], x(0) = x0,

dy(t)
dt = u(t) + v(t), t ∈ [0, t f ], y(0) = y0,

(95)
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Ju(u, v) = Cu1 x2(t f ) +
∫ t f

0

[
Du1 x2(t) + Du2 y2(t) + Ruvv2(t)

]
dt, (96)

Jv(u, v) = Cv1 x2(t f ) +
∫ t f

0

[
Dv1 x2(t) + Dv3 y2(t) + Rvvv2(t)

]
dt, (97)

where the player with the scalar control u(t) is a pursuer, while the player with the scalar
control v(t) is an evader; the scalar state variables x(t) and y(t) are the relative lateral
separation and the relative lateral velocity of the players; the controls u(t) and v(t) are the
lateral accelerations of the players. Moreover, all the coefficients in the game (95)–(97) are
constant, and Cu1 > 0, Du1 ≥ 0, Du2 > 0, Ruv ≤ 0, Cv1 < 0, Dv1 < 0, Dv3 ≤ 0, Rvv > 0. As
in the general case of SDG, both players aim to minimize their own functionals.

Remark 10. Note that if Cv1 = −Cu1 , Dv1 = −Du1 , Dv3 = −Du2 , Rvv = −Ruv, the non-zero-
sum game (95)–(97) becomes the singular zero-sum game considered in Reference [7].

In what follows of this example, we analyze the case where

Du1 = 0, Ruv = 0, Dv3 = 0. (98)

This case, being reasonable from the application’s viewpoint, allows a non-complicated
analytical study of the game.

Subject to (98), the terminal-value problem (58), (60) becomes as:

dKo
u1,0(t)

dt
= D−1

u2

(
Ko

u1,0(t)
)2, t ∈ [0, t f ], Ko

u1,0(t f ) = Cu1 ,

dKo
v1,0(t)

dt
= 2D−1

u2
Ko

u1,0(t)K
o
v1,0(t)− Dv1 , t ∈ [0, t f ], Ko

v1,0(t f ) = Cv1 .

This problem has the unique solution

Ko
u1,0(t) =

Du2
t f−t+Du2 /Cu1

, t ∈ [0, t f ],

Ko
v1,0(t) =

(Du2 /Cu1 )
2Cv1−(1/3)(Du2 /Cu1 )

3Dv1
(t f−t+Du2 /Cu1 )

2

+(1/3)Dv1(t f − t + Du2 /Cu1), t ∈ [0, t f ].

(99)

Using Equations (53), (56), (99), we obtain

Ko
u2,0(t) =

D1/2
u2

t f − t + Du2 /Cu1

, Ko
u3,0(t) = D1/2

u2
, t ∈ [0, t f ]. (100)

Now, using Equations (99)–(100), Remarks 8, 9, Theorem 1, and taking into account that
Bv1(t) = 0 for all t ∈ [0, t f ], we design the Nash equilibrium sequence

(
u∗εk ,0(z, t), v∗r (x, t)

)
,

(k = 1, 2, ...) in the game (95)–(97), (98), where

u∗εk ,0(z, t) = −
(
1/εk

)( D1/2
u2

x
t f − t + Du2 /Cu1

+ D1/2
u2

y
)

, z = col(x, y), v∗r (x, t) = 0, (101)

εk > 0 and limk→+∞ εk = 0. Moreover, by virtue of Theorem 1, the optimal values of the
functionals in this game are

J∗u =
Du2 x2

0
t f +Du2 /Cu1

,

J∗v =

[
(Du2 /Cu1 )

2Cv1−(1/3)(Du2 /Cu1 )
3Dv1

(t f +Du2 /Cu1 )
2 + (1/3)Dv1(t f + Du2 /Cu1)

]
x2

0.
(102)
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10. Concluding Remarks

CR1. In this paper, a finite-horizon two-person linear-quadratic Nash equilibrium
differential game was studied. The game is singular because the weight matrices of the
control costs of one player (the “singular” player) are singular in the functionals of both
players. These singular weight matrices are positive semi-definite but non-zero. The weight
matrix of the control cost of the other player (the ”regular” player) in its own functional is
positive definite.

CR2. Subject to proper assumptions, the system of dynamics of this game was trans-
formed to an equivalent system consisting of three modes. The first mode is controlled
directly only by the ”regular” player. The second mode is controlled directly by the ”regu-
lar” player and the nonsingular control’s coordinates of the “singular” player. The third
mode is controlled directly by the entire controls of both players. Due to this transfor-
mation, the initially formulated game was converted to an equivalent Nash equilibrium
game. The new game, also being singular, is simpler than the initially formulated game.
Therefore, the new game was considered as an original one.

CR3. For this game, a novel notion of the Nash equilibrium (the Nash equilibrium
sequence) was proposed. To derive the Nash equilibrium sequence in the original singular
game, the regularization method was applied. This method consists in the replacing
the original singular game with a regular Nash equilibrium game depending on a small
parameter ε > 0. This regular game becomes the original singular game if we set formally
ε = 0. It should be noted that the regularization method was widely applied in the
literature for analysis and solution of singular optimal control problems, singular H∞
control problems and zero-sum differential games. However, in the present paper, this
method was applied for the first time in the literature to the rigorous and detailed analysis
and solution of the general singular linear-quadratic Nash equilibrium differential game.

CR4. The regularized game is a partial cheap control game. Complete/partial cheap
control problems were widely studied in the literature in the settings of an optimal con-
trol problem, an H∞ control problem and a zero-sum differential game. Non zero-sum
differential games with a complete cheap control of one player also were considered in
the literature, although in few works. However, in the present paper, for the first time in
the literature, a non-zero-sum differential game with a partial cheap control of at least one
player was analyzed.

CR5. Solvability conditions of the regularized (partial cheap control) game depend on
the small parameter ε, which allowed us to analyze these conditions asymptotically with re-
spect to ε. Using this analysis, the Nash equilibrium sequence in the original singular game
was designed, and the expressions for the optimal values of the functionals were obtained.

CR6. It was established that the construction of the Nash equilibrium sequence in the
original singular game and the obtaining the optimal values of its functionals are based on
the solution of a lower dimension regular Nash equilibrium differential game (the reduced
game). Namely, to solve the original singular game, one has to solve the lower dimension
regular game and to calculate by explicit formulas two additional gain matrices.
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Appendix A. Proof of Lemma 1

We start with the proof of the first lemma’s statement.
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Using Definitions 1,2,3 and Corollary 1, we directly obtain the following inclusions:(
F∗u,k
(
Ru(t)z, t

)
, F∗v
(
Ru(t)z, t

))
∈ (UV)z ∀k ∈ {1, 2, ...}. (A1)

Let k ∈ {1, 2, ...} be any given number. By Z∗F,k(t; Z0), t ∈ [0, t f ], we denote the unique
solution of the initial-value problem (1) generated by the players’ controls u(t) = F∗u,k(Z, t),
v(t) = F∗v (Z, t). By z∗G,k(t; z0), t ∈ [0, t f ], we denote the unique solution of the initial-value
problem (11) generated by the players’ controls

u(t) = G∗u,k(z, t)
4
= F∗u,k

(
Ru(t)z, t

)
, v(t) = G∗v(z, t)

4
= F∗v

(
Ru(t)z, t

)
. (A2)

Thus, by virtue of Corollary 1, we have Z∗F,k(t; Z0) = Ru(t)z∗G,k(t; z0), t ∈ [0, t f ].
Due to Definition 2 and Equations (2) and (3), the following limits exist and are finite:

J ∗u = limk→+∞

{(
Z∗F,k(t f ; Z0)

)TCuZ∗F,k(t f ; Z0) +
∫ t f

0

[(
Z∗F,k(t; Z0)

)TDu(t)Z∗F,k(t; Z0)

+
(

F∗u,k
(
Z∗F,k(t; Z0), t

))T
Ruu(t)F∗u,k

(
Z∗F,k(t; Z0), t

)
+
(

F∗v
(
Z∗F,k(t; Z0), t

))T
Ruv(t)F∗v

(
Z∗F,k(t; Z0), t

)]
dt
}

,

(A3)

J ∗v = limk→+∞

{(
Z∗F,k(t f ; Z0)

)TCvZ∗F,k(t f ; Z0) +
∫ t f

0

[(
Z∗F,k(t; Z0)

)TDv(t)Z∗F,k(t; Z0)

+
(

F∗v
(
Z∗F,k(t; Z0), t

))T
Rvv(t)F∗v

(
Z∗F,k(t; Z0), t

)
+
(

F∗u,k
(
Z∗F,k(t; Z0), t

))T
Rvu(t)F∗u,k

(
Z∗F,k(t; Z0), t

)]
dt
}

.

(A4)

Substitution Z∗F,k(t; Z0) = Ru(t)z∗G,k(t; z0) into (A3)–(A4), and use of (16)–(18), (A2) yield

limk→+∞

{(
z∗G,k(t f ; z0)

)TCuz∗G,k(t f ; z0) +
∫ t f

0

[(
z∗G,k(t; z0)

)T Du(t)z∗G,k(t; z0)

+
(

G∗u,k
(
z∗G,k(t; z0), t

))T
Ruu(t)G∗u,k

(
z∗G,k(t; z0), t

)
+
(

G∗v
(
z∗G,k(t; z0), t

))T
Ruv(t)G∗v

(
z∗G,k(t; z0), t

)]
dt
}

= J ∗u ,

(A5)

limk→+∞

{(
z∗G,k(t f ; z0)

)TCvz∗G,k(t f ; z0) +
∫ t f

0

[(
z∗G,k(t; z0)

)T Dv(t)z∗G,k(t; z0)

+
(

G∗v
(
z∗G,k(t; z0), t

))T
Rvv(t)G∗v

(
z∗G,k(t; z0), t

)
+
(

G∗u,k
(
z∗G,k(t; z0), t

))T
Rvu(t)G∗u,k

(
z∗G,k(t; z0), t

)]
dt
}

= J ∗v .

(A6)

Let, for any given Gu(z, t) ∈ Ku
(
G∗v(z, t)

)
, z̃∗G(t; z0), t ∈ [0, t f ] be the unique solution of

the problem (11) generated by the controls u(t) = Gu(z, t) and v(t) = G∗v(z, t). Similarly, let,
for any given k ∈ {1, 2, ...} and any given Gv(z, t) ∈ N ∗v =

⋂+∞
k=1Kv

(
G∗u,k(z, t)

)
, ẑ∗G,k(t; z0),

t ∈ [0, t f ] be the unique solution of the problem (11) generated by the controls u(t) =
G∗u,k(z, t) and v(t) = Gv(z, t). Then, using Equations (5)–(6), (20)–(21), and (A2), as well as
the expression for the setM∗

v (see Definition 2) and Corollary 1, we obtain

Fu(Z, t
) 4
= Gu

(
R−1

u (t)Z, t
)
∈ Eu

(
F∗v (Z, t

))
, Fv(Z, t)

4
= Gv

(
R−1

u (t)Z, t
)
∈ M∗

v, (A7)

z̃∗G(t; z0) = R−1
u (t)Z̃∗F(t; Z0), t ∈ [0, t f ], (A8)

ẑ∗G,k(t; z0) = R−1
u (t)Ẑ∗F,k(t; Z0), k = 1, 2, ..., t ∈ [0, t f ]. (A9)
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In (A8), Z̃∗F(t; Z0) is the unique solution of the problem (1) generated by the controls
u(t) = Fu(Z, t), v(t) = F∗v (Z, t). In (A9), Ẑ∗F,k(t; Z0) is the unique solution of the problem (1)
generated by the controls u(t) = F∗u,k(Z, t), v(t) = Fv(z, t).

Using the aforementioned definitions of Z̃∗F(t; Z0) and Ẑ∗F,k(t; Z0), as well as Definition 2
and Equations (16)–(18), (A2)–(A4), and (A7)–(A9), we obtain the following inequalities:

J ∗u ≤
(
z̃∗G(t f ; z0)

)TCuz̃∗G(t f ; z0) +
∫ t f

0

[(
z̃∗G(t; z0)

)T Du(t)z̃∗G(t; z0)

+
(

Gu
(
z̃∗G(t; z0), t

))T
Ruu(t)Gu

(
z̃∗G(t; z0), t

)
+
(

G∗v
(
z̃∗G(t; z0), t

))T
Ruv(t)G∗v

(
z̃∗G(t; z0), t

)]
dt,

J ∗v ≤ lim inf
k→+∞

{(
ẑ∗G,k(t f ; z0)

)TCvẑ∗G,k(t f ; z0) +
∫ t f

0

[(
ẑ∗G,k(t; z0)

)T Dv(t)ẑ∗G,k(t; z0)

+
(

Gv
(
ẑ∗G,k(t; z0), t

))T
Rvv(t)Gv

(
ẑ∗G,k(t; z0), t

)
+
(

G∗u,k
(
ẑ∗G,k(t; z0), t

))T
Rvu(t)G∗u,k

(
Ẑ∗G,k(t; z0), t

)]
dt
}

.

These inequalities, along with Equations (12) and (13), (A1) and (A2) and the equalities
(A5) and (A6), directly imply the fulfillment of all the items of Definition 4 for the sequence

of the pairs
(
G∗u,k(z, t), G∗v(z, t)

)+∞
k=1 =

(
F∗u,k
(
Ruz, t

)
, F∗v
(
Ruz, t

))+∞

k=1
. This completes the

proof of the first statement of the lemma. The second statement is proven similarly.

Appendix B. Proof of Lemma 2

The proof of the lemma is based on the results of Reference [33] (see Section 2.1,
Theorem 2.2). To use these results, we convert the terminal-value problem (37)–(42), (43)
with respect to the unknown matrix-valued functions Kij(t), (i = u, v), (j = 1, 2, 3) to the
equivalent terminal-value problem with respect to the unknown vector-valued functions

Kij(t)
4
= vec

(
Kij(t)

)
, i = u, v, j = 1, 2, 3. (A10)

Let us denote the right-hand sides of Equations (37)–(42) as:

Fu1

(
Ku1(t), Ku2(t), Kv1(t), Kv2(t), t, ε

)
,

Fu2

(
Ku1(t), Ku2(t), Ku3(t), Kv1(t), Kv2(t), Kv3(t), t, ε

)
,

Fu3

(
Ku2(t), Ku3(t), Kv2(t), Kv3(t), t, ε

)
,

Fv1

(
Ku1(t), Ku2(t), Kv1(t), Kv2(t), t, ε

)
,

Fv2

(
Ku1(t), Ku2(t), Ku3(t), Kv1(t), Kv2(t), Kv3(t), t, ε

)
,

Fv3

(
Ku2(t), Ku3(t), Kv2(t), Kv3(t), t, ε

)
.

In addition, let us introduce into consideration the following vectors:

K1(t)
4
= col

(
Ku1(t),Kv1(t)

)
, K12(t)

4
= col

(
Ku1(t),Ku2(t),Kv1(t),Kv2(t)

)
,

K23(t)
4
= col

(
Ku2(t),Ku3(t),Kv2(t),Kv3(t)

)
,

K123(t)
4
= col

(
Ku1(t),Ku2(t),Ku3(t),Kv1(t),Kv2(t),Kv3(t)

)
.

(A11)
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Converting the matrices Fij(·), (i = u, v), (j = 1, 2, 3) to vector form, and using (A10)
and (A11), we obtain the vector-valued functions depending on the vectors K12(t), K23(t),
K123(t), as well as on t and ε

Gu1

(
K12(t), t, ε

) 4
= vec

(
Fu1

(
Ku1(t), Ku2(t), Kv1(t), Kv2(t), t, ε

))
,

Gu2

(
K123(t), t, ε

) 4
=

vec
(
Fu2

(
Ku1(t), Ku2(t), Ku3(t), Kv1(t), Kv2(t), Kv3(t), t, ε

))
,

Gu3

(
K23(t), t, ε

) 4
= vec

(
Fu3

(
Ku2(t), Ku3(t), Kv2(t), Kv3(t), t, ε

))
,

Gv1

(
K12(t), t, ε

) 4
= vec

(
Fv1

(
Ku1(t), Ku2(t), Kv1(t), Kv2(t), t, ε

))
,

Gv2

(
K123(t), t, ε

) 4
=

vec
(
Fv2

(
Ku1(t), Ku2(t), Ku3(t), Kv1(t), Kv2(t), Kv3(t), t, ε

))
,

Gv3

(
K23(t), t, ε

) 4
= vec

(
Fv3

(
Ku2(t), Ku3(t), Kv2(t), Kv3(t), t, ε

))
.

(A12)

Based on (A12), we construct the following vector-valued functions:

G1
(
K12(t), t, ε

) 4
= col

(
Gu1

(
K12(t), t, ε

)
,Gv1

(
K12(t), t, ε

))
, G23

(
K123(t), t, ε

) 4
=

col
(
Gu2

(
K123(t), t, ε

)
,Gu3

(
K23(t), t, ε

)
,Gv2

(
K123(t), t, ε

)
,Gu3

(
K23(t), t, ε

))
.

Now, using these vector-valued functions and the vectors in (A10) and (A11), we can
convert the terminal-value problem (37)–(42), (43) to the following equivalent form:

dK1(t)
dt

= G1
(
K12(t), t, ε

)
, t ∈ [0, t f ], K1(t f ) = col

(
vec(Cu1), vec(Cv1)

)
, (A13)

ε
dK23(t)

dt
= G23

(
K123(t), t, ε

)
, t ∈ [0, t f ], K23(t f ) = 0, (A14)

where 0 in the terminal condition for K23(t) means the zero vector of the dimension
2n(r− q).

Let us introduce into the consideration the following vectors:

Ko
ij ,0(t)

4
= vec

(
Ko

ij ,0(t)
)
, i = u, v, j = 1, 2, 3,

Ko
123,0(t)

4
= col

(
Ko

u1,0(t),Ko
u2,0(t),Ko

u3,0(t),Ko
v1,0(t),Ko

v2,0(t),Ko
v3,0(t)

)
.

Now, based on the aforementioned results of Reference [33], and taking into account
the fact that the problem (A13) and (A14) is a terminal-value problem, we can conclude the
following. To prove the lemma, it is sufficient to show that the real parts of all the eigen-

values λk(t),
(
k = 1, ..., 2n(r− q)

)
of the matrixM(t)

4
=

∂G23

(
K123(t),t,ε

)
∂K23(t)

∣∣∣∣
K123(t)=Ko

123,0(t),ε=0

are positive for all t ∈ [0, t f ]. The matrixM(t) is of the dimension 2n(r− q)× 2n(r− q).
Calculating this matrix, and using Equation (53), the equality Su3(t, 0) = Ir−q and the

symmetry of the matrices
(

Du2(t)
)1/2, Ko

v3,0(t), we obtain
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M(t) =



N1(t) Ko
u2,0(t)⊗ Ir−q 0 0

0 N2(t) 0 0

In−r+q ⊗ Ko
v3,0(t) Ko

v2,0(t)⊗ Ir−q N1(t) Ko
u2,0(t)⊗ Ir−q

0 Ir−q ⊗ Ko
v3,0(t) 0 N2(t)


, (A15)

where N1(t)
4
= In−r+q ⊗

(
Du2(t)

)1/2, N2(t)
4
= Ir−q ⊗

(
Du2(t)

)1/2
+
(

Du2(t)
)1/2 ⊗ Ir−q.

Due to the structure of the matrixM(t), we can conclude that the set of its eigenvalues
consists of all the eigenvalues of the matrices N1(t) and N2(t) with the corresponding
algebraic multiplicities. Due to the property of the eigenvalues of the Kronecker product
of two matrices (see, e.g., Ref. [37]), the set of the eigenvalues of N1(t) consists of all the
eigenvalues of the matrix

(
Du2(t)

)1/2 with the corresponding algebraic multiplicities, i.e.,
all the eigenvalues of N1(t) are real positive for all t ∈ [0, t f ]. Similarly to the analysis
of the matrix N1(t), the sets of both addends in the expression of N2(t) consist of all
the eigenvalues of the matrix

(
Du2(t)

)1/2 with the corresponding algebraic multiplicities.
Thus, all the eigenvalues of these addends are real positive for all t ∈ [0, t f ]. Moreover, due

to the symmetry of the matrix
(

Du2(t)
)1/2, both addends in the expression of N2(t) are

symmetric matrices. Therefore, by virtue of the results of Reference [38], all the eigenvalues
of N2(t) are real positive. Hence, all the eigenvalues of the matrixM(t) are real positive
for all t ∈ [0, t f ]. This completes the proof of the lemma.

Appendix C. Proof of Lemma 4

The proof consists of four stages.

Stage 1: Expressions for Ju
(
u∗ε,0(z, t), v∗r (x, t)

)
and Jv

(
u∗ε,0(z, t), v∗r (x, t)

)
.

Using the expressions for Suv(t), Sv(t) (see Equation (27)), the block representations for
the matrices Ruu(t), Rvu(t), Su(t, ε), A(t), Sv(t), Suv(t) and B̃ (see the Equations (4), (30), (35),
(36) and (83)), we can represent the values Ju

(
u∗ε,0(z, t), v∗r (x, t)

)
and Jv

(
u∗ε,0(z, t), v∗r (x, t)

)
as:

Ju
(
u∗ε,0(z, t), v∗r (x, t)

)
= zT(t f , ε)Cuz(t f , ε) +

∫ t f
0 zT(t, ε)Qu(t)z(t, ε)dt,

Jv
(
u∗ε,0(z, t), v∗r (x, t)

)
= zT(t f , ε)Cvz(t f , ε) +

∫ t f
0 zT(t, ε)Qv(t)z(t, ε)dt,

(A16)

where the n× n-matrix-valued functions Qu(t) and Qv(t) have the form

Qu(t) =
(

Du1(t) + Ko
u1,0(t)Su1(t)K

o
u1,0(t) + Ko

v1,0(t)Suv1(t)K
o
v1,0(t) 0

0 Du2(t)

)
,

Qv(t) =
(

Dv1(t) + Ko
v1,0(t)Sv1(t)K

o
v1,0(t) + Ko

u1,0(t)Svu1(t)K
o
u1,0(t) Dv2(t)

DT
v2
(t) Dv3(t)

)
,

(A17)

the vector-valued function z(t, ε) is the solution of the following initial-value problem:
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dz(t)
dt = H(t, ε)z(t), t ∈ [0, t f ], z(0) = z0,

H(t, ε) =

 H1(t) H2(t)

(1/ε)H3(t, ε) (1/ε)H4(t, ε)

,

H1(t) = A1(t)− Su1(t)K
o
u1,0(t)− Sv1(t)K

o
v1,0(t), H2(t) = A2(t),

H3(t, ε) = εA3(t)− εST
u2
(t)Ko

u1,0(t)−
(
Ko

u2,0(t)
)T − εST

v2
(t)Ko

v1,0(t),

H4(t, ε) = εA4(t)− Ko
u3,0(t).

(A18)

Stage 2: Expanded expressions for J∗u,0 and J∗v,0.
Due to Proposition 3, J∗u,0 and J∗v,0 are the optimal values of the functionals in the

RDG (84)–(86). Hence, using the Equations (83) and (87) and taking into account the
Equations (27), (31), (33), (36), (59) and (61), we obtain, after a routine matrix algebra, the
following expanded expressions for J∗u,0 and J∗v,0:

J∗u,0 = Jur

(
u∗r (xr, t), v∗r (xr, t)

)
=
(
x∗r (t f )

)TCu1 x∗r (t f ) +
∫ t f

0
(
x∗r (t)

)TQur(t)x∗r (t)dt,

J∗v,0 = Jvr

(
u∗r (xr, t), v∗r (xr, t)

)
=
(

x∗r (t f )
)TCv1 x∗r (t f ) +

∫ t f
0
(
x∗r (t)

)TQvr(t)x∗r (t)dt,

Qur(t)
4
= Du1(t) + Ko

u1,0(t)Su,0(t)Ko
u1,0(t) + Ko

v1,0(t)Suv1(t)K
o
v1,0(t),

Qvr(t)
4
= Dv1(t) + Ko

v1,0(t)Sv1(t)K
o
v1,0(t) + Ko

u1,0(t)Svu,0(t)Ko
u1,0(t)

−2Dv2(t)D−1
u2

(t)AT
2 (t)K

o
u1,0(t),

(A19)

and the vector-valued function x∗r (t), t ∈ [0, t f ] is the solution of the initial-value
problem

dxr(t)
dt = Ar(t)xr(t), t ∈ [0, t f ], xr(0) = x0,

Ar(t)
4
= A1(t)− Su,0(t)Ko

u1,0(t)− Sv1(t)K
o
v1,0(t).

(A20)

Stage 3: Asymptotic analysis of the problem (A18).
Let us represent the vector-valued function z(t) in the block form as:

z(t) = col
(

x(t), y(t)
)
, x(t) ∈ En−r+q, y(t) ∈ Er−q, t ∈ [0, t f ]. Using this block form of z(t)

and the block form of the vector z0 (see Equation (81)), we can rewrite the problem (A18)
in the explicit singular perturbation form

dx(t)
dt =

(
A1(t)− Su1(t)K

o
u1,0(t)− Sv1(t)K

o
v1,0(t)

)
x(t) + A2(t)y(t), x(0) = x0,

ε
dy(t)

dt =
(

εA3(t)− εST
u2
(t)Ko

u1,0(t)−
(
Ko

u2,0(t)
)T − εST

v2
(t)Ko

v1,0(t)
)

x(t)

+
(

εA4(t)− Ko
u3,0(t)

)
y(t), y(0) = y0.

(A21)

Let us represent the solution of the problem (A18) in the block form as:

z(t, ε) = col
(

x(t, ε), y(t, ε)
)
, x(t, ε) ∈ En−r+q, y(t, ε) ∈ Er−q, t ∈ [0, t f ]. (A22)

Hence, x(t, ε) and y(t, ε), t ∈ [0, t f ] are the corresponding components of the solution
to the problem (A21). Using the results of Reference [33] (see Section 2.1, Theorem 2.2),
and taking into account the positive definiteness of the matrix Ko

u3,0(t) for all t ∈ [0, t f ],
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we obtain the following asymptotic representations of x(t, ε) and y(t, ε) for all t ∈ [0, t f ],
ε ∈ (0, ε1]:

x(t, ε) = xo
0(t) +Ox(t, ε), y(t, ε) = yo

0(t) + yb
0(t, ε) +Oy(t, ε), (A23)

where 0 < ε1 ≤ ε0 is some positive number; the vector-valued function xo
0(t) is the solution

of the initial-value problem

dxo
0(t)
dt = A0(t)xo

0(t), t ∈ [0, t f ], xo
0(0) = x0,

A0(t)
4
= A1(t)− Su1(t)K

o
u1,0(t)− Sv1(t)K

o
v1,0(t)− A2(t)

(
Ko

u3,0(t)
)−1(Ko

u2,0(t)
)T ;

(A24)

yo
0(t) = −

(
Ko

u3,0(t)
)−1(Ko

u2,0(t)
)Txo

0(t), yb
0(t, ε) = exp

(
−

Ko
u3,0(0)t

ε

)(
y0 − yo

0(0)
)
; (A25)

the vector-valued functions Ox(t, ε) and Oy(t, ε) satisfy the inequality

max{‖Ox(t, ε)‖, ‖Oy(t, ε)‖} ≤ aε, t ∈ [0, t f ], ε ∈ (0, ε1], (A26)

and a > 0 is some constant independent of ε.
Substituting (53) and (56) into the expression for A0(t) and taking into account (59),

we obtain that A0(t) coincides with Ar(t) given in (A20). Therefore, the solution of the
problem (A24) coincides with the solution of the problem (A20)

xo
0(t) = x∗r (t), t ∈ [0, t f ]. (A27)

Similarly, substitution of (53) and (56) into the expression for yo
0(t) and use of (A27)

yield yo
0(t) = −D−1

u2
(t)AT

2 (t)K
o
u1,0(t)x∗r (t), t ∈ [0, t f ]. Thus,

zo
0(t)

4
= col

(
xo

0(t), yo
0(t)

)
= P0(t)x∗r (t), t ∈ [0, t f ],

P0(t)
4
=

(
In−r+q
−D−1

u2
(t)AT

2 (t)K
o
u1,0(t)

)
.

(A28)

Finally, taking into account (53) and the positive definiteness of the matrix
(

Du2(0)
)1/2,

we have the estimate of yb
0(t, ε) given in (A25)

‖yb
0(t, ε)‖ ≤ cy exp(−βyt)‖y0 − yo

0(0)‖, t ∈ [0, t f ], ε ∈ (0, ε1], (A29)

where cy > 0 and βy > 0 are some constants independent of ε.

Stage 4: Asymptotic behavior of Ju
(
u∗ε,0(z, t), v∗r (x, t)

)
and Jv

(
u∗ε,0(z, t), v∗r (x, t)

)
.

Substituting (A22)–(A23) into the expressions of Ju
(
u∗ε,0(z, t), v∗r (x, t)

)
and

Jv
(
u∗ε,0(z, t), v∗r (x, t)

)
(see Equation (A16)), and taking into account the Equations (16), (A17),

(A19) and (A27)–(A28) and the inequalities (A26), (A29), we obtain, after a routine algebra,

Ju
(
u∗ε,0(z, t), v∗r (x, t)

)
= J∗u,0 +Ou(ε), Jv

(
u∗ε,0(z, t), v∗r (x, t)

)
= J∗v,0 +Ov(ε), (A30)

where the values Ou(ε) and Ov(ε) satisfy the inequality

max
(
|Ou(ε)|, |Ov(ε)|

)
≤ aε, ε ∈ (0, ε1], (A31)

and a > 0 is some constant independent of ε.
Equation (A30), along with the inequality (A31), yields immediately the limit equali-

ties in (91), which completes the proof of the lemma.
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Switzerland, 2003.

37. Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1991.
38. Bellman, R. Introduction to Matrix Analysis, 2nd ed.; SIAM Books: Philadelphia, PA, USA, 1997.


	Introduction
	Initial Game Formulation
	Transformation of the Game (1)–(3)
	Regularization of the SDG
	Nash Equilibrium Solution of the PCCDG
	Asymptotic Analysis of PCCDG
	Zero-Order Asymptotic Solution of the Problem (24)–(26)
	Transformation of the Problem (24)–(26)
	Zero-Order Asymptotic Solution of the Terminal-Value Problem (37)–(42), (43): Formal Construction
	Justification of the Asymptotic Solution to the Problem (37)–(42), (43)

	Asymptotic Representations of the Optimal Values of the Functionals in the PCCDG

	Reduced Differential Game
	Nash Equilibrium Sequence of the SDG
	Examples
	Example 1
	Example 2

	Concluding Remarks
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 4
	References

