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Abstract: A new framework for optimal design based on the information-theoretic measures of mu-
tual information, conditional mutual information and their combination is proposed. The framework
is tested on the analysis of protocols—a combination of angles along which strain measurements can
be acquired—in a biaxial experiment of soft tissues for the estimation of hyperelastic constitutive
model parameters. The proposed framework considers the information gain about the parameters
from the experiment as the key criterion to be maximised, which can be directly used for optimal
design. Information gain is computed through k-nearest neighbour algorithms applied to the joint
samples of the parameters and measurements produced by the forward and observation models.
For biaxial experiments, the results show that low angles have a relatively low information content
compared to high angles. The results also show that a smaller number of angles with suitably chosen
combinations can result in higher information gains when compared to a larger number of angles
which are poorly combined. Finally, it is shown that the proposed framework is consistent with
classical approaches, particularly D-optimal design.

Keywords: optimal design; soft tissue mechanics; mutual information; biaxial experiment; inverse
problems; information theory

MSC: 62K05; 94A15; 92C10

1. Introduction

Soft tissues exhibit complex biomechanical behaviour, including nonlinearity, anisotropy
and heterogeneity [1]. Moreover, the tissues also demonstrate inelastic properties, such as
rate-dependence, hysteresis and permanent set. The important link between biomechanics
and their physiological function has motivated a large number of ex-vivo studies aimed at
characterising their biomechanical properties. Given the complex interplay between the
different aspects of their biomechanical properties, the experimental design of ex-vivo soft
tissues is extremely challenging and has been a subject of investigation, and a variety of
experiments have been proposed [2–6].

Since a variety of soft tissues are thin—e.g., blood vessels, heart valves and skin—
biaxial testing is a widely used experimental technique that allows the independent stretch-
ing of the tissue in two orthogonal directions and for the corresponding forces to be
measured [7,8]. Applying different stretches in two directions allows the characterization
of the in-plane anisotropic behavior of a given tissue, while a range of stretches provides us
with its nonlinear elastic response. However, even with this relatively simple set of options,
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the choices of which stretches to apply are unclear. Moreover, it is not obvious upon what
these choices will depend.

A variety of hyperelastic models have been developed to describe the anisotropic
and nonlinear elastic properties of specific soft tissues [4,9–11]. Biaxial experimental data
are commonly fit to these models in order to determine the model parameters. As the
unknown parameters depend on specific models, the choice of experimental setup—the
problem of optimal design—might depend on the choice of model. However, in practice, a
predetermined set of experimental protocols is used.

In the present work, an optimal design problem is defined to find the most suitable
protocol in view of estimating the parameters of the material model. A comprehensive
overview of the optimal design problem can be found in [12,13], and several criteria for
optimal design have been proposed in the literature, often based on the minimisation of the
variance of the parameters and sensitivities [14,15]. In the present work, we investigate a
criterion based on information theoretic quantities, in the spirit of what has been proposed
in [16,17] (from a Bayesian point of view) and [18]. Several works have recently proposed
information-based criteria to better define experimental protocols. In [19], the authors
proposed the maximisation of the mutual information between the parameters and the
observations under the assumption that the model error is a Gaussian process. In [20],
the authors proposed a framework based on mutual information maximisation to deal
with the design of chemistry experiments. The same criterion is proposed in [21]; the
authors maximise the mutual information by using a stochastic gradient ascent method.
An application to system biology is investigated in [22]. In [23], the maximisation of the
information is exploited in order to choose high-fidelity model resolutions in a multi-fidelity
modelling framework.

While mutual information has been used for optimal design in previous studies, the
novelty of this work is in the proposal of a combination of information-theoretic quantities
of both mutual and conditional mutual information. A further novelty is the application of
this framework in the optimal design of soft tissue experiments. Estimating information-
theoretic quantities is in general a challenging problem, and this is especially the case in
high-dimensional settings. In the present work, a model reduction method is coupled
with non-parametric sample-based mutual information estimation in order to provide a
pertinent estimation of the information-theoretic quantities involved in the optimal design
problem and then apply this to the biaxial testing of soft tissues.

The structure of the work is as follows: in Section 2, the model and information-
theoretical aspects of the problem are introduced. In particular, in Section 2.1, we detail the
mathematical model of the biaxial experiments for soft tissues: after having introduced the
notation and the non-linear elasticity model, in Section 2.1.1, we apply it to the biaxial test-
ing experimental setup. In Section 2.1.2, we introduce the experimental protocol definition;
the second part of the section is devoted to the description of the information-theoretic
framework used to solve the optimal design problem. In Section 2.2.1, we introduce the
problem; in Sections 2.2.2 and 2.2.3, the information-theoretic quantities and their numeri-
cal estimation are detailed. We then present the reduce order modeling method used and
how to validate the results obtained by the proposed approach. The section ends with an
overview of the method. The results and the discussion are presented in Section 3, followed
by the conclusion and perspectives on future work.

2. Methods

The methodological aspects are divided into two broad categories: the mathematical
model of the biaxial experiments and the information-theoretic optimal design framework.

2.1. Mathematical Model of the Biaxial Experiments

We begin by defining the notation: a material point at its reference position X ∈ R3

moves to x ∈ R3 after deformation. The elastic behaviour of soft tissues is described using
the hyperelastic strain energy density Ψ, which depends on the deformation gradient



Axioms 2021, 10, 79 3 of 16

tensor F = ∇X x. The ratio of the volume after deformation to that before deformation is
given by J = det(F). Soft tissues are commonly regarded as incompressible due to their
high water content; i.e. J is constrained to be unity.

We consider the hyperelastic model proposed by Gasser et al. [24], which defines the
strain energy density as

Ψ =
k1

2k2

[
ek2(κ I1+(1−3κ)I4−1) − 1

]
+ µ(I1 − 3), (1)

where I1 = tr(F>F) is the first invariant of the right Cauchy–Green strain tensor C = F>F
and I4 = M · CM is the fourth invariant representing the stretch along fiber direction M.
The resulting Cauchy stress is given by

σ = 2F · ∂Ψ
∂C
· F> − pI, (2)

where p acts as the Lagrange multiplier to enforce incompressibility and I is the iden-
tity matrix.

For this model, the set of unknown parameters can be written as {k1, k2, κ, µ}, assum-
ing that the fiber direction M is known a priori (based on another experiment; e.g., light
scattering [6]). κ represents the dispersion of collagen fibers, which is usually measured
from optical experiments. Its value lies between 0 (perfectly anisotropic) and 1/3 (per-
fectly isotropic). The value of µ corresponds to the shear modulus of the neo-Hookean
term in (1), which represents the amorphous and non-fibrous extracellular matrix. Its role
in the mechanics of soft tissues is limited to small strains and is largely constant across
different tissues. In this paper, in order to simplify the problem, we assume that κ = 0.1
and µ = 1 kPa are known and fixed. Thus, the aim of an ex-vivo biomechanical experi-
ment is to determine parameters k1 ∈ [5, 100] kPa and k2 ∈ [5, 80] robustly and with high
confidence [25,26]. A commonly used experiment called biaxial testing is described bellow.

2.1.1. Biaxial Experiments for Soft-Tissues

Many of the soft tissue types are planar with a small thickness. In a biaxial experiment,
a square-shaped tissue sample is mounted via clamps or rakes and stretched along two
orthogonal directions aligned with the sample edges (Figure 1a). If these directions are
used as the two coordinate axes and incompressibility is assumed, the stretching results in
a diagonal deformation gradient tensor:

F = diag
[

λ1, λ2,
1

λ1λ2

]
, (3)

where λ1 is the stretch along the first in-plane direction and λ2 is the stretch along the second
in-plane direction. The fiber direction M is generally aligned with the first coordinate axis,
which results in only normal stress components. As no force is applied along the thickness
of the tissue, σ33 = 0 is used to determine the Lagrange multiplier p. Thus, we obtain

σ11 = 2
∂Ψ
∂I1

[
λ2

1 −
1

λ2
1λ2

2

]
+ 2

∂Ψ
∂I4

λ2
1 (4)

σ22 = 2
∂Ψ
∂I1

[
λ2

2 −
1

λ2
1λ2

2

]
. (5)

The applied stresses σ11, σ22 are controlled using load cells. The resulting strains,
defined as e1 := λ1− 1 and e2 := λ2− 1, are measured from the marker positions (although
e1 and e2 are not the usual strain measures, we use these as our observations). It is important
to note that a homogeneous stress and strain state is assumed in the middle of the sample
(Figure 1a). Therefore, an implicit assumption is that the material properties and sample
thickness are homogeneous. Moreover, these measurement techniques carry an error
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due to the limitations in measurement tools and/or the deviation from homogeneity,
incompressibliity and material direction.

a) b)

Figure 1. (a) A schematic of a biaxial experimental setup in which a thin planar tissue sample (in
light gray) is mounted via rakes and two orthogonal forces are applied to induce stresses σ11 and σ22,
and the resulting strains are measured by tracking the locations of the markers (in dark gray). (b) The
σ11 − σ22 space, where the applied stresses lie on the dotted line with a finite number of protocol
angles φ used.

2.1.2. Protocol Definition

In practice, there are two approaches to the biaxial experiment: (1) displacement-
controlled, where known stretches are imposed and forces are measured; and (2) force-
controlled, where known forces are applied and stretches are measured. Generally, the
force-controlled approach is used as it is easier to implement. Therefore, in the force-
controlled approach, different values of stresses σ11 and σ22 can be applied.

A single-angle biaxial protocol is defined as a straight line in the σ11-σ22 space
(Figure 1b). That is, the ratio between the two stresses is kept constant while the ap-
plied forces are increased until a maximum value σmax = 200 kPa. Thus, for a chosen angle
φ, we apply

σ11 =

σ if φ ≤ π

4
tan(φ)σ else

(6)

σ22 =

cot(φ)σ if φ ≤ π

4
σ else

, (7)

where σ ∈ [0, σmax]. For σ, 100 linearly spaced observation points between zero and the
maximum stress (σmax = 200 kPa) are used. The resulting strains are calculated by itera-
tively solving Equation (5) for λ1,2 and thereby obtaining e1,2. In practice, a combination of
angles can be successively tested. We refer to this combination as the experimental protocol
that needs to be optimally designed.

For each angle, it is easy to acquire large numbers of points as the sample is continu-
ously stretched. However, to vary between angles, it is essential to restart the experiment at
zero applied force, which further requires the “pre-conditioning” of the sample by cyclically
applying small stretches. This makes it practically difficult to apply an arbitrarily large
number of angles. Therefore, in practice, usually only five angles are tested.

2.2. Information-Theoretic Framework for Optimal Design

The problem of optimal design typically refers to the choice of a design of experiments
such that the design is optimal with respect to a pre-determined statistical criterion. We
propose that the information-theoretic measures naturally define such statistical criteria.
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The central idea is that information gain [27,28] from an experiment or protocol—as quanti-
fied by the information-theoretic quantities of mutual information and conditional mutual
information—can be directly used as a reasonable statistical criterion for optimal design.
These quantities are described next after presenting the framework for optimal design.

2.2.1. Optimal Design Problem

Consider the following general model:

y =M(θ), (8)

whereM denotes a forward model that takes θ ∈ Rm and outputs y ∈ Rn. Note that θ
may contain initial and boundary conditions of the model and that y may subsume the
output at many time-points in the case of a dynamic system. Subsequently, consider that
the measurement model is as follows:

z = Hp(y, θ) + ε, (9)

whereHp represents the observation operator, z ∈ Rd represents the measurement vector,
and ε represents the vector of measurement error/noise. Note that the the observation
operatorHp depends on the design of experiments, which specifies which quantities are
measured. Given a set of possible Hp = {H1,H2, · · · ,Hh}, and a statistical criterion
S(Hp) to be maximised, the optimal design is given by

Ĥp = arg max
Hp

S(Hp). (10)

In the case of the biaxial experiments, the modelM represents the model for the force
controlled experiment (Sections 2.1.1 and 2.1.2) andHp essentially denotes the experimental
protocol (see Section 2.1.2) representing the combination of angles—with each representing
a straight line in the σ11–σ22 plane—along which the strain measurements of e1 and e2
are acquired. With the possible variation of each angle between 0 and π/2, the set Φ of
possible angles φ is constructed through a uniform discretisation of the space between 0
and π/2 into α levels; thus,

Φ = {φ0, φ1, · · · , φα}. (11)

The possible set of protocols is then given by any combination of elements in Φ with
the restriction that the number of elements in a protocol must be limited to C. Thus, if
Φ ⊂ Φ is a subset of angles representing a protocol, our set of protocols is given by

Hp =
{

Φ ⊂ Φ | 1 ≤ |Φ| ≤ C
}

, (12)

where | · | represents the number of elements in the set. In other words, we choose at least
1 and up to C elements from Φ, with the total elements inHp being

|Hp| =
(

α

1

)
+

(
α

2

)
· · ·+

(
α

C

)
. (13)

2.2.2. Information-Theoretic Quantities for Optimal Design

In the framework of Section 2.2.1, we propose that information-theoretic quantities
of mutual information and conditional mutual information are a natural choice for the
statistical criterion S . Denoting the random variables associated with θ and z as Θ and Z,
respectively, the mutual information (MI) between the parameters Θ and the measurements
Z is defined as [27]

I(Θ; Z) =
∫
XΘ×XZ

pΘ,Z(θ, z)
pΘ,Z(θ, z)

pΘ(θ)pZ(z)
dθdz, (14)
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where pX(x) represents the probability density of a random variable X with a realisa-
tion X = x and support XX. The mutual information I(Θ; Z) quantifies the amount of
information that can be gained on average by one random variable—e.g., Z—knowing
about the other—e.g., Θ. Indeed, with this interpretation, MI is a good candidate for the
statistical criterion S for optimal design. For an individual parameter, Θi, or indeed for any
combination of parameters {Θi, Θj}, the corresponding information gains can be similarly
computed through I(Θi; Z) and I({Θi, Θj}; Z), respectively. Thus, while I(Θi; Z) quan-
tifies the information gain individually for the parameter Θi, the quantity I({Θi, Θj}; Z)
quantifies information gain for the pair {Θi, Θj} jointly. A measure of correlation between
the parameters Θi and Θj is, however, missing and is provided by conditional mutual
information (CMI), defined as

I(Θi; Θj|Z)︸ ︷︷ ︸
I

= I(Θi; {Θj, Z})︸ ︷︷ ︸
II

−I(Θi; Z)︸ ︷︷ ︸
III

. (15)

The CMI I(Θi; Θj|Z) represents the additional information gained about the parame-
ter Θi when both Θj and Z are known (term II) relative to when only the measurements Θi
alone are known (term III). Note that CMI is symmetrical—i.e., I(Θi; Θj|Z) = I(Θj; Θi|Z)—
and can be interpreted as a measure of dependence between the parameters given the
measurements Z. It should also be noted that both MI and CMI are non-negative.

With the above background, many statistical measures can be constructed. For example:

1. The mutual information for any single parameter may be maximised, givingS = I(Θi; Z).
This approach only concerns the posterior of the parameter Θi and ignores all other
parameters;

2. The joint mutual information may be maximised, giving S = I(Θ; Z). In the sense of
classical optimal design, this can be interpreted as D-optimal design. This is because
D-optimal designs minimise the determinant of the inverse Fisher Information Matrix,
and S = I(Θ; Z) measures the information gain in the joint Θ space;

3. The sum of individual parameter mutual information may be be maximised, giving
S = ∑m

i=1 I(Θi; Z). In the sense of classical optimal design, this can be interpreted
as A-optimal design. This is because A-optimal design minimises the trace of the
inverse Fisher Information Matrix, and S = ∑m

i=1 I(Θi; Z) measures the sum of the
information gains for all the parameters;

4. Alternatively, one may seek to maximise individual parameter information gain
while minimising pairwise CMI, thus seeking both small posterior variances and
minimising pairwise correlations between the parameters. In this case, the statistical
criterion is

S =
m

∑
i=1
I(Θi; Z)− τ

m

∑
i=1

m

∑
j=i
I(Θi; Θj|Z), (16)

where τ > 0 is a regularisation parameter. Note that high CMI implies that a large
amount of information can be gained only about a combination of the two parameters
(for instance, their sum or product), but not for each parameter individually. Thus,
we seek to minimise the CMI.

Note that the above list is not exhaustive, and based on the interpretations of MI and
CMI, other criteria may be constructed based on the desired sense of optimality.

2.2.3. Estimating Mutual Information

In general, the forward model in Equation (8) is non-linear, and thus even if the
observation operator is linear (implying linear combinations of the state are measured),
the analytical computation of mutual information is intractable. Thus, the information-
theoretic quantities of MI and CMI must be estimated. A common method is to generate
samples of Θ through the specification of an appropriate prior probability density pΘ(θ).
Denoting these Ns samples as θ(i), i = {1, 2, · · ·Ns}, each θ(i) can be propagated through
the forward and observation models of Equations (8) and (9) to produce corresponding
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samples of Z, denoted as z(i). The samples of θ(i) and z(i) can subsequently be used on
non-parametric estimators of MI and CMI. Such non-parametric estimators can broadly be
classified into two categories: kernel density estimators (KDE) [29] and k-nearest neighbour
(kNN) estimators [30,31]. For an overview of such methods, we refer to [32]. While the
estimator proposed by Kraskov et. al. [30] is widely used and performs very well across a
range of scenarios, one of its drawbacks is that it suffers from higher errors when extreme
correlations are present between the variables and/or when the the data are effectively
in a lower-dimensional manifold. Since we are working with models that specify explicit
relationships between the variables through the forward and observation model, this is
likely to be true for the data set of (θ(i), z(i)). Thus, in this study, we employ the local
non-uniformity correction (LNC) proposed in [33], which includes a correction term to
the original estimator by Kraskov et al. [30]. This term accounts for strong dependencies
between the variables through local principle component analysis [33]. The method of [33]
is used for the estimation of all MIs, and CMIs are estimated from the difference of two
MIs; see Equation (15).

2.2.4. Dimensionality Reduction for the Biaxial Experiment

One of the main difficulties in estimating information-theoretic quantities is related
to the data dimension. Non-parametric estimation is particularly challenging whenever
the data are close to manifolds embedded in high-dimensional spaces. This is indeed
the case when a physical model relates parameters and observable quantities. One of the
possible ways to overcome this difficulty, or at least to mitigate it, is (dimension or) model
reduction, which aims at discovering the underlying low-dimensional structure of a set of
data (a comprehensive review of the topic can be found in [34–37]). A large spectrum of
methods has been proposed in the literature. In the present contribution, we adopt a local
reduced-basis method (similar in spirit to the methods proposed in [38,39]). Let the strains
computed by the model be e1,2(σ; φ; k1, k2), where k1 and k2 are the model parameters
(k1, k2) ∈ Ωk ⊂ R2, and σ ∈ Ωσ ⊂ R is the variable defined in Section 2.1.2. Let n ∈ N∗;
thus, we introduce the following approximation:

e1,2 ≈
n

∑
i=1

ηiri(σ, φ)si(k1, k2, φ), (17)

which is well defined by virtue of the Eckart–Young theorem. First, let us observe that a
given protocol consists of a set of known angles Φ. An efficient way to construct the local
reduced basis is therefore to introduce a Proper Orthogonal Decomposition (POD) for each
of the angles φj ∈ Φ. This corresponds to the search for an approximation of the form

e(j)
1,2(σ; φj; k1, k2) ≈

n

∑
i=1

η
(j)
i r(j)

i (σ)s(j)
i (k1, k2), (18)

where 〈r(j)
i , r(j)

k 〉Ωσ
= δik and 〈s(j)

i , s(j)
k 〉Ωk = δik (〈·, ·〉Ωσ ,withΩk

being the standard L2 scalar
product). The error in the approximation is related to the number n of modes retained:

‖e(j)
1,2 −

n

∑
i=1

η
(j)
i r(j)

i (σ)s(j)
i (k1, k2)‖2

L2(Ωσ×Ωk)
=

∞

∑
i=n+1

η
(j)
i

2
(19)

In the present work, a number n = 4 of modes proved to be sufficient in order to
obtain errors smaller than 10−3 in L2 norm in the solution reconstruction. This means that
the set of elements e1,2(σ; φj; k1, k2) was close to the linear subspace spanned by the first

n = 4 modes r(j)
i . Henceforth, instead of considering the discretised e1,2 we consider their

coordinates in the subspace given by

z(j)
1,2|i = 〈e1,2, r(j)

i 〉Ωσ
= η

(j)
i s(j)

i (k1, k2). (20)
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2.2.5. Validation of Results against Existing Methods

Several methods and criteria to define and reach an optimal design of experiments
have been proposed [12]. Among them, D–optimality criterion attempts at maximising the
determinant of the information matrix. In the present case, this is equivalent to minimize
the determinant of the inverse of the average Hessian of the loss function we would
introduce in a classical parameter estimation method. In a noisy setting, and, in particular,
when the noise is Gaussian, this cost function is equivalent to minus the logarithm of the
likelihood function. Let the misfit function be f (θ) and EΘ denote the expectation operator.
The average of the Hessian reads:

H = EΘ[∂
2
θ f |θ∗ ], (21)

where θ∗ is the value of the parameter minimising the loss function.

2.2.6. Overview of Approach for the Biaxial Experiments

In the context of the biaxial experiments, the parameters are k1 and k2, represented as
random variables K1 and K2, respectively. The variability in these parameters is considered
to be uniform (thus imposing a uniform prior distribution) in the following intervals:
k1 ∈ [5, 100] kPa and k2 ∈ [5, 80]. For a single value of angle φ, the measurements are
the strain values e1 and e2 and are measured at 100 points along the line defined by the
angle φ. Here, we consider α = 16 discrete values of possible measurement angles φ
uniformly distributed between, and including, 0◦ and 90◦. For each angle φ, separate
reduced bases of four modes for e1 and e2 are constructed through POD over 400 values
of (K1, K2) sampled uniformly in the aforementioned parametric space. Thus, for any
angle φ, the dimensionality reduction approach projects e1 and e2 measured at 100 points
along the line defined by φ to a basis of 4 + 4 modes. For a given protocol consisting of
multiple angles, the measurement vector z (with a corresponding random variable Z) is
the collection of all the reduced basis representations of e1 and e2 along the angles in the
protocol. Lastly, the maximum number of angles in a protocol is restricted to C = 5, giving
a total of 6884 unique combinations of the α = 16 angles.

For the estimation of MI and CMI, a total of N=10, 000 values of (K1, K2) are uniformly
distributed in the parametric space. For each sample (k(i)1 , k(i)2 ), the numerical model of

the biaxial experiment is run to produce e(i)1 and e(i)2 , which are then projected on to the

reduced basis, giving z(i). The N triplets of (k(i)1 , k(i)2 , z(i)) are subsequently used for the
estimation of MI and CMI through the LNC estimator (see Section 2.2.3). In Equation (16),
we use τ = 1.

3. Results and Discussion

For all the 6884 combinations of angles, three statistical criteria are evaluated: (i) I(K1; Z),
(ii) I(K2; Z) and (iii) I(K1; Z) + I(K2; Z)− I(K1; K2|Z). While the first two criteria aim
to maximise the information gain about K1 and K2 individually, the third criterion aims
to maximise the information gain about K1 and K2 simultaneously while minimising the
information dependence between them. Figures 2–4 show the variation in these three
criteria when grouped by the number of angles in a protocol. In these figures, the values
of information criterion when using two approaches to uniformly discretise the angular
space within protocols are also presented. Observations from these plots are as follows:

1. Generally, all the three information criteria increase with the increasing number of
angles in the protocol. Intuitively, this is expected, as a higher number of angles
implies more measurement data and hence a higher potential for the improved
estimation of the parameters. This observation is true for the maximum information
gain, minimum information gain and the mean information gain;

2. Across all the three criteria, it is observed that the uniform discretisation is not
necessarily reflective of the best protocol for estimating the parameters. In fact, in
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most cases, the performance of uniform discretisation is close to the mean information
gain observed across all the angle combinations;

3. From Figures 2 and 3, it is observed that the angular combinations that maximise
information gain for K1 are not identical—and vary significantly when more than
two angles are simultaneously used—to those that maximise information gain for K2.
This further motivates the use of a criterion that balances information gains in both
the parameters while minimising their interdependence;

4. Figure 4 shows that the best combinations that maximise a balanced criterion, such
as I(K1; Z) + I(K2; Z) − I(K1; K2|Z), are a trade-off between the combinations of
angles that maximise I(K1; Z) and I(K2; Z) individually. For example, when five
angles are considered, the angles that maximise I(K1; Z) are φa = [66, 72, 78, 84, 90]
and those that maximise I(K2; Z) are φb = [30, 36, 42, 48, 54], while the combination
that maximises I(K1; Z) + I(K2; Z)− I(K1; K2|Z) is [30, 36, 48, 78, 90], which has two
angles from φa and three angles from φb. It should be noted that such a trade-off
between maximising individual parameter gains is still significantly different to a
uniform discretisation;

5. Finally, it is observed that the worst combinations are all low angles: [0, 6, 12, 18, 24].
This can be related to the fact that, at low angles, the applied stress is largely aligned
along the stiff fibers of the tissue, thus resulting in lower strain values. Thus, the lower
angles provide a small range of the observations, while the larger angles provide a
larger range (Figure 5a), thereby containing more information about the parameters.
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Figure 2. The variation of information criterion S = I(K1; Z) across the 6884 combinations grouped
by the number of angles in a protocol. The vertical lines represent the variation around the mean
value, which is shown in black circles. Black text shows the combinations that produce maximum
and minimum values of S . The red and blue pointers show S for angle combinations that follow a
uniform discretisation of the angular space between 0 and 90 degrees. Red and blue texts show the
associated angle combinations.

From this point onward, we present results only for the balanced information criterion
S = I(K1; Z) + I(K2; Z)− I(K1; K2|Z). Figure 6 shows the variation in S across all the
combinations (x-axis and in log-scale to capture the spread) grouped by the number of
angles in a protocol and sorted according to the increasing order of S within each such
group. Within each group, observing the minimum and maximum values of S shows that
a better choice of angles can lead to more than a 100% increase in the information gain
compared to a poor choice. Furthermore, this shows that good combinations of a lower
number of angles can lead to higher information gain compared to a higher number of
angles with poor combinations. For example, the maximum S when only one angle is used
is higher than many combinations with two to four angles. This emphasises the utility of
optimal design and the proposed framework.
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Figure 3. The variation of information criterion S = I(K2; Z) across the 6884 combinations grouped
by the number of angles in a protocol. The vertical lines represent the variation around the mean
value, which is shown in black circles. Black text shows the combinations that produce maximum
and minimum values of S . The red and blue pointers show S for angle combinations that follow a
uniform discretisation of the angular space between 0 and 90 degrees. Red and blue texts show the
associated angle combinations.
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Figure 4. The variation of information criterion S = I(K1; Z) + I(K2; Z)− I(K1; K2|Z) across the
6884 combinations grouped by the number of angles in a protocol. The vertical lines represent the
variation around the mean value, which is shown in black circles. Black text shows the combinations
that produce maximum and minimum values of S . The red and blue pointers show S for angle
combinations that follow a uniform discretisation of the angular space between 0 and 90 degrees.
Red and blue texts show the associated angle combinations.
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a) b)

Figure 5. Representative observations from the model with k1 = 40 kPa and k2 = 40. (a) The
observations using angles φ = 0 and 90 degrees, with the latter covering a significantly larger range.
(b) The change in observations the angle is changed from 18, 24 to 30 degrees shows a transition in e1

from positive to negative values, indicating a coupling between the two directions. Note that e1 is
shown here in solid lines (left y-axis) and e2 is shown in dashed lines (right y-axis).
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S = I(K1; Z) + I(K2; Z)− I(K1;K2|Z)

Figure 6. The variation of information criterion S = I(K2; Z) + I(K2; Z)− I(K1; K2|Z) across the
6884 combinations. The vertical red lines show the groupings with respect to the number of angles
in a protocol and S values are sorted in increasing order within each such grouping. The x-axis is
represents the index associated with the protocol and is in logarithmic scale to capture the spread
between one angle in a protocol (16 values) vs five angles in a protocol (4368 values).

Figure 7 shows S for all the 6884 combinations in increasing order of magnitude, and
Figure 8 shows a zoomed plot for the first 150 combinations along with the corresponding
combinations of angles. Observing the index values of 26 (red) and 28 (blue) in Figure 8
shows that even though four combinations are used in the index 26 protocol, it produces a
lower S compared to when only a single angle is used in the index 28 protocol. Furthermore,
since Figure 8 shows the first 150 out of 6884 combinations of Figure 7 (which is sorted
in creasing order of S), all combinations here are relatively low S-producing protocols.
Observing the high density of angles in the region φ < 24◦ is indicative that lower values of
angles—in particular, those less than 24◦—are relatively less informative when compared
to higher values of angles. This behaviour is also apparent in Figure 9, which shows S
values for protocols that use only one angle, and where a sharp jump can be observed when
transitioning from 18◦ to 24◦. This peculiar behaviour may be explained by the physics
of the biaxial experiment. Looking at the resulting strains e1 and e2 of this transition
(Figure 5b), we observe that the e1 changes from positive to negative values. This behavior
captures the important coupling between the two normal stresses and strains and is
also related to the fiber dispersion in our constitutive model (Equation (1), [24]). It is
remarkable and encouraging that the information-theoretic framework captures the physics
of the problem without explicitly considering it in the framework. While for simpler low-
dimensional models, the association between physics and optimal design may be relatively
easy to see, inferring such behaviour is, in general, not trivial for more complex and
higher-dimensional models.

Similarly to Figure 9, the results of the information-theoretic optimal design are
further analysed for a higher number of angles. When two angles are considered, the S
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values in increasing order of magnitude and the corresponding angle combinations are
shown in Figure 10. This figure re-iterates observations made previously: (i) the choice
of combinations significantly affects the information gain, where the best combination
gives approximately 20 nats more information compared to the worst combination; and
(ii) generally speaking, higher angles are more informative compared to lower angles—in
particular, angles below 24◦. While a similar analysis for more than two angle combinations
can be easily performed, the efficient visual representation of such results is cumbersome
and avoided in this manuscript.
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S = I(K1; Z) + I(K2; Z)− I(K1;K2|Z)

Figure 7. The variation of information criterion S = I(K1; Z) + I(K2; Z)− I(K1; K2|Z) across the
6884 combinations sorted in increasing order of S .
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Figure 8. Zoomed view of the first 150 protocols from Figure 7. The upper panel shows S and the
lower panel shows the angles (by circles) in the corresponding protocol. The red points showcase a
protocol with four measurement angles which yet produces a lower S , implying a poorer protocol,
with respect to the blue points which show a protocol with only one measurement angle.
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Figure 9. Information criterion against the angle when the protocols are restricted to a maximum of
one angle.
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To further illustrate the validity of the information-theoretic approach, a comparison
with a classical method (see Section 2.2.5) is presented. For one and two angles in a protocol,
Figure 11 shows a comparison between S and the log of the determinant of the inverse
Fisher Information Matrix, log |H−1|. It is encouraging that a high correspondence between
the two metrics is observed. In particular, increases in S , implying higher information gains,
are accompanied by corresponding decreases in log |H−1|, implying a smaller volume of
the parameter posteriors. A Pearson correlation coefficient of r=−0.76 is observed between
S and log |H−1|, implying a high similarity between the two metrics and validating the
information-theoretic approach in part. We note that, when the number of the parameters
become large, evaluating the Hessian would imply a non-negligible computational cost.
On the contrary, the method used to evaluate the mutual information, as a primarily
Monte Carlo-based estimation, is less severely dependent on the number of parameters.
Furthermore, the computation of derivatives (either numerically or through adjoint based
methods) may be cumbersome for certain types of models. Finally, we note that the effect
of noise on information gain, and hence optimal design, can be easily assessed in the
proposed framework by adding noise to the samples of Z (see Equation (9)).
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Figure 10. Information criterion against the angles when the protocols are restricted to only two
angles. The upper panel shows S and the lower panel shows the angles (with circles) in the
corresponding protocol.
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Figure 11. Information criterion S (in blue) and the log of the determinant of the inverse Fisher
Information Matrix log10 |H−1| (in red) against the angles when the protocols are restricted to a
maximum of two angles. The upper panel shows S and log10 |H−1|, while the lower panel shows
the angles (with circles) in the corresponding protocol.

4. Conclusions

A framework for optimal design based on information-theoretic quantities of mutual
information and conditional mutual information is proposed. The framework treats infor-
mation gain as the central criterion for inverse problems and proposes several information-
theoretic frameworks for a desired sense of optimality. The capabilities of this framework
are tested on the optimal design problem for biaxial experiments, where the effect of the
angle combinations along which the strains are measured is assessed in terms of parameter
estimation through information gain. Without including any physics-based reasoning, and
purely through the information-theoretic measures, it is found that low angles≤ 24◦ are not
very informative regarding the parameters relative to high angles. These observations are
then found to be consistent based on physics-based reasoning, thereby showing the efficacy
of the proposed framework. Furthermore, it is demonstrated that measurements for a low
total number of angles which are carefully chosen can be more informative compared to the
case when measurements along a high number of poorly chosen angles are acquired, thus
highlighting both the importance of optimal design for biaxial experiments and the utility
of the proposed framework in determining good angle combinations. The application of
the proposed framework to classical optimal design is performed, and it is shown that the
results produced by the new framework are consistent with classical frameworks.

5. Limitations and Future Work

While the proposed framework is shown to perform well on a two-parameter problem,
its performance in higher parameter problems is not assessed. This assessment represents
the primary limitation of this work and an area of future assessment. In particular, the
problems envisaged are largely related to the performance of the MI and CMI estimators
in higher dimensions of both parameters and the measurements. While a dimensionality
reduction approach was adopted in this study to minimise the adverse effects of the latter,
this may not be possible in many forward and inverse problems. Thus, a large area of future
work is related to the development of efficient and robust MI and CMI estimators. Note
that several approaches are being proposed by researchers to solve this problem; see for
example [40–46]. Lastly, a thorough comparison against classical optimal design methods
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(C, E, T and V-optimal designs, etc.) needs to be performed, along with the construction
and analysis of corresponding information-theoretic metrics.
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