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Abstract: In this paper, we defined a new class of λ-pseudo-Bazilevič functions of complex order
using subordination. Various classes of analytic functions that map unit discs onto a conic domain
and some classes of special functions were studied in dual. Some subordination results, inequalities
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Keywords: analytic functions; Bazilevič functions; Jackson’s q-derivative operator; starlike and
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1. Introduction

Bazilevič [1] introduced the class B(t, ζ, g) of functions which is defined by the integral:

f (z) =

 t
1 + ζ2

∫ z

0
(p(η)− iζ)η

−
(

1+ itζ
1+ζ2

)
η

t
1+ζ2 [g(η)]

t
1+ζ2 dη


1+iζ

t

,

where p ∈ P , and P is the class of analytic function with a positive real part, and
g ∈ S∗, where S∗ is the well-known class of starlike function in the open unit disk
U = {z ∈ C : |z| < 1}. The numbers t ≥ 0 and ζ are real and all powers are chosen
so that the function remains single valued.

Other than the fact that B(t, ζ, g) is univalent, we have little or no information on this
family of functions. However, for some special cases, for example, if ζ = 0 and g(z) = z,

we obtain the well-known class B(t) which satisfies the condition Re
z1−t f ′(z)

( f (z))1−t > 0, z ∈ U,

where f ∈ A, and A is the class of analytic functions in U having a Taylor series expansion
of the form:

f (z) = z +
∞

∑
k=2

akzk, z ∈ U. (1)

For 0 ≤ η < 1, let S∗(η) and C(η) denote the classes of starlike functions of order η and
convex functions of order η, respectively. Babalola [2] introduced the class of functions Lλ(η),
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the so-called λ-pseudo-starlike functions of order η as follows: a function f ∈ A is said to be
in Lλ(η), with 0 ≤ η < 1, λ ≥ 1, if and only if it satisfies the inequality:

Re
z( f ′(z))λ

f (z)
> η, z ∈ U.

If η and ϑ are real numbers such that 0 ≤ η < 1 < ϑ, let S(η, ϑ) denote the class of
functions f ∈ A satisfying the inequality:

η < Re
z f ′(z)

f (z)
< ϑ, z ∈ U. (2)

The class S(η, ϑ) was introduced and first studied by Kuroki and Owa [3].
For f ∈ A given by (1) and 0 < q < 1, the Jackson’s q-derivative operator or q-difference

operator for a function f ∈ A is defined by (see [4,5]):

Dq f (z) :=

 f ′(0), if z = 0,
f (z)− f (qz)
(1− q)z

, if z 6= 0.
(3)

From the (3), if f has the power series expansion (1), we can easily see that

Dq f (z) = 1 +
∞
∑

k=2
[k]qakzk−1, for z 6= 0, where the q-integer number [k]q is defined by

[k]q :=
1− qk

1− q
,

and note that lim
q→1−

Dq f (z) = f ′(z). Throughout this paper, we let denote:

([k]q)n := [k]q[k + 1]q[k + 2]q . . . [k + n− 1]q.

For the function f ∈ A given by (1) and h ∈ A of the form h(z) = z +
∞
∑

k=2
Θkzk, the

Hadamard product (or convolution) of these two functions is defined by

H(z) := ( f ∗ h)(z) := z +
∞

∑
k=2

akΘkzk, z ∈ U. (4)

Throughout our present discussion, to avoid repetition, we will assume that
−1 ≤ B < A ≤ 1, and Θk 6= 0 may be real or complex numbers.

For the functions f and g that are analytic in U, we say that the function f is subordinate
to g if there exists a function w, analytic in U with w(0) = 0 and |w(z)| < 1, z ∈ U such
that f = g ◦ w. We denote this subordination by f ≺ g or f (z) ≺ g(z). In particular, if the
function g is univalent in U, the above subordination is equivalent to (see [6,7]) f (0) = g(0)
and f (U) ⊂ g(U).

Ma-Minda [8] considered that a given function ψ is an analytic function such that:

(i) Re ψ > 0, U;
(ii) ψ(0) = 1, ψ′(0) > 0;
(iii) ψ maps the open unit disc U onto a starlike region with respect to 1 and symmetric

with respect to the real axis.

They also assumed that ψ(z) = 1 + L1z + L2z2 + . . . , with L1 > 0, and introduced
and studied the following subclasses:

S∗(ψ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ ψ(z)

}
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and:

C(ψ) :=
{

f ∈ A : 1 +
z f ′′(z)
f ′(z)

≺ ψ(z)
}

.

By choosing ψ to map the unit disc onto some specific regions like parabolas, cardioid,
lemniscate of Bernoulli, Booth lemniscate in the right-half of the complex plane, various in-
teresting subclasses of starlike and convex functions can be obtained. For −1 ≤ B < A ≤ 1,
we denote by S∗(A, B) and by C(A, B) the class of Janowski starlike functions and Janowski
convex functions, defined by

S∗(A, B) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ 1 + Az

1 + Bz
,−1 ≤ B < A ≤ 1

}
,

and:

C(A, B) :=
{

f ∈ A : 1 +
z f ′(z)

f (z)
≺ 1 + Az

1 + Bz
,−1 ≤ B < A ≤ 1

}
,

respectively.
Motivated by the definition of λ-pseudo-starlike functions and unified subordination

condition, we now introduce the following the class of functions:

Definition 1. For −π

2
< α <

π

2
, λ ≥ 1, 0 ≤ β ≤ 1, t ≥ 0, γ ∈ C \ {0} and H = f ∗ h defined

as in (4), we say that the function f belongs to the class PS t
λ(α, β; γ; ψ; h; A, B) if it satisfies the

subordination condition:

1 +
1 + i tan α

γ

[
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
≺ (A + 1)ψ(z)− (A− 1)

(B + 1)ψ(z)− (B− 1)
, (5)

where “≺” denotes subordination, ψ ∈ P , and ψ(U) is the convex domain, while ψ which has a
power series expansion of the form:

ψ(z) = 1 + L1z + L2z2 + L3z3 + . . . , z ∈ U, L1 6= 0, (6)

with |ψ(z)| <
∣∣∣∣B− 1
B + 1

∣∣∣∣ for all z ∈ U.

Remark 1. Since |ψ(z)| <

∣∣∣∣B− 1
B + 1

∣∣∣∣ for all z ∈ U, we note that the function P(z) :=

(A + 1)ψ(z)− (A− 1)
(B + 1)ψ(z)− (B− 1)

is analytic in U and can be expressed in power series in U. In the

above definition, the function ψ is assumed to be convex since most of our main results require that
the superordinate function P should be convex. However, we showed some applications where this
condition could be relaxed.

Definition 2. For −π

2
< α <

π

2
, λ ≥ 1, 0 ≤ β ≤ 1, t ≥ 0, γ ∈ C \ {0} and H = f ∗ h defined

as in (4), we say that the function f belongs to the class Sq
λ(t; α, β; γ; h, A, B) if it satisfies the

subordination condition:

1 +
1 + i tan α

γ

[
z1−t[DqH(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
≺ (A + 1) p̂(z)− (A− 1)

(B + 1) p̂(z)− (B− 1)
, (7)

where p̂(z) =
1 + z
1− qz

, q ∈ (0, 1), satisfies the condition | p̂(z)| <
∣∣∣∣B− 1
B + 1

∣∣∣∣ for all z ∈ U.
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Remark 2. Since p̂(−1) = 0, p̂(1) =
2

1− q
> 1, and p̂(z) = p̂(z), z ∈ U, it follows that the

circular transform p̂ maps the unit disc U onto the disc with diameter
[

0;
2

1− q

]
and symmetric

with respect to the real axes. Therefore, the above assumption | p̂(z)| <
∣∣∣∣B− 1
B + 1

∣∣∣∣, z ∈ U, holds if

and only if:
2

1− q
≤
∣∣∣∣B− 1
B + 1

∣∣∣∣.
We also note that under this assumption, the function Q(z) :=

(A + 1) p̂(z)− (A− 1)
(B + 1) p̂(z)− (B− 1)

is

analytic in U hence it can be expressed in power series in U.

Remark 3. Several well-known classes can be seen as special cases of the class
PS t

λ(α, β; γ; ψ; h; A, B) defined above (see also [9–11]). Now, we highlight only the recent
works which are associated with a conic region:

(i) If h(z) = z +
∞
∑

k=2

(2)k−1
(1)k−1

zk, α = β = t = 0, γ = 1 + 0i, λ = 1 and choosing ψ(z) =

1 +
2
π

log
(

1 +
√

z
1−
√

z

)2

, the class PS t
λ(α, β; γ; ψ; h; A, B) reduces to the class UP[A, B]

introduced and studied by Malik et al. [12].

(ii) It can be easily seen that with the choice of h(z) = z +
∞
∑

k=2

(b)k−1
(c)k−1

zk, we get:

[
PS0

1(0, β; 1; ψ; 1,−1)
]

ψ(z)=z+
√

1+z2
=:MLc

b(β; ψ),

whereMLc
b(β; ψ) is the class recently introduced and studied in [13]. Note that the function

ψ(z) = z +
√

1 + z2 is starlike but not convex in U.

Remark that, by the definition of the subordination, a function H ∈ A is said to be in
Sq

λ(t; α, β; γ; h, A, B) if and only if there exists a function w analytic in U, with w(0) = 0,
and |w(z)| < 1 for all z ∈ U, such that:

1 +
1 + i tan α

γ

[
z1−t[DqH(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
=

(A + 1)w(z) + 2 + (A− 1)qw(z)
(B + 1)w(z) + 2 + (B− 1)qw(z)

, (8)

where q ∈ (0, 1).

2. Preliminaries

In this section, we state the results that would be used to establish our main results
which can be found in the standard text on univalent functions theory.

Lemma 1 ([14] (p. 56)). If the function f ∈ A given by (1) and g given by

g(w) = w +
∞

∑
k=2

bkwk (9)

are inverse functions, then the coefficients bk, for k ≥ 2, are given by

bk =
(−1)k+1

k!

∣∣∣∣∣∣∣∣∣∣∣∣

ka2 1 0 . . . 0
2ka3 (k + 1)a2 2 . . . 0
3ka4 (2k + 1)a3 (k + 2)a2 . . . 0

...
...

...
... (k− 2)

(k− 1)kak [k(k− 2) + 1]ak−1 [k(k− 3) + 2]ak−2 . . . (2k− 2)a2

∣∣∣∣∣∣∣∣∣∣∣∣
. (10)
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Remark 4. The elements of the above determinant (10) are given by

Λij =

{
[(i− j + 1)k + j− 1]ai−j+2, if i + 1 ≥ j,
0, if i + 1 < j.

Lemma 2 ([7] (p. 41)). If p(z) = 1 +
∞
∑

k=1
pkzk ∈ P , then |pk| ≤ 2 for all k ≥ 1, and the

inequality is sharp for pλ(z) =
1 + λz
1− λz

, |λ| ≤ 1.

Lemma 3 ([8]). If p(z) = 1 +
∞
∑

k=1
pkzk ∈ P , and v is a complex number, then:

∣∣∣p2 − vp2
1

∣∣∣ ≤ 2 max{1; |2v− 1|},

and the result is sharp for the functions:

p1(z) =
1 + z
1− z

and p2(z) =
1 + z2

1− z2 .

Lemma 4 ([15] (Theorem VII)). Let f (z) =
∞
∑

k=1
akzk be analytic in U and g(z) =

∞
∑

k=1
bkzk be

analytic and convex in U. If f (z) ≺ g(z), then |ak| ≤ |b1| for k = 1, 2, . . . .

Lemma 5 ([6] (Theorem 3.6.1)). Let the function q be univalent in the open unit disc U and
θ and φ be analytic in a domain D containing q(U) with φ(w) 6= 0 when w ∈ q(U). Set
Q(z) = zq′(z)φ(q(z)), k(z) = θ(q(z)) + Q(z). Suppose that:

1. Q is starlike univalent in U, and

2. Re
zk′(z)
Q(z)

> 0, for z ∈ U.

If:
θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)),

then p(z) ≺ q(z) and q is the best dominant.

3. Conditions for Starlikeness Using Subordination

In [6], the author presented new results in the theory of differential subordination
with detailed proof. Motivated by the results presented in Chapter 4 of [6], we obtained
the following result:

Theorem 1. Let the function ψ ∈ A be chosen such that the function:

g(z) :=
(A + 1)ψ(z)− (A− 1)
(B + 1)ψ(z)− (B− 1)

is convex univalent in U, with:
Re g(z) > 0, z ∈ U. (11)

If the function H = f ∗ h ∈ A satisfies the conditions:

H′(z) 6= 0, z ∈ U, (12)
H(z)

z
6= − β

1− β
, z ∈ U, (13)
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then:

1 + i tan α

γ

[
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
×{

2 +
1 + i tan α

γ

[
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t − 1

]

+(t− 1)
(1− β)zH′(z) + βz
(1− β)H(z) + βz

+
z1−t[H′(z)]λ

[
(1− t) + λ[H′(z)]−1zH′′(z)

]
z1−t[H′(z)]λ − [(1− β)H(z) + βz]1−t

− (1− t)[(1− β)H(z) + βz]−t[(1− β)zH′(z) + βz]

z1−t[H′(z)]λ − [(1− β)H(z) + βz]1−t

}
+ 1 ≺ k(z), (14)

where k(z) := g2(z) + zg′(z), implies f ∈ PS t
λ(α, β; γ; ψ; h; A, B). Moreover, the function g is

the best dominant of the left-hand side of (5).

Proof. If we define the function p by

p(z) := 1 +
1 + i tan α

γ

[
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
, z ∈ U,

then we form the assumptions (12) and (13), from which it follows that p is analytic in U.
By a straight forward computation, we have:

zp′(z) = [p(z)− 1]
[
(t− 1)

(1− β)zH′(z) + βz
(1− β)H(z) + βz

+
z1−t[H′(z)]λ

[
(1− t) + λ[H′(z)]−1zH′′(z)

]
z1−t[H′(z)]λ − [(1− β)H(z) + βz]1−t

− (1− t)[(1− β)H(z) + βz]−t[(1− β)zH′(z) + βz]

z1−t[H′(z)]λ − [(1− β)H(z) + βz]1−t

]
,

and thus, the subordination (14) is equivalent to:

p2(z) + zp′(z) ≺ k(z). (15)

Setting:
θ(w) := w2 and φ(w) := 1,

then θ and φ are analytic functions in C, with φ(0) 6= 0. Therefore:

Q(z) = zg′(z)φ(g(z)) = zg′(z)

and:
k(z) = θ(g(z)) + Q(z) = g2(z) + zg′(z),

and using the fact that g is a convex univalent function in U, it follows that:

Re
zQ′(z)
Q(z)

= Re
(

1 +
zg′′(z)
g′(z)

)
> 0, z ∈ U,

Q′(0) = g′(0) 6= 0,

hence, Q is a starlike univalent function in U. Furthermore, the convexity of g together
with the assumption (11) implies:

Re
zk′(z)
Q(z)

= Re
(

2g(z) + 1 +
zg′′(z)
g′(z)

)
> 0, z ∈ U,
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Since both of the conditions of Lemma 5 are satisfied, it follows that (15) implies
p(z) ≺ g(z), and g is the best dominant of p, which prove our conclusions.

Similar subordination conditions can be established for the class Sq
λ(t; α, β; γ; h, A, B),

and here we choose to omit the details of the proof.

Theorem 2. Let the function p̂(z) =
1 + z
1− qz

, q ∈ (0, 1), be chosen such that the function:

g(z) :=
(A + 1) p̂(z)− (A− 1)
(B + 1) p̂(z)− (B− 1)

is convex univalent in U, with:
Re g(z) > 0, z ∈ U.

If the function H = f ∗ h ∈ A satisfies the conditions:

DqH(z) 6= 0, z ∈ U,

H(z)
z
6= − β

1− β
, z ∈ U,

then:

1 + i tan α

γ

[
z1−t[Dq H(z)]λ

[(1− β)H(z) + βz]1−t − 1

]{
2 +

1 + i tan α

γ

[
z1−t[Dq H(z)]λ

[(1− β)H(z) + βz]1−t − 1

]

+(t− 1)
(
(1− β)zH′(z) + βz
(1− β)H(z) + βz

)
+

z1−t[Dq H(z)]λ
[
(1− t) + λ[Dq H(z)]−1z(DqH(z))′

]
z1−t[DqH(z)]λ − [(1− β)H(z) + βz]1−t

− (1− t)[(1− β)H(z) + βz]−t([(1− β)zH′(z) + βz])

z1−t[Dq H(z)]λ − [(1− β)H(z) + βz]1−t

}
+ 1 ≺ k(z),

where k(z) := g2(z) + zg′(z), implies f ∈ Sq
λ(t; α, β; γ; h, A, B). Moreover, the function g is

the best dominant of the left-hand side of (7).

Theorem 3. If the function H = f ∗ h ∈ A satisfies the conditions:

H′(z) 6= 0, z ∈ U,
H(z)

z
6= − β

1− β
, z ∈ U,

then:

z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t

[
λzH′′(z)

H′(z)
+ (1− t)

(
1− (1− β)zH′(z) + βz

(1− β)H(z) + βz

)

+
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t

]
≺ k(z),

where:

k(z) =
A2z2 + (3A− B)z + 1

(1 + Bz)2 , −1 ≤ B < A ≤ 1,

implies:
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t ≺
1 + Az
1 + Bz

,

and this result is sharp.
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Proof. If we define the functions:

g(z) =
1 + Az
1 + Bz

and p(z) =
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t ,

then p is analytic in U, and g is a convex univalent function in U with Re g(z) > 0,
z ∈ U. Proceeding as in the proof of Theorem 1, we can establish the assertion of the
Theorem 3.

If we let β = t = 0, λ = 1 and h(z) = z +
∞
∑

k=2
zk, z ∈ U, in the Theorem 3, we obtain

the next result:

Corollary 1 ([16] (Theorem 1)). If the function f ∈ A satisfies the condition
f (z)

z
6= 0, z ∈ U,

then
z2 f ′′(z)

f (z)
+

z f ′(z)
f (z)

≺ k(z),

where:

k(z) =
A2z2 + (3A− B)z + 1

(1 + Bz)2 , −1 ≤ B < A ≤ 1,

implies f ∈ S∗(A, B).

For A = 1 and B = −1, the function k of Corollary 1 becomes k(z) =
z2 + 4z + 1
(1− z)2 =

1 +
6z

(1− z)2 . If z = eiθ , θ ∈ [0, 2π], we get:

k(z) = 1− 3
2 sin2 θ

2

, θ ∈ (0, 2π) \ {π},

thus, it follows that:

k(U) = D̂ := C \
{

z ∈ C : Re z ≤ −1
2

, Im z = 0
}

.

According to the result of Corollary 1, in this present case, it follows that
f ∈ S∗(1, −1) = S∗. On summarizing, we obtain the following sufficient condition for
starlikeness obtained by Mocanu and Oros in [17]:

Example 1. If the function f ∈ A satisfies the condition
f (z)

z
6= 0, z ∈ U, and:

D̂ := C \
{

z ∈ C : Re z ≤ −1
2

, Im z = 0
}

,

then:
z2 f ′′(z)

f (z)
+

z f ′(z)
f (z)

∈ D̂ ⇒ f ∈ S∗.
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For A = 0 and B = −1, the function k of Corollary 1 becomes k(z) =
1 + z

(1− z)2 . If

z = eiθ , θ ∈ [0, 2π], we get:

k(z) =
1
2

cos θ
2

sin2 θ
2

[
cos
(

π − θ

2

)
+ i sin

(
π − θ

2

)]
=

− 1
2 tan2 θ

2

+
i

2 tan θ
2

, θ ∈ [0, 2π] \ {π}.

Denoting: 
u = − 1

2t2 ,

v =
1
2t

, t ∈ R,

and using the fact that k(0) = 1 it follows that:

k(U) =
{

w = u + iv ∈ C : u > −2v2
}
=: D̃.

That is, k(U) is the domain of C bounded by the parabola u = −2v2 that contains the
point z0 = 1.

Therefore, according to the result of Corollary 1, we have the following result:

Example 2 ([17]). If the function f ∈ A satisfies the condition
f (z)

z
6= 0, z ∈ U, and:

D̃ :=
{

w = u + iv ∈ C : u > −2v2
}

,

then:
z2 f ′′(z)

f (z)
+

z f ′(z)
f (z)

∈ D̃ ⇒ f ∈ S∗(1/2).

Corollary 2. If the function H = f ∗ h ∈ A satisfies the conditions:

H′(z) 6= 0, z ∈ U,
H(z)

z
6= − β

1− β
, z ∈ U,

then:

z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t

[
λzH′′(z)

H′(z)
+ (1− t)

(
1− (1− β)zH′(z) + βz

(1− β)H(z) + βz

)

+
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t

]
≺ 1 + δz,

where δ := δ(µ) := µ(3− µ) and 0 < µ ≤ 1 implies:

z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t ≺ 1 + µz.

Proof. If we let A = µ and B = 0, with 0 < µ ≤ 1, in Theorem 3, then k(z) = µ2z2 + 3µz+ 1.
For |z| = 1, we get:

|k(z)− 1| = µ|3 + µz| ≥ µ(3− µ) =: δ.

Since k(0) = 1, from the above inequality, it follows that 1 + δz ≺ k(z) and the result
follows from the Theorem 3.
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Letting β = t = 0, λ = 1 and h(z) = z +
∞
∑

k=2
zk in Corollary 2, we have the next

special case:

Example 3. (see Corollary 4.3.2. in [6]) If the function f ∈ A satisfies the condition
f (z)

z
6= 0,

z ∈ U, then:
z2 f ′′(z)

f (z)
+

z f ′(z)
f (z)

≺ 1 + δz,

where δ := δ(µ) := µ(3− µ) and 0 < µ ≤ 1, implies:

z f ′(z)
f (z)

≺ 1 + µz.

For µ = 1, the Example 3 reduces to the following result:

Example 4 ([6] (Example 4.3.1)). If f ∈ A, then:∣∣∣∣ z f ′(z)
f (z)

(
1 +

f ′′(z)
f ′(z)

)
− 1
∣∣∣∣ < 2, z ∈ U⇒

∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ < 1, z ∈ U.

4. Coefficients Estimates For the Functions of PS t
λ(α, β; γ; ψ; h; A, B) and

Sq
λ(t; α, β; γ; h, A, B)

The class of all the functions of the class PS t
λ(α, β; γ; ψ; h; A, B) are not univa-

lent, so the inverse is not guaranteed. However, since f ′(0) = 1 6= 0 for all f ∈
PS t

λ(α, β; γ; ψ; h; A, B) and f (0) = 0, there exists an inverse function in some small
disk with a center at w = 0 depending on the parameters involved.

Hereafter, unless otherwise mentioned −π

2
< α <

π

2
, 0 ≤ λ ≤ 1, t ≥ 0 and q ∈ (0, 1).

Additionally, let g := f−1 defined by f−1( f (z)) = z, f
(

f−1(z)
)
= w be the inverse of

f and:

g(w) = f−1(w) = w +
∞

∑
k=2

bkwk, |w| < r0, r0 >
1
4

.

Furthermore, let Θk be the respective coefficients of zk in the power series expansion
of h, as it appeared in the definition formula (4).

Theorem 4. If the function f given by (1) and g given by (9) are inverse functions and if
f ∈ PS t

λ(α, β; γ; ψ; h; A, B), then for the coefficients of g = f−1, we have:

|b2| ≤
|γ|(A− B)|L1|

2|Θ2|[2λ + (t− 1)(1− β)] sec α
, (16)

and:

|b3| ≤
|L1γ|(A− B)

2[3λ + (t− 1)(1− β)]|Θ3| sec α
max{1; |2ν− 1|}, (17)

with:

ν :=
1
4

[
(B + 1)L1 + 2

(
1− L2

L1

)
+

2γL1(A− B)[3λ + (t− 1)(1− β)]Θ3

Θ2
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

+
γL1(A− B)

{
4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)[2λ + (t− 1)(1− β)]2

]
. (18)
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Proof. If f ∈ PS t
λ(α, β; γ; ψ; h; A, B), then by the definition of subordination, there exists

a function w analytic in U, with w(0) = 0 and |w(z)| < 1, z ∈ U, such that:

1 +
1 + i tan α

γ

[
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
=

(A + 1)ψ(w(z))− (A− 1)
(B + 1)ψ(w(z))− (B− 1)

, z ∈ U.

Thus, let ` ∈ P be of the form: `(z) = 1 +
∞
∑

k=1
pkzk and defined by

`(z) :=
1 + w(z)
1− w(z)

, z ∈ U.

A simple computation shows that:

w(z) =
`(z)− 1
`(z) + 1

=
p1z + p2z2 + p3z3 + . . .

2 + p1z + p2z2 + p3z3 + . . .

=
1
2

p1z +
1
2

(
p2 −

1
2

p2
1

)
z2 +

1
2

(
p3 − p1 p2 +

1
4

p3
1

)
z3 + . . . , z ∈ U,

and considering:

(A + 1)ψ(w(z))− (A− 1)
(B + 1)ψ(w(z))− (B− 1)

= 1 +
L1 p1(A− B)

4
z +

(A− B)L1

4

p2 − p2
1

 (B + 1)L1 + 2
(

1− L2
L1

)
4

z2 + . . . .

we have:

z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t = 1 +
γ

1 + i tan α

{
L1 p1(A− B)

4
z

+
(A− B)L1

4

p2 − p2
1

 (B + 1)L1 + 2
(

1− L2
L1

)
4

z2 + . . . .

}
, z ∈ U. (19)

The left hand side of (19) will be of the form:

z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t = 1 + [2λ + (t− 1)(1− β)]Θ2a2z

+

{
[3λ + (t− 1)(1− β)]Θ3a3

+

[
2λ[λ− 1 + (t− 1)(1− β)] +

(t− 1)(t− 2)(1− β)2

2

]
Θ2

2a2
2

}
z2 + . . . , z ∈ U, (20)

where Θk are the corresponding coefficients from the power series expansion of h, which
may be real or complex.

From (19) and (20), we obtain:

a2 =
γL1 p1(A− B)

4Θ2(1 + i tan α)[2λ + (t− 1)(1− β)]
, (21)
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and:

a3 =
L1(A− B)γ

4(1 + i tan α)[3λ + (t− 1)(1− β)]Θ3

[
p2 −

1
4

(
(B + 1)L1 + 2

(
1− L2

L1

)
+

γL1(A− B)
(
4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2)

2(1 + i tan α)[2λ + (t− 1)(1− β)]2

)
p2

1

]
. (22)

From (10), we see that b2 = −a2, and applying Lemma 2 for (21), we obtain the
inequality (16).

In addition, from (10), we have:

b3 =
(−1)4

3!

∣∣∣∣ 3a2 1
6a3 4a2

∣∣∣∣ = 2a2
2 − a3 =

γ2L2
1 p2

1(A− B)2

8Θ2
2(1 + i tan α)2[2λ + (t− 1)(1− β)]2

− L1(A− B)γ
4(1 + i tan α)[3λ + (t− 1)(1− β)]Θ3

[
p2 −

1
4

(
(B + 1)L1 + 2

(
1− L2

L1

)
+

γL1(A− B)
{

4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

)
p2

1

]

=
−L1(A− B)γ

4(1 + i tan α)[3λ + (t− 1)(1− β)]Θ3

[
p2 −

1
4

(
(B + 1)L1 + 2

(
1− L2

L1

)
+

γL1(A− B)
{

4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

+

2γL1(A− B)[3λ + (t− 1)(1− β)]Θ3

Θ2
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

)
p2

1

]
,

and using Lemma 2, we get (17), with ν given by (18).

Using a similar proof, we established the corresponding result for the class
Sq

λ(t; α, β; γ; h, A, B):

Theorem 5. If the function f given by (1) and g given by (9) are inverse functions and if f ∈
Sq

λ(t; α, β; γ; h, A, B), then for the coefficients of g = f−1 we have:

|b2| ≤
|γ|(A− B)(q + 1)

2|Θ2|
{
[2]qλ + (t− 1)(1− β)

}
sec α

,

and:

|b3| ≤
(q + 1)|γ|(A− B)

2
{
[3]qλ + (t− 1)(1− β)

}
|Θ3| sec α

max{1; |2ν− 1|},

with:

ν :=
1
4

[
B(1 + q) + (3− q) +

2γ(1 + q)(A− B)
{
[3]qλ + (t− 1)(1− β)

}
Θ3

Θ2
2(1 + i tan α)

(
[2]qλ + (t− 1)(1− β)

)2

+
γ(1 + q)(A− B)

{
(1 + q)λ[(1 + q)(λ− 1) + 2(t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)
{
[2]qλ + (t− 1)(1− β)

}2

]
.

Theorem 6. If the function f given by (1) and g given by (9) are inverse functions, and we let
H = f ∗ h ∈ A satisfy the inequality:

η < Re
(B− 1)L(z)− (A− 1)
(B + 1)L(z)− (A + 1)

< ϑ, z ∈ U, 0 ≤ η < 1 < ϑ, (23)
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where:

L(z) := 1 +
1 + i tan α

γ

[
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
.

Then for the coefficients of the inverse function g = f−1, where f satisfies the assumption
(23), we have:

|b2| ≤
|γ|(A− B)(η − ϑ)

π|Θ2|[2λ + (t− 1)(1− β)] sec α
sin

π(1− η)

η − ϑ
,

and:

|b3| ≤
(A− B)(η − ϑ) sin π(1−η)

η−ϑ

π[3λ + (t− 1)(1− β)]|Θ3| sec α
max

{
1;

η − ϑ

π
sin

π(1− η)

η − ϑ∣∣∣∣∣B + 1− 2πi
η − ϑ

cot
π(1− η)

η − ϑ
+

2γ(A− B)[3λ + (t− 1)(1− β)]Θ3

Θ2
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

+
γ(A− B)

{
4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)[2λ + (t− 1)(1− β)]2

∣∣∣∣∣
}

.

Proof. From the equivalent subordination condition proved by Kuroki and Owa in [3], we
may rewrite the conditions (23) in the following form:

(B− 1)L(z)− (A− 1)
(B + 1)L(z)− (A + 1)

≺ 1 +
η − ϑ

π
i log

(
1− e2πi((1−η)/(η−ϑ)) z

1− z

)
=: T (z),

that is equivalent to:

L(z) ≺ (A + 1)T (z)− (A− 1)
(B + 1)T (z)− (B− 1)

,

i.e., f ∈ PS t
λ(α, β; γ; T ; h; A, B). Furthermore, we note that the function T given by

T (z) = 1 +
η − ϑ

π
i log

(
1− e2πi((1−η)/(η−ϑ)) z

1− z

)
(24)

maps the open unit disk U onto a convex domain and is of the form:

T (z) = 1 +
∞

∑
k=1

Lkzk, z ∈ U,

where Lk =
η − ϑ

kπ
i
(

1− e2kπi((1−η)/(η−ϑ))
)

, k ≥ 1. Substituting the values of L1 and L2 in
Theorem 4, we obtain the assertion of our theorem.

If we let α = β = t = 0, λ = γ = A = 1, B = −1 and h(z) = z +
∞
∑

k=2
zk in Theorem 6,

we obtain the result obtained by Sim and Kwon [18]:

Corollary 3 ([18] (Corollary 1)). If the function f given by (1) and g given by (9) are inverse
functions and if f ∈ S(η, ϑ), with 0 ≤ η < 1 < ϑ, is defined by (2), then:

|b2| ≤
2(η − ϑ)

π
sin

π(1− η)

η − ϑ
,

and:

|b3| ≤
η − ϑ

π
sin

π(1− η)

η − ϑ
max

{
1;
∣∣∣∣12 − 3

η − ϑ

π
i +
(

1
2
+ 3

η − ϑ

π
i
)

e2πi 1−η
η−ϑ

∣∣∣∣}.
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The impact of the well-known Janowski function:

J (z) := 1 +
2

π2

(
log

1 +
√

z
1−
√

z

)2

, z ∈ U, (25)

was recently studied by Malik et al. [12]. Following the same steps as in Theorem 1 of [19],
we obtain:

J (z) = 1 +
8

π2 z +
16

3π2 z2 + . . . , z ∈ U. (26)

Replacing the values of L1, L2 and L3 of Theorem 4 with the corresponding coefficients
of the power series (26), we obtain the next result:

Theorem 7. If the function f given by (1) and g given by (9) are inverse functions and if
f ∈ PS t

λ(α, β; γ; J ; h; A, B), with J defined as in (25), then for the coefficients of g = f−1,
we have:

|b2| ≤
4|γ|(A− B)

π2|Θ2|[2λ + (t− 1)(1− β)] sec α
,

and:

|b3| ≤
4|γ|(A− B)

π2[3λ + (t− 1)(1− β)]|Θ3| sec α
max

{
1;

4
π2

∣∣∣∣(B + 1− π2

6

)
+

γ(A− B)
{

4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

+
2γ(A− B)[3λ + (t− 1)(1− β)]Θ3

Θ2
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

∣∣∣∣∣
}

.

If we let α = β = t = 0, λ = γ = 1 and h(z) = z +
∞
∑

k=2

(2)k−1
(1)k−1

zk, z ∈ U, in Theorem 7,

we obtain the following result:

Corollary 4 ([12] (Theorem 4)). If the function f given by (1) and g given by (9) are inverse
functions and if f ∈ PS0

1(0, 0; 1; J ; A, B), with J defined as in (25), then for the coefficients of
g = f−1, we have:

|bk| ≤
4(A− B)

k(k− 1)π2 , k = 2, 3.

We need the following result to establish the coefficient estimate |ak| of the classes
PS0

1(α, β; γ; ψ; h; A, B) and Sq
1 (0; α, β; γ; A, B).

Lemma 6. Let the function P(z) :=
(A + 1)ψ(z)− (A− 1)
(B + 1)ψ(z)− (B− 1)

be convex in U where the function ψ

is defined as in (6). If p(z) = 1+
∞
∑

k=1
pkzk is analytic in U and satisfies the subordination condition:

p(z) ≺ (A + 1)ψ(z)− (A− 1)
(B + 1)ψ(z)− (B− 1)

, (27)

then:

|pk| ≤
|L1|(A− B)

2
, k ≥ 1. (28)

Proof. If the function ψ has the power series expansion (6), then:

P(z) = 1 + P′(0)z + · · · = 1 +
(A− B)L1

2
z + . . . , z ∈ U.
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Since the subordination relation is invariant regarding a translation, the assump-
tion (27) is equivalent to:

p(z)− 1 ≺ P(z)− 1.

In addition, because the convexity of P implies the convexity of P− 1, from Lemma 4,
it follows the conclusion (28):

Theorem 8. Let f ∈ PS0
1(α, β; γ; ψ; h; A, B). Then:

|a2| ≤
|γ|(A− B)|L1|

2(β + 1)|Θ2| sec α
=: s2,

and:

|ak| |Θk| ≤
|γ|(A− B)|L1|

2(β− 1 + k) sec α

[
1 + (1− β)

k−1

∑
j=2

sj

]
=: sk,

for k ≥ 3.

Proof. By the definition of PS0
1(α, β; γ; ψ; h; A, B), we have:

1 +
1 + i tan α

γ

[
zH′(z)

(1− β)H(z) + βz
− 1
]
=: p(z), (29)

where p(z) = 1 +
∞
∑

k=1
pkzk is analytic in U and satisfies the subordination condition:

p(z) ≺ (A + 1)ψ(z)− (A− 1)
(B + 1)ψ(z)− (B− 1)

. The relation (29) can be rewritten as

(1 + i tan α)
∞

∑
k=2

[(β− 1) + k]Θk akzk = γ

[
z +

∞

∑
k=2

(1− β)Θkakzk

](
∞

∑
k=1

pkzk

)
, z ∈ U,

and equating the coefficient of zk, we get:

(1 + i tan α) [(β− 1) + k]Θkak

= γ[pk−1 + pk−2(1− β)Θ2a2 + · · ·+ p1(1− β)Θk−1ak−1]

for k ≥ 3, and for k = 2 we have:

(1 + i tan α) (β + 1)Θ2a2 = γp1.

It follows that:

|ak| |Θk| ≤
|γ|

[(β− 1) + k] sec α

[
|pk−1|+

k−2

∑
j=1

(1− β)|Θk−j||ak−j||pj|
]

, k ≥ 3,

|a2| |Θ2| =
|γ| |p1|

(β + 1) sec α
,

and using (28) in the above inequality, it follows that:

|ak| |Θk| ≤
|γ(A− B)L1|

2[(β− 1) + k] sec α

[
1 + (1− β)

k−2

∑
j=1
|Θk−j||ak−j|

]

=
|γ(A− B)L1|

2[(β− 1) + k] sec α

[
1 + (1− β)

k−1

∑
j=2
|Θj||aj|

]
=: sk, k ≥ 3,

|a2| |Θ2| ≤
|γ|(A− B)|L1|
2(β + 1) sec α

=: s2,
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which proves our conclusions.

For the proof of the next result, we will use the well-known Parseval’s identity (see
also [20] (Theorem 15, p. 505)): if F and G are two square-integrable complex functions on

the interval [−π, π], with Fourier series F(x) =
∞
∑

n=−∞
aneinx and G(x) =

∞
∑

n=−∞
bneinx, then:

∞

∑
n=−∞

anbn =
1

2π

∫ π

−π
F(x)G(x) dx.

Theorem 9. Let f ∈ Sq
1 (0; α, β; γ; A, B), that is the class Sq

λ(t; α, β; γ; h, A, B) given by
Definition 2 for λ = 1 and t = 0, then:

|a2| ≤
|γ|(A− B)(1 + q)

2(β− 1 + [2]q)|Θ2| sec α
,

and for j ≥ 3 we have:

|aj| ≤
|γ|(A− B)(1 + q)
2(β + 1) sec α|Θj|

·
j−2

∏
k=1

∣∣(A− B)(1 + q)γ(1− β)− (1 + i tan α)(β + [k− 1]q + 1)[B(1 + q) + (1− q)]
∣∣

2(β + [k]q + 1) sec α
. (30)

Proof. From (8), we have:

2(1 + i tan α)
{

zDq H(z)− [(1− β)H(z) + βz]
}
={

(A− B)γ(1 + q)[(1− β)H(z) + βz]

−[B(1 + q) + (1− q)](1 + i tan α)
[
zDqH(z)− [(1− β)H(z) + βz]

]}
w(z),

hence:

∞

∑
k=2

2(1 + i tan α)
(
[k]q + β− 1

)
akΘkzk

=
{
(A− B)γ(1 + q)z +

∞

∑
k=2

[
(1− β)(A− B)(1 + q)γ

−
[
B(1 + q) + (1− q)

]
(1 + i tan α)([k]q + β− 1)

]
Θkakzk

}
w(z).

We will use the technique employed by Clunie which consists of breaking the sum-

mation on the right side into two parts which are
j−1
∑

k=2
and

∞
∑

k=j
, and to observe that the
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multiplication by w(z) =
∞
∑

k=2
ωkzk, |w(z)| < 1, |z| < 1, of the second sum gives terms with

exponents that exceeds j.

j

∑
k=2

2(1 + i tan α)
(
[k]q + β− 1

)
akΘkzk +

∞

∑
k=j+1

2(1 + i tan α)
(
[k]q + β− 1

)
akΘkzk

=

{
(A− B)γ(1 + q)z +

j−1

∑
k=2

[
(1− β)(A− B)(1 + q)γ

−
[
B(1 + q) + (1− q)

]
(1 + i tan α)([k]q + β− 1)

]
Θkakzk

}
w(z)

+
∞

∑
k=j

[
(1− β)(A− B)(1 + q)γ

−
[
B(1 + q) + (1− q)

]
(1 + i tan α)([k]q + β− 1)

]
Θkakzkw(z).

Rearranging the last summation, we can write:

j

∑
k=2

2(1 + i tan α)
(
[k]q + β− 1

)
akΘkzk +

∞

∑
k=j+1

dkzk

=
{
(A− B)γ(1 + q)z +

j−1

∑
k=2

[
(1− β)(A− B)(1 + q)γ

−
[
B(1 + q) + (1− q)

]
(1 + i tan α)([k]q + β− 1)

]
Θkakzk

}
w(z),

therefore: ∣∣∣∣∣ j

∑
k=2

2(1 + i tan α)
(
[k]q + β− 1

)
akΘkzk +

∞

∑
k=j+1

dkzk

∣∣∣∣∣ =∣∣∣∣γ(A− B)(1 + q)z +
j−1

∑
k=2

{
(1− β)(A− B)(1 + q)γ

−
[
B(1 + q) + (1− q)

]
(1 + i tan α)([k]q + β− 1)

}
Θkakzk

∣∣∣∣|w(z)|.

The second series on the left hand side of the above equation is given by

∞

∑
k=j+1

dkzk =
∞

∑
k=j+1

2(1 + i tan α)
(
[k]q + β− 1

)
akΘkzk −

( ∞

∑
k=j

{
(1− β)(A− B)(1 + q)γ

−
[
B(1 + q) + (1− q)

]
(1 + i tan α)([k]q + β− 1)

}
Θkakzk

)
w(z)

which is obviously convergent in U. If we let z = reiθ , r < 1, since |w(z)| < 1, z ∈ U, and
applying Parseval’s formula on the both sides of the above relation, then by letting r → 1−

we obtain:

4 sec2 α
(
[j]q + β− 1

)2|Θj|2|aj|2 ≤ (A− B)2(1 + q)2|γ|2

+
j−1

∑
k=2

{∣∣(1− β)(A− B)(1 + q)γ + (1 + i tan α) · [B(1 + q) + (1− q)]([k]q + β− 1)
∣∣2

−4 sec2 α
(
[k]q + β− 1

)2
}
|Θk|2|ak|2, j ≥ 2. (31)
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For j = 2, from (31) it follows that:

|a2| ≤
|γ|(A− B)(1 + q)

2 sec α (β− 1 + [2]q)|Θ2|
. (32)

For j = 3, from (31) we obtain:

4 sec2 α
(
[3]q + β− 1

)2|Θ3|2|a3|2 ≤ (A− B)2(1 + q)2|γ|2

+
{∣∣(1− β)(A− B)(1 + q)γ + (1 + i tan α) · [B(1 + q) + (1− q)]([2]q + β− 1)

∣∣2
−4 sec2 α

(
[2]q + β− 1

)2
}
|Θ2|2|a2|2, j ≥ 2.

Now, substituting in the right hand side of the above relation, the value of |a2|2 with
its majorant given by (32), we have:

4 sec2 α
(
[3]q + β− 1

)2|Θ3|2|a3|2 ≤
[
(A− B)2(1 + q)2|γ|2

+
{∣∣(1− β)(A− B)(1 + q)γ + (1 + i tan α)[B(1 + q) + (1− q)]([2]q + β− 1)

∣∣2
−4 sec2 α

(
[2]q + β− 1

)2
}
|Θ2|2

|γ|2(A− B)2(1 + q)2

4 sec2 α (β− 1 + [2]q)2|Θ2|2

]
,

that implies:

|a3|2 ≤
(A− B)2(1 + q)2|γ|2

4 sec2 α
(
[3]q + β− 1

)2|Θ3|2

[
1+

∣∣(1− β)(A− B)(1 + q)γ + (1 + i tan α) · [B(1 + q) + (1− q)]([2]q + β− 1)
∣∣2

4 sec2 α (β− 1 + [2]q)2 − 1
]

.

Therefore, (30) is true for j = 3. Following the same steps as in [21], we can prove the
assertion (30) of our theorem:

If we take λ = 1 = γ, t = β = 0, h(z) = z +
∞
∑

k=2
zk, z ∈ U, and q → 1− in Theorem 9,

we obtain the following result:

Corollary 5 ([22] (Theorem 1)). If f ∈ A satisfies the subordination:

(1 + i tan α)
z f ′(z)

f (z)
− i tan α ≺ 1 + Az

1 + Bz
,

then:

|aj| ≤
j−2

∏
k=0

∣∣(A− B)e−iα cos α− kB
∣∣

(k + 1)
, j ≥ 2,

where |α| < π/2.

For A = 1− 2η, 0 ≤ η < 1, B = −1 and q → 1− Corollary 5 reduces to the next
special case:

Example 5 ([23] (Theorem 1)). If f ∈ A satisfy the inequality:

Re
{

eiα z f ′(z)
f (z)

}
> η cos α, z ∈ U,
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with |α| < π/2, then:

∣∣aj
∣∣ ≤ j−2

∏
k=0

∣∣2(1− η)e−iα cos α + k
∣∣

k + 1
, j ≥ 2. (33)

The coefficient estimates of (33) are sharp.

Remark 5. Several well-known results can be obtained as the special case of Theorems 8 and 9, and
we refer to the papers [21,24] in addition to the references provided therein.

5. Solution to Fekete–Szegő Problem for the Functions of PS t
λ(α, β; γ; ψ; h; A, B) and

Sq
λ(t; α, β; γ; h, A, B)

We will give the solution of the Fekete–Szegő problem for the functions that belong to
the classes we defined in the first section.

Theorem 10. If f (z) = z + a2z2 + a3z3 + · · · ∈ PS t
λ(α, β; γ; ψ; h; A, B), then for all µ ∈ C,

we have: ∣∣∣a3 − µa2
2

∣∣∣ ≤ |L1|(A− B)|γ|
2[3λ + (t− 1)(1− β)]|Θ3| sec α

max{1; |2ρ− 1|},

where ρ is given by

ρ :=
1
4

[
(B + 1)L1 + 2

(
1− L2

L1

)
+

µγL1(A− B)[3λ + (t− 1)(1− β)]Θ3

Θ2
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

+
γL1(A− B)

{
4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)[2λ + (t− 1)(1− β)]2

]
.

The inequality is sharp for each µ ∈ C.

Proof. If f ∈ PS t
λ(α, β; γ; ψ; h; A, B), in view of the relations (21) and (22), for µ ∈ C,

we have:∣∣∣a3 − µa2
2

∣∣∣ = ∣∣∣∣∣ L1(A− B)γ
4(1 + i tan α)[3λ + (t− 1)(1− β)]Θ3

[
p2 −

1
4

(
(B + 1)L1 + 2

(
1− L2

L1

)

+
γL1(A− B)

{
4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)[2λ + (t− 1)(1− β)]2

)
p2

1

]

−
µγ2L2

1 p2
1(A− B)2

16Θ2
2(1 + i tan α)2[2λ + (t− 1)(1− β)]2

∣∣∣∣∣
=

∣∣∣∣∣ L1(A− B)γ
4(1 + i tan α)[3λ + (t− 1)(1− β)]Θ3

[
p2 −

p2
1

2
+

1
4

p2
1

(
2L2

L1
− (B + 1)L1

−
γL1(A− B)

{
4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)[2λ + (t− 1)(1− β)]2

−µγL1(A− B)[3λ + (t− 1)(1− β)]Θ3

Θ2
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

)]∣∣∣∣∣
≤ |L1|(A− B)|γ|

4 sec α[3λ + (t− 1)(1− β)]|Θ3|

[
2 +

1
4
|p1|2

(∣∣∣∣2L2

L1
− (B + 1)L1

−
γL1(A− B)

{
4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)[2λ + (t− 1)(1− β)]2
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−µγL1(A− B)[3λ + (t− 1)(1− β)]Θ3

Θ2
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

∣∣∣∣− 2
)]

. (34)

Denoting:

Υ :=
∣∣∣∣2L2

L1
− (B + 1)L1

−
γL1(A− B)

{
4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)[2λ + (t− 1)(1− β)]2

−µγL1(A− B)[3λ + (t− 1)(1− β)]Θ3

Θ2
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

∣∣∣∣,
if Υ ≤ 2, from (34) we obtain:∣∣∣a3 − µa2

2

∣∣∣ ≤ |L1|(A− B)|γ|
2[3λ + (t− 1)(1− β)]|Θ3| sec α

. (35)

Further, if Υ ≥ 2, from (34) we deduce:

∣∣∣a3 − µa2
2

∣∣∣ ≤ |L1|(A− B)|γ|
2[3λ + (t− 1)(1− β)]|Θ3| sec α

(∣∣∣∣2L2

L1
− (B + 1)L1

−
γL1(A− B)

{
4λ[λ− 1 + (t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)[2λ + (t− 1)(1− β)]2

−µγL1(A− B)[3λ + (t− 1)(1− β)]Θ3

Θ2
2(1 + i tan α)[2λ + (t− 1)(1− β)]2

∣∣∣∣
)

. (36)

An examination of the proof shows that the equality for (35) holds that if p1 = 0,

then p2 = 2. Equivalently, by Lemma 3, we have p(z2) = p2(z) =
1 + z2

1− z2 . Therefore, the

extremal function of the class PS t
λ(α, β; γ; ψ; h; A, B) is given by

1 +
1 + i tan α

γ

[
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
=

(A + 1)p(z2)− (A− 1)
(B + 1)p(z2)− (B− 1)

.

Similarly, the equality for (36) holds that p2 = 2. Equivalently, by Lemma 3, we

have p(z) = p1(z) =
1 + z
1− z

. Therefore, the extremal function in PS t
λ(α, β; γ; ψ; h; A, B) is

given by

1 +
1 + i tan α

γ

[
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
=

(A + 1)p1(z)− (A− 1)
(B + 1)p1(z)− (B− 1)

,

and the proof of the theorem is complete.

Theorem 11. If f (z) = z + a2z2 + a3z3 + · · · ∈ Sq
λ(t; α, β; γ; h, A, B), then for all µ ∈ C,

we have: ∣∣∣a3 − µa2
2

∣∣∣ ≤ (A− B)(1 + q)|γ|
2
{
[3]qλ + (t− 1)(1− β)

}
|Θ3| sec α

max{1; |2ρ− 1|},
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where ρ is given by

ρ :=
1
4

[
B(1 + q) + (3− q) +

µγ(A− B)(1 + q)
{
[3]qλ + (t− 1)(1− β)

}
Θ3

(1 + i tan α)
{
[2]qλ + (t− 1)(1− β)

}2Θ2
2

+
γ(1 + q)(A− B)

{
(1 + q)λ[(1 + q)(λ− 1) + 2(t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2

}
2(1 + i tan α)

{
[2]qλ + (t− 1)(1− β)

}2

]
.

Proof. Using the definition of the quantum derivative, we can establish that:

1 + i tan α

γ

[
z1−t[Dq H(z)]λ

[(1− β)H(z) + βz]1−t − 1

]
=

1 + i tan α

γ

[{
[2]qλ + (1− t)(1− β)

}
Θ2a2z

+

{{
[3]qλ + (t− 1)(1− β)

}
Θ3a3 +

1
2

[
(1 + q)λ

[
(1 + q)(λ− 1) + 2(t− 1)(1− β)

]
+(t− 1)(t− 2)(1− β)2

]
Θ2

2a2
2

}
z2 + . . .

]
. (37)

Following the similar steps as in the proof of Theorem 4, we obtain:

(A + 1)w(z) + 2 + (A− 1)qw(z)
(B + 1)w(z) + 2 + (B− 1)qw(z)

− 1 =
(1 + q)p1(A− B)

4
z

+
(A− B)(1 + q)

4

[
p2 −

p2
1

4
{B(1 + q) + (3− q)}

]
z2 + . . . , (38)

and using (37) and (38) in (8), we obtain:

a2 =
γ(1 + q)p1(A− B)

4(1 + i tan α)
{
[2]qλ + (1− t)(1− β)

}
Θ2

, (39)

and:

a3 =
(1 + q)(A− B)γ

4(1 + i tan α)
{
[3]qλ + (t− 1)(1− β)

}
Θ3

[
p2 −

1
4

(
B(1 + q) + (3− q)

+
γ(1 + q)(A− B)

{
(1 + q)λ[(1 + q)(λ− 1) + 2(t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)
{
[2]qλ + (t− 1)(1− β)

}2

)
p2

1

]
. (40)

From (39) and (40), we deduce that:

∣∣∣a3 − µa2
2

∣∣∣ = ∣∣∣∣∣ (1 + q)(A− B)γ
4(1 + i tan α)

{
[3]qλ + (t− 1)(1− β)

}
Θ3

[
p2 −

1
4

(
B(1 + q) + (3− q)

+
µγ(A− B)(1 + q)

{
[3]qλ + (t− 1)(1− β)

}
Θ3

(1 + i tan α)
{
[2]qλ + (t− 1)(1− β)

}2Θ2
2

+
γ(1 + q)(A− B)

{
(1 + q)λ[(1 + q)(λ− 1) + 2(t− 1)(1− β)] + (t− 1)(t− 2)(1− β)2}

2(1 + i tan α)
{
[2]qλ + (t− 1)(1− β)

}2

)
p2

1

]∣∣∣∣∣.
Now, following the steps as in the proof of Theorem 10, we can establish the assertion

of the theorem.
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Corollary 6 ([25] (Theorem 2.1)). If f (z) = z+ a2z2 + a3z3 + · · · ∈ PS0
1(α, 0; γ; ψ; h; 1,−1),

where h(z) :=
√

πz
2

erf(
√

z) and “erf” is the error function erf(z) :=
2√
π

∫ z

0
exp

(
−t2

)
dt,

then for all µ ∈ C we have:∣∣∣a3 − µa2
2

∣∣∣ ≤ 10|γ|L1

q(1 + q) sec α
max

{
1;
∣∣∣∣ L2

L1
− 9µ(q + 1) + 10

10q(1 + i tan α)
γL1

∣∣∣∣}.

Proof. In Theorem 10 fixing β = t = 0, λ = A = 1, B = −1, and letting:

H(z) = f (z) ∗
√

πz
2

erf(
√

z) = z +
∞

∑
k=2

(−1)k−1

(2k− 1)(k− 1)!
akzk, z ∈ U,

where “erf” is the error function given in the assumption (see [25]) and we obtain our re-
sult.

Letting A = 1, B = −1, t = α = 0, λ = 1, h(z) = z +
∞
∑

k=2

(b)k−1
(c)k−1

zk, z ∈ U, γ = 1 + 0i

and ψ(z) = z +
√

1 + z2 in Theorem 10 we obtain the following special case:

Corollary 7 ([13] (Theorem 2)). If f ∈ MLc
b

(
β; z +

√
1 + z2

)
(see Remark 3 (ii)) is of the

form (1), then for all µ ∈ C, we have:∣∣∣a3 − µa2
2

∣∣∣ ≤ ∣∣∣∣ (c)2

(b)2

∣∣∣∣ 1
2 + β

max
{

1;
|(β− 3)(1 + β)b(c + 1) + 2µ(2 + β)c(b + 1)|

2(1 + β)2|b(c + 1)|

}
.

The inequality is sharp for each µ ∈ C.

For b = c, the above Corollary reduces to the next special case:

Example 6 ([13] (Corollary 1)). If f ∈ ML
(

β; z +
√

1 + z2
)

:=MLb
b

(
β; z +

√
1 + z2

)
is

of the form (1), then for all µ ∈ C we have:∣∣∣a3 − µa2
2

∣∣∣ ≤ 1
2 + β

max
{

1;
|(β− 3)(1 + β) + 2µ(2 + β)|

2(1 + β)2

}
.

The inequality is sharp for each µ ∈ C.

For ψ = T , where the function T is given by (24), we have Θk = λ = γ = 1. For
α = β = t = 0 and A = 1, B = −1, Theorem 10 reduces to the next result:

Corollary 8 ([18] (Theorem 5)). Let 0 ≤ η < 1 < ϑ and let the function f ∈ S(η, ϑ). Then, for
all µ ∈ C, we have ∣∣∣a3 − µa2

2

∣∣∣ ≤ ϑ− η

π
sin

π(1− η)

ϑ− η

·max
{

1;
∣∣∣∣12 + (1− 2µ)

ϑ− η

π
i +
(

1
2
− (1− 2µ)

ϑ− η

π
i
)

e2πi 1−η
ϑ−η

∣∣∣∣}.

Corollary 9 ([26] (Theorem 3.1)). If f (z) = z + a2z2 + a3z3 + · · · ∈ S∗(ψ) and
ψ(z) = 1 + L1z + L2z2 + . . . , with L1, L2 ∈ R, L1 > 0, then for all µ ∈ C we have:∣∣∣a3 − µa2

2

∣∣∣ ≤ L1

2
max

{
1;
∣∣∣∣L1 +

L2

L1
− 2µL1

∣∣∣∣}.
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The inequality is sharp for the function f∗ given by

f∗(z) =


z exp

∫ z

0

ψ(t)− 1
t

dt, if
∣∣∣L1 +

L2

L1
− 2µL1

∣∣∣ ≥ 1,

z exp
∫ z

0

ψ(t2)− 1
t

dt, if
∣∣∣L1 +

L2

L1
− 2µL1

∣∣∣ ≤ 1.

(41)

Proof. In Theorem 10, taking A = 1, B = −1, Θk = λ = γ = 1 and α = β = t = 0 we
obtain the inequality:

∣∣∣a3 − µa2
2

∣∣∣ ≤


L1

2
, if

∣∣∣L1 +
L2

L1
− 2µL1

∣∣∣ ≤ 1,

L1

2

∣∣∣∣L1 +
L2

L1
− 2µL1

∣∣∣∣, if
∣∣∣L1 +

L2

L1
− 2µL1

∣∣∣ ≥ 1.

Examining the last part in the proof of the Theorem 10, it follows that the first equality

holds if p1 = 0, p2 = 2. Equivalently, by Lemma 3, we have p(z) = p2(z) =
1 + z2

1− z2 .

Therefore, the extremal function of S∗(ψ) is given by

z f ′(z)
f (z)

= ψ

(
p2(z)− 1
p2(z) + 1

)
= ψ(z2). (42)

Similarly, the second equality holds if p1 = 2. Equivalently, by Lemma 3, we have

p(z) = p1(z) =
1 + z
1− z

. Therefore, the extremal function of S∗(ψ) is defined by

z f ′(z)
f (z)

= ψ

(
p1(z)− 1
p1(z) + 1

)
= ψ(z). (43)

Finally, following a similar technique to that for the sharpness of Theorem 3.1 of [26],
from the relations (42) and (43), we obtain (41).

6. Conclusions

By defining λ-pseudo-Bazilevič functions of complex order using subordination and
Hadamard product, we were able to unify and extend the various classes of analytic
function, and new extensions were discussed in detail. Furthermore, by replacing the
ordinary differentiation with quantum differentiation, we attempted the discretization of
some well-known results. Our main results have many applications, which here we only
pointed out a few.
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