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Abstract: In this article, we discuss semilinear elliptic partial differential equations with singular
integral Neumann boundary conditions. Such boundary value problems occur in applications as
mathematical models of nonlocal interaction between interior points and boundary points. Partic-
ularly, we are interested in the uniqueness of solutions to such problems. For the sublinear and
subcritical case, we calculate, on the one hand, illustrative, rather explicit solutions in the one-
dimensional case. On the other hand, we prove in the general case the existence and—via the strong
solution of an integro-PDE with a kind of fractional divergence as a lower order term—uniqueness
up to a constant.
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1. Introduction

The aim of this article is to discuss (possibly singular) semilinear elliptic PDEs of
the form

− ∆u + c(·, u) = 0 in Ω with c(x, u) :=
∫

∂Ω
b(x, y, u) dS(y) (1)

on bounded C2-domains Ω ⊂ RN subject to (possibly singular) integral Neumann bound-
ary conditions

∂u
∂~n

= Iu on ∂Ω with (Iu)(y) :=
∫

Ω
b(x, y, u(x)) dx (2)

for a (possibly singular) kernel b : Ω × ∂Ω × R → R. Such integral boundary value
problems occur in applications as mathematical models of nonlocal interaction between
interior points and boundary points [1] and have been abstractly studied in the non-singular
case by [2]. The linear case of Poisson’s problem and (non-integral) singular Neumann
boundary conditions has been discussed in [3]; see [4] for the general linear case and [5] for
nonlinear boundary conditions involving a measure. The existence of positive solutions to
semilinear singular elliptic problems has been studied in [6] for homogeneous Dirichlet
boundary conditions; for (non-integral) homogeneous Neumann boundary conditions,
see [7]. For the semilinear problem (1) with (possibly singular) integral Neumann boundary
condition (2), existence of very weak solutions u ∈ Lp(Ω), 1 < p < ∞, with zero average∫

Ω u dx = 0 has been shown in [8] under the assumptions on b that

(A1) b : Ω× ∂Ω×R → R is a Carathéodory function; i.e., b(x, y, u) is measurable w.r.t.
(x, y) ∈ Ω× ∂Ω for every u ∈ R and continuous w.r.t. u for a.e. (x, y) ∈ Ω× ∂Ω.
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(A2) b is bounded by |b(x, y, u)| ≤ b0(x, y) + b1(x, y)|u|r with non-negative functions

satisfying b0(x, y)|x− y|s+
N−1

q ∈ Lq′(Ω× ∂Ω) and b1(x, y)|x− y|s+
N−1

q ∈ L
pq′

p−rq′ (Ω×
∂Ω) for some 1 ≤ q < (p′)∗, 0 ≤ r < max(p/q′, 1) and 0 < s < 1,

I.e., in the subcritical (w.r.t. x, y) and sublinear (w.r.t. u) case.
In this article, on the one hand, we discuss one-dimensional examples, which illustrate

that without fixing the average
∫

Ω u dx the problem (1) and (2), has a one-dimensional
continuum of solutions; on the other hand, we show that if the average

∫
Ω u dx is fixed, then

problems (1) and (2), have a unique very weak solution under the additional assumption

(A3) b(x, y, u) is monotone w.r.t. u for a.e. (x, y) ∈ Ω× ∂Ω with derivative 0 ≤ ∂b
∂u (x, y, u) ≤

b2(x, y) bounded by a function satisfying b2(x, y)|x− y|s+
N−1

q ∈ L
pq′

p−q′ (Ω× ∂Ω); par-
ticularly, we require p′ < q < (p′)∗.

For example, b(x, y, u) := b0(x, y) + b2(x, y) f (u) with f (u) :=

{
u |u| ≤ 1
1
r |u|r−1u |u| ≥ 1

for 0 ≤ r < 1 and functions b0, b2 as in (A2), (A3), satisfies all three conditions. A main
difference to previous results of other authors like [1,2] regarding PDEs with integral
boundary conditions is that, here, the equation as well as the boundary condition may be
singular.

2. Preliminaries

Let Ω ⊂ RN be a bounded domain. For an exponent p ∈ [1, ∞], we denote the dual
exponent by p′ := p

p−1 , and the Sobolev conjugate by p∗ := Np
N−p for 1 ≤ p < N resp.

Consider p∗ ∈ R as arbitrary large for p = N resp. Let p∗ := ∞ for p > N. Particularly,
the dual of the Banach space Lp(Ω) of the p-integrable function u on Ω can be identified
with Lp′(Ω), the Sobolev embedding W1,p

0 (Ω) ⊂ Lp∗(Ω) holds for p ∈ [1, ∞], and the
embedding W1,p

0 (Ω) ⊂⊂ Lq(Ω) is compact for 1 ≤ q < p∗ due to the Rellich–Kondrachov
theorem. Hereby, W1,p(Ω) denotes the Sobolev space of functions u on Ω having a p-
integrable weak gradient ∇u, and functions in W1,p

0 (Ω) additionally satisfy Dirichlet
boundary conditions u = 0 on ∂Ω in the sense of traces [9]. Similarly, W2,p(Ω) denotes the
Sobolev space of functions u on Ω having p-integrable second-order derivatives.

Let us exemplify the difference between strong, weak, and very weak solutions
of linear elliptic partial differential equations (PDEs) by considering Poisson’s equation
−∆u = f for a right hand side (r.h.s.) f . If u ∈ W2,p(Ω), then −∆u = −div(∇u) =

−
N
∑

i=1

∂2u
∂x2

i
is a p-integrable function; thus, for f ∈ Lp(Ω) it makes sense to require −∆u = f

almost everywhere (a.e.) in Ω, and in this case, u ∈ W2,p(Ω) is called a strong solution
Poisson’s equation. Correspondingly, A : W2,p(Ω) → Lp(Ω), Au := −∆u, is called the
strong realization of the negative Laplacian.

However, if the r.h.s. is merely a distribution f ∈ (W1,p′
0 (Ω))∗, then the existence of

strong solutions cannot be guaranteed. However, weak solutions u ∈W1,p
0 (Ω) of Poisson’s

equation subject to Dirichlet boundary conditions on ∂Ω may exist in the sense that

〈Au, v〉 :=
∫

Ω
∇u · ∇v dx = 〈 f , v〉 (3)

holds for every v ∈ W1,p′
0 (Ω), and the operator A : W1,p

0 (Ω) → (W1,p′
0 (Ω))∗ defined on

the left hand side (l.h.s.) is called the weak realization of the negative Dirichlet–Laplacian.
Note that the l.h.s. arises from

∫
Ω(−∆u) v dx via partial integration using v = 0 on ∂Ω. If

the r.h.s. is an even worse distribution f ∈ ({v ∈W2,p′(Ω) | v = 0 on ∂Ω})∗, then another
partial integration leads to the notion of a very weak solution.
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Definition 1. A function u ∈ Lp(Ω) is called a very weak solution of Poisson’s equation subject
to Dirichlet boundary condition, if ∫

Ω
u (−∆v) dx = 〈 f , v〉 (4)

is valid for every v ∈ W2,p′(Ω) with v = 0 on ∂Ω, and A : Lp(Ω) → ({v ∈ W2,p′(Ω) | v =
0 on ∂Ω})∗ defined by letting 〈Au, v〉 be the l.h.s. of (4) is called the very weak realization of the
negative Dirichlet–Laplacian.

Note that during partial integration the term
∫

∂Ω u ∂v
∂~n dx arises, but as the derivative

of v in direction of the outer normal vector~n along the boundary ∂Ω can be arbitrary, for
functions f , validity of (4) ensures formally that u satisfies Dirichlet boundary conditions.

Particularly, if (p′)∗ > N, then {v ∈ W2,p′(Ω) | v = 0 on ∂Ω} ⊂ W1,(p′)∗
0 (Ω) ⊂ C0,α(Ω)

holds with α = 1− N
(p′)∗ by Sobolev embeddings into Hölder spaces. Thus, if b : Ω× ∂Ω→

R is a non-negative kernel not integrable over Ω × ∂Ω, but satisfying b(x, y)|x − y|α ∈
L1(Ω× ∂Ω), then for the possibly non-integrable function f (x) :=

∫
∂Ω b(x, y) dy on Ω it

still makes sense to consider very weak solutions of (4), where the definition 〈 f , v〉 :=∫
Ω f (x)v(x) dx of the r.h.s. makes sense due to

∫
Ω
| f (x)v(x)| dx =

∫
Ω

∣∣∣∣∫
∂Ω

b(x, y)|x− y|α v(x)− v(y)
|x− y|α dy

∣∣∣∣ dx ≤
(∫

Ω

∫
∂Ω

b(x, y)|x− y|α dy dx
)
‖v‖C0,α ,

where v(y) = 0 for y ∈ ∂Ω is used. This case is very similar to Brézis problem, where
Poisson’s equation −∆u = f subject to Dirichlet boundary conditions u = 0 on ∂Ω is
considered for a measurable function f 6∈ L1(Ω) satisfying

∫
Ω | f (x)|dist(x, ∂Ω) dx < +∞.

Brézis et al. [10] (see also [11]) have proved the existence and uniqueness of a very weak
solution u ∈ L1(Ω) to this problem, and there is the notion of a very weak solution that
prominently occurred for the first time. In this article, we are mainly interested in the very
weak solution for the case of singular integral Neumann boundary conditions (instead of
homogeneous Dirichlet boundary conditions) and semilinear (instead of linear) elliptic
PDEs. To prove the existence and uniqueness, considering the above mentioned facts about
Sobolev spaces, we used functional analytic methods like topological degree theory [12].

3. One-Dimensional Examples

In this section, we illustrate by one-dimensional examples—one example is linear but
inhomogeneous; another one is sublinear but has vanishing r.h.s—that without fixing the
average

∫
Ω u dx, the problem (1) and (2), has a one-dimensional continuum of solutions.

3.1. A Linear Example with Singular Right Hand Side

Example 1 (in [8]). In the one-dimensional case of the interval Ω := (0, 1), where the boundary
∂Ω = {0, 1} consists of two points, and for the kernel b(x, 0, u) := a(a−1)

xs (u− 1) containing a
parameter a ∈ R, b(x, 1, u) := 0, which is affine linear w.r.t. u and has a singularity of order s > 0
as x ↘ 0, Equation (1) reads as −u′′(x) + a(a−1)

xs u(x) = a(a−1)
xs . In the special case s = 2, this is

an inhomogeneous Cauchy–Euler ODE, and every solution has the form

u(x) = C1xa + C2x1−a + 1 , C1, C2 ∈ R . (5)

Note that u does not admit a classical derivative −u′(0) at x = 0 for parameters −1 ≤ a < 1
2

except for a = 0, or a < 0 and C1 = 0. The integral Neumann boundary conditions (2) read in
this example formally as −u′(0) =

∫ 1
0

a(a−1)
x2 (u(x)− 1) dx and u′(1) = 0. In other words, the

outflow through the boundary point 0 is given by the integral
∫ 1

0
a(a−1)

x2 (u(x)− 1) dx; i.e., there
is a nonlocal dependence of the outflow on a singularly weighted average of u over the domain,
while there is no flow through the boundary point 1. Note that for every solution u of the form
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(5), the integral
∫ 1

0
a(a−1)

x2 (u(x) − 1) dx is infinite within the parameter range −1 ≤ a < 1
2 ,

except for a = 0, or a < 0 and C1 = 0. Therefore, the integral Neumann boundary condition
at the boundary point 0 reads formally as ±∞ = ±∞ and thus is singular; i.e., there is an
explosive inflow or outflow. Nonetheless, Equation (1) together with the singular integral Neumann
boundary condition (2) at x = 0 as well as the classical Neumann boundary condition u′(1) = 0 at
x = 1 (corresponding to b(x, 1, u) := 0) is satisfied for −1 < a < 1

2 by the integrable functions
u(x) := C((1− a)xa − ax1−a) + 1 for arbitrary C ∈ R in the very weak sense that

−
1∫

0

u(x)v′′(x) dx +

1∫
0

a(a− 1)
x2 (u(x)− 1)(v(x)− v(0)) dx = 0 (6)

holds for every v ∈ C2([0, 1]) with v′(0) = 0 = v′(1). Thus, the very weak solutions of this
singular integral boundary value problem form a one-dimensional affine linear subspace. Finally,
fixing the average

∫ 1
0 u(x) dx determines the constant C and hence the solution uniquely.

3.2. A Semilinear Example with Sublinear Kernel

Example 2. Again, consider the one-dimensional case Ω := (0, 1), now for the kernel b(x, 0, u) :=
1
xs ur with signed power ur := |u|r−1u, b(x, 1, u) := 0, which is sublinear for 0 < r < 1 and has
a singularity of order s > 0 as x ↘ 0. Then, Equation (1) reads as −u′′(x) + 1

xs (u(x))r = 0 and
is called an Emden–Fowler or Thomas–Fermi equation. As this equation is a second-order ODE, its
general solution contains two constants. The boundary condition u′(1) = 0 relates these constants
by one equation. However, as the integral Neumann boundary condition −u′(0) =

∫ 1
0

1
xs (u(x))r dx

is simply implied by integrating the ODE u′′(x) = 1
xs (u(x))r over Ω, it does not provide another

equation for the constants. Hence, there is a one-dimensional continuum of solutions.
It remains to show that these solutions satisfy a singular Neumann BC at x = 0 for u′(1) = 0

and u(1) > 0 (and similarly for u(1) < 0). Elementarily, u(x) > 0 for 0 < x ≤ 1 implies
due to u′′(x) = 1

xs (u(x))r that u′′ is positive near x; i.e., u is strictly convex near x. Hence,
u′(x) is strictly monotone increasing and, thus, due to u′(1) = 0 negative for 0 < x < 1, so
that u(x) is strictly monotone decreasing and positive for 0 < x ≤ 1. In the weak formulation∫ 1

0 u′v′ dx +
∫ 1

0
1
xs (u(x))r(v(x)− v(0)) dx = 0, put v(x) := xs−1 to obtain

∫ 1
0

1
x (u(x))r dx =

(s − 1)
∫ 1

0
1

x2−s (−u′(x)) dx. As u(x) ≥ u(1), we obtain +∞ = u(1)r
(∫ 1

0
1
x dx

)
≤ (s −

1)
∫ 1

0
1

x2−s (−u′(x)) dx, and, hence, |u′(x)| = −u′(x) tends to +∞ as x → 0 due to 2− s < 1
Therefore, for s > 1 and 0 < r < 1, every solution u 6≡ 0 of−u′′(x)+ 1

xs (u(x))r = 0 on Ω = (0, 1)
to the boundary value u′(1) = 0 satisfies a singular Neumann boundary condition at x = 0.

In the special case of s = 2, solutions can be more precisely described by u(x) := y(ln(x)),
where y(t) solves the autonomous ODE −y′′(t) + y′(t) + (y(t))r = 0 and t is related to x by
t := ln(x) ≤ 0. This autonomous ODE can principally be solved by substituting z(y) := y′(t(y)),
which leads to the first-order ODE z′(y) = 1+ |z(y)|r−1. In the case r = 1

2 , we obtain by separation
of variables the equation |z(y)| − 2|z(y)|r + 2 ln(1+ |z(y)|r) = y−C with a constant C ∈ R. As
z(y(t)) = y′(t) holds, y(t) satisfies the implicit ODE |y′(t)| − 2|y′(t)|r + 2 ln(1 + |y′(t)|r) =
y(t)− C. A phase plot of y is shown in the left of Figure 1 for C = 0, and a numerical solution u
with u′(1) = 0 and u(1) = 1 showing singularity at x = 0 is plotted to the right in Figure 1.
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Figure 1. Left: phase portrait; right: solution curve.

4. Existence

In this section, for dimensions N > 1, let us briefly extend the proof of existence of
very weak solutions from [8] to functions with an arbitrary pregiven average.

Theorem 1. Let Ω ⊂ RN be a bounded C2-domain and let b : Ω× ∂Ω×R → R be a kernel
satisfying (A1) and (A2) for some 1 < p < ∞. Then, for every constant a ∈ R, there exists
u ∈ Lp(Ω), satisfying

∫
Ω u(x) dx = a, which solves (1) and (2) in the very weak sense that∫

Ω
u(−∆v) dx +

∫
Ω

∫
∂Ω

b(x, y, u(x))(v(x)− v(y)) dS(y) dx = 0

is valid for every v ∈W2,p′(Ω) with ∂v
∂~n = 0 on ∂Ω.

In the following, denote by

1. D the subspace

D := {v ∈W2,p′(Ω) | ∂v
∂~n

= 0 on ∂Ω} ⊂W2,p′(Ω) (7)

which has a compact embedding D ⊂⊂W1,q(Ω) for q < (p′)∗.
2. Ws,q(Ω; ∂Ω), the mixed fractional Sobolev space of order s and exponent q, which can

be considered a space of functions v on Ω such that v|Ω is q-integrable over Ω and
v(x)− v(y)
|x− y|s+(N−1)/q

is q-integrable over Ω× ∂Ω (particularly, v|∂Ω ∈ Lq(∂Ω)), where

functions on Ω are identified if they coincide a.e. on Ω and a.e. on ∂Ω.
3. A : Lp(Ω)→ D∗,

〈Au, v〉 :=
∫

Ω
u(−∆v) dx , (8)

the very weak realization of the negative Neumann–Laplacian −∆.
4. B : Lp(Ω)→ (Ws,q(Ω; ∂Ω))∗,

〈Bu, v〉 :=
∫

Ω

∫
∂Ω

b(x, y, u(x))(v(x)− v(y)) dS(y) dx

the realization of the nonlinearity and the integral Neumann boundary conditions,
which may be singular.

Proof of Theorem 1. Restrict A and B to the closed affine linear subspace U := {u ∈
Lp(Ω) |

∫
Ω u dx = a} of Lp(Ω) (of codimension 1) so that A becomes injective. By (A1)

and (A2), B : Lp(Ω)→ (Ws,q(Ω; ∂Ω))∗ ⊂ (W1,q(Ω))∗ is a bounded continuous mapping
which becomes compact when viewed as mapping into D∗ due to the compactness of
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D ⊂⊂W1,q(Ω). Thus, we can view A + B as a perturbation of A by a compact operator B.
To conclude, regarding the existence of very weak solutions u ∈ Lp(Ω) with

∫
Ω u dx = a,

we may apply topological degree theory as in [8], but for this, we need to exclude the
existence of solutions with an arbitrarily large Lp-norm:

for u ∈ Lp(Ω) with
∫

Ω u dx = a let v ∈ D be a strong solution of

− ∆v = |u|p−2u− λ (9)

subject to homogeneous Neumann boundary conditions ∂v
∂~n = 0 on ∂Ω, where the constant

λ := 1
|Ω|
∫

Ω |u|
p−2u dx is chosen such that the right hand side of (9) has zero integral. Thus,

the compatibility condition is satisfied, and there exists a strong solution v of (9) subject to
homogeneous Neumann boundary conditions, which is unique up to an additive constant.
Moreover, such a solution v satisfies

[v]s,q,Ω,∂Ω ≤ C‖∇v‖q,Ω ≤ C‖ |u|p−2u− λ‖p′ ,Ω ≤ C(‖u‖p−1
p,Ω + ‖λ‖p′ ,Ω) ≤ C‖u‖p−1

p,Ω (10)

with a constant C < ∞ independent of u, as ‖λ‖p′ ,Ω = |λ| |Ω|1/p′ ≤ |Ω|1/p′

|Ω|1/p′ ‖u‖
p−1
p,Ω =

‖u‖p−1
p,Ω holds by the definition of λ. Further, by the definition of v we have

〈Au, v〉 =
∫

Ω
|u|p dx− λ

∫
Ω

u dx ≥ ‖u‖p
p,Ω −

a
|Ω|1/p′ ‖u‖

p−1
p,Ω

due to λ ≤ 1
|Ω|
∫

Ω |u|
p−1 dx and Jensen’s inequality

(
1
|Ω|
∫

Ω |u|
p−1 dx

)p′
≤ 1
|Ω|
∫

Ω |u|
p dx.

From (A2) we can conclude

|〈Bu, v〉| ≤ (C1 + C2‖u‖r
p,Ω) [v]s,q,Ω,∂Ω

with 0 ≤ r < max(p/q′, 1), and together with (10) both inequalities imply

〈(A + B)u, v〉 ≥ ‖u‖p
p,Ω −

a
|Ω|1/p′ ‖u‖

p−1
p,Ω − (C1 + C2‖u‖r

p,Ω)‖u‖p−1
p,Ω .

As the right hand side tends to infinity for ‖u‖p,Ω → ∞ due to r < 1, the equation
(A + B)u = 0 has no solution u ∈ Lp(Ω) satisfying

∫
Ω u dx = a on the boundary of a

sufficiently large ball around zero in Lp(Ω). Therefore, like Au = 0, (A + B)u = 0 also has
a solution u ∈ Lp(Ω) with

∫
Ω u dx = a.

Remark 1. Existence even holds in the linear case r = 1, p′ < q < (p′)∗, provided that C2 < 1

or equivalently ‖b1(x, y)|x− y|s+
N−1

q ‖ pq′
p−q′ ,Ω×∂Ω

is sufficiently small.

5. Duality

To prepare the proof of uniqueness of very weak solutions to (1) and (2), let us consider
in this section the affine linear case b(x, y, u) = b̃(x, y)u− 1

|∂Ω| f̃ (x), where the sublinearity
required in (A2) as well as the smallness condition mentioned in Remark 1 are not satisfied,

but instead b̃ satisfies the same condition as b2 in (A3); i.e., b̃ ≥ 0 and b̃(x, y)|x− y|s+
N−1

q ∈

L
pq′

p−q′ (Ω× ∂Ω) and f̃ ∈ Lp(Ω) have average
∫

Ω f̃ dx = 0. Then problems (1) and (2) become
linear and read (with w instead of u) as

− ∆w + c̃(·)w = f̃ in Ω with c̃(x) :=
∫

∂Ω
b̃(x, y) dS(y) ,

∂w
∂~n

(y) =
∫

Ω
b̃(x, y)w(x) dx for y ∈ ∂Ω .

(11)
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The dual to this linear problem is

− ∆v + B̃v = f − λ in Ω ,
∂v
∂~n

= 0 on ∂Ω , (12)

where f ∈ Lp′(Ω), λ ∈ R and

(B̃v)(x) :=
∫

∂Ω
b̃(x, y)(v(x)− v(y)) dS(y) (13)

is a kind of fractional divergence of the function v with kernel b̃(x, y).

Example 3. In the one-dimensional nonsingular case b̃ ≡ − 1
2 , f ≡ 0, (12) with (13) reads as

−v′′ + v− 1
2 (v(0) + v(1)) = 0 or equivalently as −v′′ + v +

∫ 1
0

(
( 1

2 − t)v′(t)− v(t)
)

dt = 0,

which is an integro-ODE. Differentiating −v′′ + v− 1
2 (v(0) + v(1)) = 0 gives −v′′′ + v′ = 0

with fundamental system v(x) = C1 cosh(x) + C2 sinh(x) + C3, but the constant functions
v(x) = C3 simply satisfy the homogeneous Neumann boundary conditions v′(0) = 0 = v′(1); i.e.,
we have uniqueness up to constants.

Lemma 1. For b̃ ≥ 0 satisfying b̃(x, y)|x − y|s+
N−1

q ∈ L
pq′

p−q′ (Ω× ∂Ω) with p′ < q < (p′)∗

and every f ∈ Lp′(Ω), there exists a λ ∈ R such that (12) and (13) have, with the addition of
constants, a unique strong solution v ∈W2,p′(Ω).

Proof. With the strong realization As : D → Lp′ , Asv := −∆v, of the Neumann–Laplacian
and the compact operator B̃ : D ⊂⊂W1,q(Ω) ⊂Ws,q(Ω; ∂Ω)→ Lp′(Ω), we seek a solution
v ∈ D of (As + B̃)v = f − λ, i.e., a strong solution satisfying homogeneous Neumann
boundary conditions. A problem closely related to (12) is

− ∆ṽ + B̃ṽ = f − λ̃ in Ω ,
∂ṽ
∂~n

=
∫

Ω
b̃(x, y)(ṽ(x)− ṽ(y)) dx on ∂Ω (14)

with λ̃ := 1
|Ω|
∫

Ω f dx. In fact, note that the weak formulation of this problem is the

identification of a ṽ ∈W1,2(Ω) such that∫
Ω
∇ṽ · ∇w dx +

∫
Ω

∫
∂Ω

b̃(x, y)(ṽ(x)− ṽ(y))(w(x)− w(y)) dS(y) dx =
∫

Ω
( f − λ̃)w dx (15)

for every w ∈ W1,2(Ω). For b̃(x, y) ≥ 0 with b̃(x, y)|x − y|2s+(N−1) ∈ L∞(Ω× ∂Ω), the
existence and uniqueness of the solution ṽ ∈ W1,2(Ω) with

∫
Ω ṽ dx = 0 follows Lax–

Milgram and Poincáre inequality. In fact, the second term in (15) has the potential Φ(v) :=
1
2

∫
Ω

∫
∂Ω b̃(x, y)|v(x)− v(y)|2 dS(y) dx, and due to b̃ ≥ 0, the whole operator on the l.h.s.

of the weak formulation has a coercive and weakly lower semicontinuous potential on
W1,2(Ω)/R.

Further, solving Poisson’s equation −∆v̄ = λ̄ subject to inhomogeneous Neumann BC
∂v̄
∂~n =

∫
Ω b̃(x, y)(ṽ(x)− ṽ(y)) dx on ∂Ω, where λ̄ := −

∫
Ω

∫
∂Ω b̃(x, y)(ṽ(x)− ṽ(y)) dS(y) dx

is such that a (strong) solution v̄ exists. Then v := ṽ− v̄ satisfies −∆v + B̃v = f − λ in Ω
with λ := λ̃ + λ̄ and ∂v

∂~n = 0 on ∂Ω, i.e., (12), in a weak sense. Finally, due to B̃v ∈ Lp′(Ω)

and f ∈ Lp′(Ω), the weak solution v is in fact a strong solution, and, by approximation,
this also holds true under the regularity assumptions on b̃ ≥ 0 in Lemma 1.

6. Uniqueness

To prove the uniqueness of very weak solutions to (1) and (2), we additionally require
b to satisfy (A3); i.e. the derivative ∂b

∂u is bounded by a function b2(x, y) independent of u

satisfying b2(x, y)|x− y|s+
N−1

q ∈ L
pq′

p−q′ (Ω× ∂Ω). As a consequence, the difference quotient
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(x, y, u, ũ) 7→ b(x,y,u)−b(x,y,ũ)
u−ũ is continuous w.r.t. (u, ũ) for a.e. (x, y) ∈ Ω× ∂Ω and thus a

Carathéodory function.

Theorem 2. Let Ω ⊂ RN be a bounded C2-domain and let b : Ω× ∂Ω×R → R be a kernel
satisfying (A1)–(A3) for some 1 < p < ∞. Then, for every constant a ∈ R, the very weak solution
u ∈ Lp(Ω) of (1) and (2) satisfying

∫
Ω u(x) dx = a is unique.

Proof. Let u, ũ ∈ Lp(Ω) be two very weak solutions of (1) and (2), with identical averages∫
Ω u dx =

∫
Ω ũ dx. Let v ∈W2,p′(Ω) be a strong solution of

−∆v + B̃v = |u− ũ|p−2(u− ũ)− λ in Ω ,
∂v
∂~n

= 0 on ∂Ω ,

where
B̃v(x) :=

∫
∂Ω

b̃(x, y)(v(x)− v(y)) dS(y) (16)

is a kind of fractional divergence of the function v with kernel b̃(x, y) := b(x,y,u(x))−b(x,y,ũ(x))
u(x)−ũ(x) ,

and λ ∈ R is chosen such that there exists a solution v satisfying homogeneous Neumann
boundary conditions ∂v

∂~n = 0 on ∂Ω. Note that Lemma 1 guarantees the existence of such a
strong solution. Now, test the difference between the equations solved by u and ũ with the
test function v to obtain∫

Ω
|u(x)− ũ(x)|p dx−

∫
Ω

∫
∂Ω

b̃(x, y)(u(x)− ũ(x))(v(x)− v(y)) dS(y) dx

+
∫

Ω

∫
∂Ω

(b(x, y, u(x))− b(x, y, ũ(x)))(v(x)− v(y)) dS(y) dx = 0
(17)

and due to b̃(x, y)(u(x)− ũ(x)) = b(x, y, u(x))− b(x, y, ũ(x)),
∫

Ω |u− ũ|p dx = 0. Hence,
u = ũ holds.

7. Conclusions

We were able to prove uniqueness up to a constant for very weak solutions to singular
semilinear elliptic PDEs subject to singular integral Neumann boundary conditions. Our
method to test for two very weak solutions of (1) and (2), with identical averages of the
difference in the equations determined by the strong solution of a dual problem (which is
an integro-PDE with a kind of fractional divergence as a lower-order term here), seems to
be rather promising and may be applicable to show the uniqueness of very weak solutions
for many other problems.

However, our results are still not optimal. For example, while we used an intermediate
compact embedding W2,p′(Ω) ⊂ W1,(p′)∗(Ω), it seems to be an open question for which
(s, q) the direct embedding W2,p′(Ω) ⊂ Ws,q(Ω; ∂Ω) is compact. In fact, the embedding
and interpolation properties of mixed fractional Sobolev spaces have not been studied in
depth in the literature to date. Therefore, although there are some first steps, as in the
Appendix B of [13], for example, how singular a domain-boundary kernel b can be without
destroying the existence of solutions is an open question.
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