@ axioms

Article

Fractional Coupled Hybrid Sturm-Liouville Differential
Equation with Multi-Point Boundary Coupled
Hybrid Condition

Mohadeseh Paknazar 't

check for

updates
Citation: Paknazar, M.; De La Sen, M.
Fractional Coupled Hybrid
Sturm-Liouville Differential Equation
with Multi-Point Boundary Coupled
Hybrid Condition. Axioms 2021, 10,
65. https://doi.org/10.3390/axioms
10020065

Academic Editor: Jorge E. Macias

Diaz

Received: 9 March 2021
Accepted: 14 April 2021
Published: 16 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Manuel De La Sen %**

Department of Mathemathics Educations, Farhangian University, 1417466191 Tehran, Iran;
m.paknazar@cfu.ac.ir

Institute of Reasearch and Development of Processes, University of Basque Country, 48940 Leioa, Spain
*  Correspondence: manuel.delasen@ehu.eus

t These authors contributed equally to this work.

Abstract: The Sturm-Liouville differential equation is an important tool for physics, applied mathe-
matics, and other fields of engineering and science and has wide applications in quantum mechanics,
classical mechanics, and wave phenomena. In this paper, we investigate the coupled hybrid version
of the Sturm-Liouville differential equation. Indeed, we study the existence of solutions for the
coupled hybrid Sturm-Liouville differential equation with multi-point boundary coupled hybrid
condition. Furthermore, we study the existence of solutions for the coupled hybrid Sturm-Liouville
differential equation with an integral boundary coupled hybrid condition. We give an application
and some examples to illustrate our results.

Keywords: Caputo fractional derivative; fractional differential equations; hybrid differential equa-
tions; coupled hybrid Sturm-Liouville differential equation; multi-point boundary coupled hybrid
condition; integral boundary coupled hybrid condition; dhage type fixed point theorem

MSC: 34A08; 47H10

1. Introduction and Preliminaries

Various papers have been published on fractional differential equations (FDEs) (see,
e.g., in [1-6]). Over the years, hybrid fractional differential equations have attracted much
attention. There have been many works on the hybrid differential equations, and we
refer the readers to the papers in [7-17] and the references therein. During the history of
mathematics, an important framework of problems called Sturm-Liouville differential
equations has been in the spotlight of the mathematicians of applied mathematics and
engineering; scientists of physics, quantum mechanics, and classical mechanics; and certain
phenomena; for some examples see in [18,19] and the list of references of these papers. In
such a manner, it is important that mathematicians design complicated and more general
abstract mathematical models of procedures in the format of applicable fractional Sturm-
Liouville differential equations, see in [20-22].

In 2011, Zhao et al. [15] investigated the following fractional hybrid differential equa-
tion involving Riemann-Liouville differential operators of order 0 < & < 1,

NERIOEAW )
DC(g(t,ua») fltu(®), tel=[01] N

u(0) =0

where ¢ € C(I x R,R\ {0}) and f € C(I x R, R).
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In 2019, El-Sayed et al. [23] investigated the following fractional Sturm-Liouville
differential equation:

D¢ (p(t)u'(£)) +q(t)u(t) = h(t)f(u(t)), t €I

with multi-point boundary hybrid condition

u'(0) =0,
{ | o
Yty Giula;) = v iy nju(b)),

where « € (0,1], D¥ denotes the Caputo fractional derivative and p € C(I,R), q(t), and
h(t) are absolutely continuous functionson I = [0, T], T < co with p(t) # O forallt € I,
f : R — R is defined and differentiable on the interval I, 0 < a; < ay < ... < ay <c,
Ad<bi<b<...<b, < T,c<dand§,-,;7]-andveR.

Motivated by the above results, we study the following fractional coupled hybrid
Sturm-Liouville differential equation:

pypf (M SO} kit ue)

D¢ +q(Bu(t) = h(t)f(u(t)),

with multi-point boundary coupled hybrid condition

chs(u(t) _gl(t/u(t))) :k(O,M(O)),
t=0

Qa(t,u(t))
m o ai) — Ca(ai, u( < — C1(bj, u(bj))
i=1 gz( gz(al/u(al)) ; ( C, (b,u(b )) )/

Motivated by the above results, we study the following fractional coupled hybrid
Sturm-Liouville differential equation:

pDf (O 2O} kit u(e)

Pe ARI0)

+q(H)u(t) = h(t)f(u(t)),

with multi-point boundary coupled hybrid condition

D/S(M(t) B gl“/“(ﬂ)) _ k(O u(O))
c o ’ ’

Ga(t, u(t))
m . ( ) 51(111, z « gl( ( ))
izl‘:l( gz(al,u(a )) Z b u(b )) )/

where «, 8 € (0,1], DY and DF denote the Caputo fractional derivative, p € C(I,R) and
q(t) and h(t) are absolutely continuous functions on I = [0,1], with p(t) # 0 for all
tel {r(,.) € C(IxRR\{0}), 21(.,.) € C(IxR,R), f(u(t)) : R — R is defined on
theinterval [, 0 < a1 < ay < ... < ay <c¢,d < by <by <...<b, <1,¢c<dand
i, 1y and v € R. Moreover, we study the existence of solutions for the coupled hybrid
Sturm-Liouville differential equation with integral boundary coupled hybrid condition.
We give an application and some examples to illustrate our results.

Define a supremum norm ||.|| in E = C(I,R) by ||u|| = sup,; |u(t)|, and a multiplica-
tionin E by (xy)(t) = x(t)y(t) forall x,y € E. Evidently, E is a Banach algebra with respect



Axioms 2021, 10, 65

30f26

to above supremum norm and the multiplication in it; also notice that |[u|[;, = fo |u(s)|ds
is the norm in L1 [0, 1].

It is well known that the Riemann-Liouville fractional integral of order a of a function
f is defined by I* f(t) fo (t —s)* 1 f(s)ds(a > 0) and the Caputo derivative of order

« for a function f is defmed by

PN t (s
Def(t) = T'(n—a) /0 (t —s)a—n+l ds

where n = [a] + 1 (for more details on Riemann-Liouville fractional integral and Caputo
derivative see in [2,4,5]).

Definition 1. Let o, f € RT. We have
(i) I1%:Ly — Lyandlim, 1 I*f(t) = I'f(t) fo

(i) I*IBfF(t) = I*TRf(¢).
(iii) If f(t) is absolutely continuous on I, then lim,_,1 D% f(t) = Df(t) and

a—1

DIFF(t) = 1{(7) F(0) + IDF(t), a > 0.

. _ Tyt
() I"t" = Sy v > — 1
The following hybrid fixed point result for three operators, due to Dhage [24], plays a
key role in our first main theorem.

Lemma 1. Let S be a closed convex, bounded, and nonempty subset of a Banach algebra E and let
A,C:E — Eand B : S — E be three operators such that

(1) Aand C is Lipschitzian with a Lipschitz constant 6 and p, respectively;
(b) B are compact and continuous;

(c) u=AuBv+Cu = ueSforallves;

(d) OM++p < 1where M = [|B(S)|| = sup,¢ || B(z)||.

Then, the operator equation u = AulBu + Cu has a solution in S.

2. Main Results

In this section, we take into account the existence and uniqueness of solution for the
following fractional coupled hybrid Sturm-Liouville differential equation:

pypf (M SO kit ue)

Pe 5t (D))

+q(Bu(t) = h(t)f(u(t)), ®)

with multi-point boundary coupled hybrid condition

Df(”(ﬂ _él(tru(t») :k(O,M(O)),
t=0

Ca(t,u(t))

u(a;) — g — C1(bj, u(by)) @
m ) 14i,u 1 1
izlgl( gz(al,u(al) Z ( 2(b; u(b)) )

where «, B € (0,1], D and DF denote the Caputo fractional derivative, p € C(I,R) and
q(t) and h(t) are absolutely continuous functions on I = [0,1], with p(t) # 0 for all
tel {(,.) € C(IxR,R\{0}),C1(.,.) € CIxR,R), f(u(t)) : R — R is defined on I,
0<m<m<...<ap<cd<bh<bh<..<b< 1,c<dand§i,77jand1/€R,under
the following hypotheses.
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Dq) The function — R is defined on the interval I, =~ is bounded on I
he f . R — R is defined on th 11, & is bounded

with | af | < K and f (u(t)) is differentiable in (0, 1), right-differentiable at 0 and
left-differentiable at 1.

(D7) The function p € C(I,R) with p(t) # 0 forall t € I, inf;e; |p(t)| = p. Furthermore,
q(t) and h(t) are absolutely continuous functions on I.

(D3) The function g : I x R — R\ {0} is continuous in its two variables, and there exists a
function p(t) > 0 (Vt € I) such that

1G2(t, %) = Ga(ty)| < u(t)|x —yl

forall (f,x,y) € I x R x R.
(D4) Two functions f,k : I x R — R are continuous in their two variables, and there are
two functions fi(t), u*(t) > 0 (Vt € I) such that

1C1(t,x) = Ca(t,y)| < ft)|x —yl
and
k(t, x) —k(t,y)| < p*(t)|x =y

forall (t,x,y) € I x R x R, respectively.
(Ds) There exists a number r > 0 such that

800 + {7 .
r>  ——————— and e+ <1,
T= @ 7] [ull©+ izl
where
1 Tla+p+1)[p]l
O=— " i 1 K|\
PCEESY ZI«:HIvI}ZIm gl + Kl + ==y
F(oc—f—ﬁ—i—l)ko
hl+ —7—~—1
07 = sup,;Ci(t,0), &5 = sup,.;02(t,0), M = f(0), kg = sup,.;k(t,0) and
E= 1 where Y ", & —v ;7:1 1 # 0.

Yity Gi — v 1)

Definition 2. We say Dcﬁ has the quotient-property with respect to uj, uy € Li(I,R)) with
p p
b oa(t) ua(t)De (u(t)) — ua (£)De (ua(t))
u 0,if D = .
2704 De (Mz(f)) (uz(t))?

We will use the following condition:

(B*) DF has the quotient-property with respect to {1 (¢, u(t)) and {»(t, u(t)), and

DE(z1(tu(t), D (Za(t, u(t)) € C(I,R) (Vu € C(I,R)).

Lemma 2. Assume that the hypotheses (D1 )—(D;) are satisfied. Then, the problem (3) and (4) is
equivalent to the integral equation

u(t) = Co(t, u( ZCZAu —v fﬂjAu(b]‘) +v iiy]«Bu(bj)

j=1 j=1

- i@iBu —l—vZn]Cu ZC,Cu )) — Au(t) + Bu(t) + Cu(t) ®)

i=1 j=

+ Gu(t u(t)).
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where Au(t) = Iﬁ(p(lt)l"‘(q(t)u(t))), Bu(t) = Iﬁ(p(lt)l"‘(h(t)f(u(t)))) C(t)y =
I (p(lt)k(t,u(t))> and E = !

Y gi—v 7:1’7]‘
o (M) =it u(t) .
oE (M ity ) €SB
e if (B*) holds, then DY (u(t)) € C(I,R);

o (O - Gu®) .,
[DC< ACI0) ) k(t, (t))]eLl[O,l].

dt
Proof. Equation (3) can be written as

. Moreover,

Ila@ {p(t)Dcﬁ<“(t)§z_( %;‘)(ﬂ)) _k<t,u<t>>}> = —q(Dyu(t) +h(D)f(u(t).

Operating by I* on both sides, we get

(& [pop? (MO BEHON) g uo)]) = - + 00 )

Consequently,
o fu() — Qb u(®) () — Gt ()
p(t)Dc( el ) K(t,u(t)) p(O)DC( i )t_ +K(0,u(0))

0
= —I*(q(t)u(t)) + I*(h(t) f (u(t))).

S B Ll(t)—gl(t/u(ﬂ) — we have
AsDF (M) = kOu0), weh

pyDf (MO SUAOL) k(1)) =~ (g(0u(0) + I (OF (),

and so

plut) —Gibu®)) _ 1 1, N
DC( Lot u(h)) ) p(t)l (q(t)u(t))+p(t)1 (h(t)f(u(t)))+p(t)k(t,u(t)). (6)

The above equation can be written as

pop (MO SD)) L geyute) + s BO0) + Lkt u(6),

Operating by I? on both sides, we obtain

14 (ut) —Gtut) _ 5 1 o s 1
! dt( a(t u(t)) > 4 <p(t)1 (q(f)u(t)))ﬂ < 5! (h(t)f(u(t))))

1P (pgt)k(t,u(t)))
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Therefore, we can obtain

u(t) =Gtut) (1 s 1,
L0 u(h) t=-1I (W)I (q(t)u(t))) +1 (W)I (h(t)f(u(t))))

) @)
+ 1P (p(t)k(t' u(t))) = —Au(t) 4+ Bu(t) 4+ Cu(t).

u(0) — £(0,u(0))

where ¢ = 2(0,u(0))

. Now, we get

m §1(tu m _m‘ua‘ m'ua' mlua‘
; §2(t u(a)) ; i:ZlézA (a;) + ) _¢iB (1)+igglc (@). ()

i=1
and

-0

,u(by)
Z 17] G2 bj,

=~
<&

n
1/217]8 = —vZn]Au )+v ) nBu(bj)

j=1

v:
~—

]

)

+v Z 77]Cu b])
j=1

On subtracting (8) from (9) and applying

él(“l -0
251 u(az) ) E( 2(b;

]I

(b))

=~
<
\'/:
N

]

we deduce that

= E(iCiAu(ai) —vin]-Au —|—1/Z17]Bu Zngu

j=1 j=1

+v2;7]Cu Z@lCu

j=1

where E = —; ! . Therefore, by substituting the value of ¢ in (7), we get
Yi1Gi—v ] 11j

u(t) = Ca(t, u( ZCZAu —viiyjAu(bj) —}-viﬂjBu(b]-)

=1 =1

— ZéiBu —i—vZ;y]Cu ZQCu Au(t) + Bu(t) + Cu(t)| + ¢y (t, u(t)).
i=1

j=1

Conversely, to complete the equivalence between integral Equation (5) and the
problem (3) and (4), we have from (6)

plu) —Gbu®)\ _ 1 1, )
DC( ot u(t)) >— o @) + o R f(u(t) w0

1
+ Skt u®) € (1),

and so

2 [poof (MO D) )] = atoue) + L1 G0 ()
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Operating by I'~* on both sides, we obtain

ad u(t)_g (t'u(t)> _ txd o
e [popf (MO BUAOD) ki ue| =~ o)
d

L "I f(u(8)))

Now, by using the definition of Caputo derivative and (iii), we get
t) — gl(t/ M(t))
D" tDﬁ<”( — k(t, u(t
[p( )P Go(t,u(t)) el
d d

= —117“1"‘&(!7( Ju(t)) +1'" M () f(ut)))
a1 pa—1

Fy 1(O(0) + I G hO)£(u(0),

o 7l—a

and then by applying (ii) and (iv), we have

D | p(yf () — k()| = ~11 L (a0 + 1 5 (0 F (1)

Ga(t,u(t))
—q(0)u(0) +1(0)f (u(0))
= —q(H)u(t) +h(t)f (u()).

and so we get (3). Clearly, from (6), we can get

Df(“(t) _gl(tru(t))> :k(O,u(O)).
t=0

gz (t/ u (t))
Moreover, by using a simple computation and (5), we can obtain
—Gilaiu G1(bj, ( i)
p o fltutel), Zm( iy 2

Now, assume that (B*) holds. From (10), we know that

(e) = f (OB e e,

Gt u(t))
Then,
H(t) = Df (”(t)gz(fl((t;;(t))>
_ Qa(tu(t))DE(u(t) = Ga(tu(t))) — (u(t) — Gt u(t))DE (Ga(t, u(t))
(Ca(tu(h)))? ’
and so
H(t) = Df(”(tg(ff&;(t)))
_ Galt,u(t))DE (u(t) — Ga(tu(t))) — (u(t) — Gt u(t))) DE (Galt, u(t)))
(Z2(tu(h)))?

_ Qa(tu(t))DE (u(t)) — Ca(t, u(t)) DE(Za (1, u(t))) — (u(t) — Ga(t,u(t))DE (Za(t,u(t))
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Therefore, we have

D (u(t))

N Ga(t,u(t)) DE(Za (1, u())) + (u(t) — G (t,u(t)))DE (o (t, u(t)))
= Gt ult) (H“) * Gl u(D))? )
€ C(LR).

d [p(ut) = Ca(tu(t))
Let us prove that — T {DC < Cz(t,lu(t)) ) - k(t,u(t))} € L1[0,1]. From (6) and

(iii) of Definition 1 we have

d [Df(u(t) —Cl(fr”(f))> k(t,u(t))} - d(ll“(q(t)u(t) +h(t)f(u(f))))

T Gt u(t)) A\ p(t)
_ Z;((?) 1 (—q(B)u(t) + h(E)f (u(D)))
+p(1t>l“”( Ju(t) +h(t)f (u(t)))
n p(lt);(;) (9(0)u(0) + h(0) £ (u(0)))
Now, we can write
() -
_’p |/ ( ()[lu(s)] + [(s)|f(u(s)))ds
o [ ( ($)][1(s)] + lq(s)] 1 (s)]

1 @) Flu()] + n(e)] LD ())

1 th 1
Therefore,
Vd [ p(ult) = Zultu(t)
/0 E {DC< Co(t,u(t)) ) —k(t, ”(t))] ’dt

()] ts"‘l
i t|/ (5) lu(s)|

+ [1(s)]1f (u(s) st + / |p<1t) JAp ek (|q'<s>||u<s>|+|q<s>||u'<s>|

I'(a)
1) f(u(s)] + |h<s>||af(§‘(s”|\ s >|)d a

a— l
+ (0@ )]+ WO [ L fos
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Notice that

_o)a—1
et [ R (alu(s)| + Il (o) s

Lip/(t)] (t —s)* 1
_/ ASNu(s)+ I wl)Dds | ey Ty

[l
< (llq(s)[I1lu(s)l +IIh(S)IIHf(u(S))II)pzr(lxH)f

11 f (t_s)lx71 / / /
L o e (@) + ) @)+ L)
+ 6 1 LG o) )

1

< !/ !/ ! !/
< (1 e o+ U+ LA+ )

and
[ ot g (a0 ()] + ) o))

P
spnj+1¢quumn+mmﬂvwm»D

Then, we can obtain

/01 % {Df (”(t)gz_(flu((t;;(t))) - k(t,u(t))] ‘dt

< (s N+ 1466 D) 25

1
/ !/ !/ !/
(N D 20 R )

+ i 1O + WOl @)

That is, % {D? (u(t)gz_(glu(é;)u)(t))) - k(t,u(t))] € L1[0,1]. This completes the proof.

Lemma 3. Assume that the hypotheses (D1)—(Ds) are satisfied. Let |u(t)| < r forall t € I,

Au(t) = 1P (F(lt)l“(q(t)u(t)))/

Bu(t) = Iﬁ<p(1t)l"‘(h(t)f(u(t)))) and C(t) = 1/5( gt)k(t u(t ))> Then,

(i) |Au(t)| < Ly, |Bu(t)] < Lyand |Cu(t)| < L3 forall t € I where

ll4ll _ _ Kl M||h]] _ el
Ly = pr(a+ﬁ+1)r Ly = Tt gD’ T Tt p0) and L3 T’ T pr(ﬁ+1)

(ii) for ty,tr € lwithty < tp,

Au(ty) = Auon)] < S s (1 = = (= )P+ (=1,

k[ (Kr + M)
|Bu(t1) — Bu(ty)| < pl(a+1)T(B+1)

@@—f—UTJnM+m—nW}



Axioms 2021, 10, 65 10 of 26

and

(g lr + ko)
NGRS

Proof. (i) Assume that [u(t)| < rforallt € I. Then, we can write

Cu(t) — Cu(tr)| < 1= = (t2 = 0)f] + (12— )P,

IAMQF4W<RUVW@W@»)

_s)B-1
- |1“(a ‘ p(ss)) (/ dT>dS
< r(a J t(ss))ﬁl 1(/ s — )% g(0)]Ju( )dr)ds
sy Lo [

t
- pr(a:!qln)r(ﬁ) /0 1t =) s

1
< pl"(ocr—ﬂqllgf(ﬁ)/o s*(1 - s)F1ds

On the other hand, B(a + 1, 8) = fo (1—s)flds = F(E):Tﬁi(lﬁ (where B is the beta
function). Thus,
Au(o)] < eI

forall t € I.
Let |u(t)] <rforallt € [ and M = f(0). At first, notice that

|f(u(t)| = [f(u) = £(0) + f(0)| < Klu| + M
< Kr+ M.

Therefore, we have

wwwwwr(ﬂ u))

‘(t p(ss) ( V() f(u(t ))dT)ds|

t—s

1 ( )B-1 -
SF(f’é)F(ﬁ)/o p(s)] (/O(S—T) 1|h(T)||f(u(r))|dr)ds

- ICr+M ||h|\ / (t—5)P- 1(/ T)“1d7>ds

’C||h|| . M|A]|
pT(a+p+1) pTa+B+1)

Similarly, we can prove that

1] %
COI< rgr D T T




Axioms 2021, 10, 65 11 of 26

(ll) Let t1,ty € I with t; < tp. Thus,

) = aute)] = il [ e geutenas - [ e gsyutenas
- 1"1[% |/t1 )P )(tz_s)ﬁ 11”‘(W(S)u(5))ds
- (”;{;3[“1“<q<s>u<s>>ds|
< iU = B sy
s [ e eute)
Now, as [1*(q(s)u(s))| < [lgllri*(1) = {1555 < {7, then
Au(ty) = Auon)] < S| [l =98 = (=) s [ (= 9P 1

Similarly, we have

|Bu(t) — Bu(f2)| < pgﬁ”ﬂ%;lﬁ)l) [|t§ —t = (= h)P| + (ta— tl)ﬁ]
and
ICu(ty) — Cu(ty)| < m [\tﬁ (- )|+ (- tl)ﬁ].
O

Now, we are ready to state and prove our main theorem.

Theorem 1. Let the hypotheses (D1)—(Ds) be satisfied. Then, the coupled hybrid Sturm-Liouville
differential Equation (3) with multi-point boundary hybrid condition (4) has a unique solution

u € C[I, R]. Furthermore, if (B*) holds, then Dcﬁ(u(t)) € C(L,R).

Proof. Let E = C(I,R). From (Ds), we know that there exists a number > 0 such that

—@@‘1‘61 d C] 1,
Tz e A [u]l©+ (||| <
where
_ 1 Ta+B+D[p"|
©= gl <21\cz|+|v|]2|m + (gl + K + A
+M||h||+w]/

r(p+1)

07 = sup,c; 01(t,0), &3 = sup,;02(,0), ko = sup,.;k(t,0) and M = f(0). Define a
subset S; of E defined by

Ss={ueckE: |u|| <r}.
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Clearly, S; is a closed, convex, and bounded subset of E. From Lemma 2, we know
that the problems in (3) and (4) are equivalent to the equation

u(t) = Gt u( (iC,Au —vznlnjAu(b]-) +vi:17]-Bu(b)

fat

- Zg‘iBu )+ v Zn]Cu Z@C” a;)) — Au(t) + Bu(t) + Cu(t)
i=1 j=1

+01(tu(t), tel

(11)

Define three operators A,C : E —+ Eand B : S, — E by

Au(t) = Ga(t,u(t)), t €1,

— E(Y. GiAu(ay) — v Y Au(by) +v Y nBu(by)
i=1

j=1 =1

— iéiBu(ai)) +v Z 1jCu(b;) — i@iCu(ai)) — Au(t) + Bu(t) + Cu(t), t €I,
i=1 iz

and

Cu(t) =g1(tu(t)), tel.
Now, the integral Equation (11) can be written as
u(t) = Au(t)Bu(t) +Cu(t), t € 1.

In the following steps, we will show that the operators A, B, and C satisfy all the
conditions of Lemma 1.

Step 1: In this step, we show that A and C are Lipschitzian on E. Let u, v € E, then by
(D3), we have

[Au(t) — Ao(B)] = |82t u) = Ca(t, 0)| < p(8)[u(t) —v(t)]
for all t € I. Taking the supremum over ¢, we get
[ Au — Ao|| < flull[Ju = o].
Similarly, by applying (D3), we can obtain
1Cu = Col| < [al{lu — o]

That is, A and C are Lipschitzian with Lipschitz constants ||| and ||fi||, respectively.

Step 2: We show that B is compact and continuous operator on S, into E. At first, we
show that B is continuous on S,. Let {u, } be a sequence in S, converging to a point u € S,.
Then, by the Lebesgue dominated convergence theorem,
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n
nlg{}o Buy(t) = 11m 2 GiAuy(a;) — vy 1jAun (b)) +v 2 11iBun (b Z &iBuy(a
' j=1 j=1
+1/217]Cun Z(;Cun — Auy (t) + Buy(t) + Cup(t)]
j=1

m
:E(Zgl hm un _VZT]] hm un +VZT]] hm Mn ))

i=1

m

— Y &iB( hm up(a +VZ17] hm un (b Zgl hm un(a;)))

i=1
_A(;}Elc}ou”(t)) +B(11lggoun( ) +C(1115130un( )

= E(i ¢iAu(a;) —v i niAu(b;) +v i 1iBu(b;)
i=1

j=1 j=1
- iCiBu +v2n,Cu Z(’,‘,Cu Au(t) + Bu(t) + Cu(t)
i=1 j=
= Bu(t)

for all t € I. That is, B is a continuous operator on S;.
Next, we will show that the set B(S,) is a uniformly bounded in S,. For any u € S,,
by using Lemma 3 (i), we have

Bu(H)] < EI(Y. &l Auar)| + v 21 73] Au ()
] L

n m n m
+ (v Y il [Bu(bj)| + Y 1&il [Bu(ar)| + v Y |n;l|Cu(by)| + Y &il|Cu(as)])
j=1 i=1 =1 i=1
+ |Au(t)| + |Bu(t)| + |Cu(t)]
< |E|' Y 1&i|Ly + |Ellv] Y |nilLa + |Elv| Y IjlL2 + |E| ) 1Gi|Lo
i=1 j=1 i=1

j=1

n m
+ [Ellv| ) InjlLs + |E| Y &i|Ls 4+ L1 + Lo + L3
=1 i=1

= EICC &+ ] 32 D) + 11L + [EICC &+ o] zl 7:0) + 1)Lz
L

i=1 j=1 i=1

IENY &+ |v|i|nj|> 1L
2

i=1

— EICC &+ 0] 32 i]) 1)L+ Lo + L)

i=1 =1
Now, as
Li+Ly+ L3
el KWL e, Mk &
pI(a+B+1)  pl'(a+p+1)  pI'(B+1) pl(a+p+1) pI(B+1)
— g pry el + kel + S B+ HEEEEDR)
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then we get

1 m n
|Bu(t)| < Tt BT E(;|Ci| + \VIJ;IW;'IHH[(IIQII + K|n]l
Dla+ B+l T(a+p+ ko, _

Taking supremum over t,
|Bul < ©

for all u € S,. This shows that B is uniformly bounded on S;.
Now, we show that B(S;) is an equi-continuous set in E. Let t1, tp € I with t~t,. Then,
for any u € S, by applying Lemma 3 (ii), we have

|Bu(t1) — Bu(t2)| = [ — Au(t1) + Au(t2) + Bu(t) — Bu(t2) + Cu(ty) — Cu(tz)\
< |Au(tr) — Au(tz)| + [Bu(t1) — Bu(t2)| + |Cu(t1) — Cu(ty)]
= P +”1q>|1f(ﬁ+1> {tg_tf‘ (2=t + (t2 =t ’3]

|1l (Kr + M) B
pL(a+1)T (ﬁ+ 1) {tz “ho (2o

Then, for ¢ > 0, there exist § > 0 such that

f)P |+ (¢ 2t1ﬁ}

|t1 — | <6 = |B(t1) — B(t)| <,

for all t1,t, € I and for all u € S,. This shows that 3(S,) is an equi-continuous set in E.
Therefore, we proved that the set B(S;) is uniformly bounded and equi-continuous set
in E. Then, B(S,) is compact by Arzela—Ascoli Theorem. As a consequence, B(S;) is a
completely continuous operator on S;.

Step 3: Letu € Eand v € S, be two given elements such that u = AuBv 4 Cu. Then,
we get

u(B)] < [Au(t)|[Bo(t)] + |Cu(t)]

< O[Ga(t, u(t))| + [ (£ u(h))]
= O[Ca(t, u(t)) = G2(t,0) +Co(t, 0)| + [Ca (£, u(t)) — C1(t,0) + 1 (4, 0))
< O([[ulllu(t)] + &) + |l [u()] + &,
and so
6HO+4
u(t)| < — -7 < 1.
HOI= Mo - Tl
Taking the supremum over t, we get
Jul < r.
Step 4: Finally, we prove that oM +p < 1. AsM = || B(S;)|| = sup,cs, {sup;c; |Bu(t)|}

< ©®, we have
[ulIM+ gl < lul®+ (il <1,

where § = ||j|| and p = ||ji||. Therefore, all conditions of Lemma 1 hold and the operator
equation # = AuBu + Cu has a solution in S,. Thus, the problem (3) and (4) has a solution
ueC(,R). O
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Example 1. Let us consider the following fractional couple hybrid Sturm—Liouville differential equation:

<1000\/et+t2D ( 2 (Elu((tt)”)( ))) —k(t,u(t))) + et cos?(t)u(t)

(12)
—e T tan N(u(t)+1), tel

with boundary values

T (u(t) = Galt, u(t)) 1
D Cz(tjt(f)) im0 = 310

(13)
2 1M GGGy 1 1)~ GG ()
Yici g (L, u(L)) ) 3];2f( (5. u(3)) &
where - 1
it u(t) = ;W(”(t) ) S mE D)
_ cos?(rt) u(t)] —sin?(7r
gZ(t/u(t)) = (500+1n(1+€m+1)) 1+ |u(t)| Te )
and

k(t,u(t)) = %u(t) +e”

In this case, wetake(x:é,ﬁ: fo,r:O.l 5174,5278,;7 :%,112:%,173:%,
t

1
1/—3,p()—1000\/et+t q(t) = et cos?(t), h(t) = e~ = , fu(t)) = tan~(u(t) +1).
1. F

Therefore, |%] <1=K M=%, p=1000, |q| =1, ||h|| = 1. Further,
ot
Gt u(t) ~ 2 (t,0(0)] < Sl —o(0),
cos?(rtt) |[u(t)| — lo(b)]|
G2(t,u(t)) = &2(t:0() = o0 a7 e 1)) A+ WO A+ (O]
oS ()~ o(0)

~ (500 + In(1 + ett1))

and

—t

k(£ u(t)) = k(t,0(1))] < 100Iu( ) —o(t)]-

1/

Then, gl;‘ = sup,¢; Cl(t,lO) = 125, 03 = sup,;; 02(£0) = 1, ko 1— s3upt%1k(é0)
1l = 5oy 1471l = 100 and (|72l = 500+ Furthermore, Y2, £ — % Liciy =8~
% # 0,and so E = 12. Then,

RN

_ 1 . o Tla+B+1)[p"|
G)fm[IEI(Z;\ClI+|V|];\77]\)+1][(||I1||+/C||h||+ T(B+1) )r
T(a+ B+ 1)k
+ Ml|h[| + W]
1 2

1 131 7
N~ L p 1Y ) 4 1)[1.807699588 + 1] ~ 0.0151084953
Tooor(2.7) 2= 7 +3Z2J)+ I + 4
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and so

O+

r = 012> 00218486492 ~ ——2 21
1—[ule -zl

and
11]© + ||j1]] &~ 0.0033634712 < 1,

As all the conditions of Theorem 1 be satisfied, the problems (12) and (13) have a solution.

Example 2. Let us consider the following fractional couple hybrid Sturm—Liouville differential equation:

D? (513@D§ (”“&EL&ZS“”) - k(t,u(t))> 4 olsinly () = corl(%u(t)), fel (14)

with boundary values

L) ~Dbu), 1
D w0~ 70

u(0), teI=[0,1]

15
) i(u(loi) —§1(10i,u(10' oyl 1)1( u(13/) — 61(13f,u(13f))) 0
=2t 7p(107, u(109)) = i+2 ((13,u(13))
where 761
it u(t)) =711+ 672 u(t)) — 7
Ga(tu(t)) = ?M?(lwetz : u(t) + %Cos(l ftz)
and
k(¢ u(t)) = u(t) + sinh(In(2))
! (2+1t)(543t)(6+ 7t)(4+ 9¢) ’
Now, we put & = %,,B = %,r =09,¢ =13 = %,171 = —%,112 = }I/V = -2,
p(t) = 512, q(t) = 213 (k) =1, f(u ()) =Cot’l( u(t )) =’C/

M = 3, p =625 ||lﬂ| =2l =18 =78 =5k =1 ||14H =% HP‘ || = 70

i Z (—1)
I7I = ate B 5 2 ]Zl ir2 g # 0and E = . Therefore, © ~ 0.0235484505. Then,
we have
o) *
= 09> 00564200808 ~ 22 T61
1—[|ul|®— ||f
and

114|© + ||| ~ 0.0047386502 < 1,

That is, all the conditions of Theorem 1 hold and the problem (14) and (15) has a solution.

If in Theorem 1, we take {; (t,w) = k(t,w) = (»(t,w) —1=0forallt € [and w € R,
we have the following Corollary.

Corollary 1. Let the hypotheses (D1)—(Dy) be satisfied. Assume that

1 m n
W[IEI(; IGil + M]; [7il) + 1 (llqll + K] <1
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where E = ! and Y"1 i —v ]’-‘:1 11j # 0. Then, the fractional Sturm-—

21 i — v
Liouville differential problem

DE[p(t)DE (u(t))] + q()u(t) = h(t)f(u(t)), t € I
D (u(1))),_y =0, (16)

Yity Giua;) = vy nju(b;),
has a solution u € C(I,R) if and only if u solves the integral equation
m n n
u(t) = E(Z EiAu(a;) —v Z njAu(b;) +v Z 1iBu(b;)
i=1 =1 j=1

- i giBu(a;)) — Au(t) + Bu(t).
i=1

Therefore, D‘f(u(t)) € C(LR).

3. Continuous Dependence

The following result will be useful in this section (in fact it is a special case of Theorem 1
with {p(t,x) = 1forallt € I and x € R).

Corollary 2. Let the hypotheses (D1), (D3), and (Dy) be satisfied. Assume that there exists a
number r > 0 such that

O+ -
r > - and <1,
T ™ I
where
1 - - Pla+p+1)[lp|l
© = ——————[E(Y &+ vl Y i) + 1[(llgll + Kl + r
i EU a1+ ) e+ i+
I'(a+p+1)ko
pll 2w TP T R0
+ M||h|| + TBT1) ],
1
0y =supy; C1(t,0), ko = sup,; [k(t,0)|, M = f(0) and E = where

LI & — Ve 1)
i=16i j=11j
Yiri¢i—v 7=1 11j # 0. Then, the fractional couple hybrid Sturm-Liouville differential equation

D [p()DE (u(t) = &1 (t,u(t))) — k(t,u(t)] +a()u(t) = h(Df (), te T (D)

with multi-point boundary couple hybrid condition

Df (u<t> - g1<t,u<t>>) = kO.u(0)
t= (18)

Py Ciu(a;) = Galas, u(a;))) = v iy nj(u(by) — Ca(by,u(by))),
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has a solution u € C(I,R) if and only if u solves the integral equation
m n n
= E()_GiAu(a;) —v ) nAu(b;) +v ) niBu(bj)
i=1 j=1 j=1
m Ll 19
—ZCZB u(a;) —i—vZ;y]Cu Z (19)

=1 j=1 i=1
— Au(t) + Bu(t) + Cu(t) + g1 (t, u(t)).

Furthermore, Df(u(t)) € C(LR).

In this section, we will investigate continuous dependence (on the coefficients ¢; and
17 of the multi-point boundary couple hybrid condition) of the solution of the fractional
couple hybrid Sturm-Liouville differential Equation (17) with multi-point boundary couple
hybrid condition (18). The main Theorem of this section generalizes Theorem 3.2 in [23]
and Theorem 5 in [8].

First, we give the following Definition.

Definition 3. The solution of the fractional couple hybrid Sturm-Liouville differential
Equation (17) is continuously dependent on the data ¢; and 1; if for every € > 0, there exist
01(€e) and 65 (€), such that for any two solutions u(t) and ii(t) of (17) with the initial data (18) and

D (#() - G, (1)) =Ko, (0))
t=0 (20)
1y Gili(ar) — Gulag, i(a;)) = vy 7 (a(b;) — Ga(by, (b)),
respectively, one has YI" 1 |& — &;| < 61 and iy |nj = ij| < 62, then |lu — || <eforallt € 1.

Theorem 2. Assume that the assertions of Corollary (21) are satisfied. Then, the solution of
the fractional couple hybrid Sturm—Liouville differential problem (17) and (18) is continuously
dependent on the coefficients ¢; and 1; of the multi-point boundary couple hybrid condition.

Proof. Assume that u is a solution of the fractional couple hybrid Sturm-Liouville differ-
ential problem (17) and (18) and that

i=1 j=1 j=1 i=1
+vE f 7;Cii(bj) — E i &Cii(a;) — Ad(t) + Bi(t) + Cia(t) + gy (t,i(t))
j=1 i=1

is a solution of the fractional couple hybrid Sturm-Liouville differential Equation (17) with
the multi-point boundary couple hybrid condition (18). Therefore,

ji(t) —u(t)| < |EY &Ail(a EZCzAu )|+ IvEZmAu ) —VE ) njAu(b;)|
i=1 j=1 j=1
+WE ) 7ijBi(b;) — vE ) n;Bu(b;)] +| EZ@;BM

(21)

) [\13
U‘m

+ |1/E Z ﬁ]Cﬁ(b]) —vE iq]Cu )| + | ZC ﬁ(lli) —E ;@Cu({zl)

j=1 j=1 i=1

+|Aa(t) — Au(t)] + [Bi(t) — Bu(t)| + [Ca(t) — Cu(t)| + [Ca (£, a(t)) — Ca(t,u(t))]-
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On the other hand,
m m m
|EY_ &iAu(a;) — EY  &iAi(a;)| = |E ZC:A” —EY ¢;Ai(a;)
i=1 i—1 im i=1
+E)Y_¢&Ai(a;) —E Z GiAi(a;) + E Z GiAi(a;) —EY_ GiAu(a;)l
i—1 i- i—1 i—1
< |E| Y |&il|A(u(a;) — 1(a;))| + | E| Z\ﬁz &illAa(a;)| + |E — E| Y |&i]|Adi(a;)]
i—1 i=1
m m _
<|EY &iAu(a;)) —EY  iAi(a;)|
i=1 i=1
< NalllETXZq 08l lqllEN#] &
S Tt B+ I ”||+pr (@+p+1): 2“; Gil
gl 2y 18| !E||E| * x o
B N S Y 51'””';"7] 7il)
ASZ -1 |CZ §l| < 41 and Z}lzl |17] —17]| < dy, then
- < lglllEIEE, 16l . llqll1E] 2]l
E A — == 7y — —_
| Zél u(a;) ; = pr(a+[3+1) e ”|‘+pr(a+ﬁ+1) !
\|f1\|||u||2 " &G E|E|
0 0r).
Similarly,
n _ n n
‘VEngA”(bj) —vE 277]'Aﬁ(bj)| < |v||E| 21 [njl|A(u(b;) —i(b)))]
= = =
n " n
+|V||E|Z|’71*77j||14ﬁ(bj)|+|V||E*E\Z|17j||Aﬁ(bj)\
. =
||Q|||E||V|Z 1 il i glE[vill#]]
pT(a+p+1) I ”H+pr(zx+/3+1) 2
lglllall|v] Sy 7] [ENE]
1) ),
and so
m N n
|EY ¢iAu(a;) EZC,Au |+|1/E217]Au i) —vE ) ijjAi(bj)|
i=1 i= j= =1 (22)
llqll | E (X} 1|Cz\+|v|2 L1 mil) 3
< _
< pl"(a+/3+1) lu — | + (1 + [v|d2)
where
q. — _allE]l}a] +||07||||M|\E "V IGHENED | Nallllal vl iy |71 ElE]

pl(a+B+1) pT(a+B+1) pT(a+p+1)
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Furthermore,
n " n n
\VE Y 1jBu(b;) —vE ) 71;Bi(b;)| < [v|[E| ) |l |B(u(b;) — ai(b;))]
j=1 j=1 j=1
n N n
+ [VI|EL'Y | — 71 Ba(by)| + vI|E — E[ Y |75 Ba(b;))|
j=1 j=1
MWWNHZﬁHWWu_MHAKWH+W0mew5
pT(a+p+1) pT(a+B+1) 2
(K]l + M)l lv| iy 7] EN E]
+ IS (6 + [v]).
pr(a+p+1)
Similarly,

|EY &Bu(a;) —EY_ &Bii(a;)| < |E| Y |&|B(u(a;) —a(a;))| +|E| Y |& — &l|Bi(a;)]
= = = =
(Clal + M)IIRIIE]

KIRIENZi 18]
pl(a+B+1)

+|E—E|i§§z‘3ﬁ(ﬂi) < @t prl)

Kllall -+ MR Y™, |EIEE
(Kl + MW S GIENE

pl(a+p+1)
and then
n N n m N m ~
[VE'Y njBu(bj) —vE Y #;Bii(b;)| + |E Y _ &Bu(a;) — E'Y  &iBi(a;)|
j=1 j=1 i=1 i=1
KBNS [ + vl Ty ) )
i=1 161l T V] Lj=1 1] -
< T(a+ B+1) [l — it]| + Q2 (81 + |v]62)
where
0, — (Kl + M)[Ik]IE| (Kllal| + M) |[rll v Ty |71 [E]|E]
2T T pr(a+B+1) pT(a+p+1)
(Kllall + M) 1| Ty 1611 ENE]
pl(a+p+1)
Further,

n n n
< WIELY il C(u(by) — a(t;))| + [vI[E] Y 1 — il |Caa(b;)| + [v]|E — E| Y 177;1|Cii (b))
j=1 j=1 =1
*WNv||E| Y1y |n; *|l47
I (lv]| IZJ_l\mIHM_ﬁ'|+ (i) + ko) IE]
pr(p+1) pr(p+1)
(Il + ko) [v| iy 71| ENE]
5 5).
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Similarly,
o IIV*IIIEIZ’LlIé‘jI (le* ||| + ko) | E|
E —E ; a;)| < / u—1i
EY ic ZC N (G VR e e (-
(II *[la]] + ko) j:l\GjIIEIIE\
P) 5).
and so
~ n m ~
|VEZ;;7jca( —vEZn]Cu )| +1E)  &Ci EZC,Cu
B AR 9
=116l T WVikj=1 Imil),
pr(ﬁ+1) | — || + Q3(61 + |v]6)
where

_ (e llal + ko) E| (1l + ko) iy 1,11 ENIE]

pr(B+1) pr(B+1)
(Il + ko) Ty 1,11 ENE]
pr(B+1)
At last we have

_ 4]l .

|Adi(t) — Au(t)| < WH” — 1,
i Klla|| i

|Bii(t) — Bu(t)| < m”” — i, (25)
3 [ -

|Cir(t) — Cu(t)| < Wllu — i,

Ca(t,a(t)) = Ca(tu(t))| < [|alllJu — .
Thus, from (21)—(25), we have

[ —all < Q"+ [[Al)lu = all + (1 + Q2 + Q3) (61 + [v]62)

where 0" = 1 Ty )+ 1)Ll -+ K]+ F D). Thatis,

1
pl"(a+/3+1)[ (
(1= = [|gDllu —all < (Q1 + Qo+ Q3) (61 + [v]62). (26)

From our hypotheses, we know that

0+
r>17Hy” lfill <1 and

_ 1 T+ B+ 1)[p"|
0= (w+ﬁ+l)[<21\¢1|+|v|]2|m 1)l + Kl + =T

F(a+pB+1ko, .

where

S SR 70 ol 1Y S C(a+B+1)ko
0 = i prmy PR 6+ 1 X )+ vl + 2
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Therefore,

0+ Q'r+Qp+ 7

r> ~ — o ’
1|l 1— il

and so
(1= llal)r > Q'r+Qp + 27

Then, Q*r < (1 — ||ji||)r. Since r > 0, thus 0 < 1 —Q* — ||ji||. Thus, from (26),
we obtain

lu —all < e= (10— [al) 7 (Q1 + Q2+ Q3)(61 + [v]é2).

That is, we proved that for every € > 0, there exist d; (¢) and d,(€) such that } " ; |&; —
§i| < 41 and Z?:l |17] — 17]| < 0y, then ||M — 17[” <e. O

4. Fractional Couple Hybrid Sturm-Liouville Differential Equation with Integral
Boundary Hybrid Condition

In this section, we deduce some fractional couple hybrid Sturm-Liouville differential
equation via integral boundary conditions.

Theorem 3. Let the hypotheses (D1)—(Dy) be satisfied. Let a number r > 0 exist such that

60 +4

> —= " gnd O+ ||| <1, (27)
T (@ [ [11© + {7l

where

o= 1 @le) —@(a) + |vi(v(e) — v(d))
pl(a+p+1) o) —@(a) —v(v(e) - v(d))]
Tla+p+1)[pl F(w+ﬁ+1)ko]

r(g+1) r+1 ~

+ gl + LRl

)+ M|h|| +

@(c) —@(a) # v(v(e) —v(d)), @(0) and v(0) are increasing functions and the integrals are
meant in the Riemann—Stieltjes sense for 0 < a < ¢ < d < e < 1. Then, there exists a solution
u € C(I,R) of the fractional couple hybrid Sturm—Liouville differential problem:

s~ G o

D p<t>Dc( i ) K(t,u(t) | + q(Du() = RO Fu(b)),

plu(t) —i(tu(t)) _ (28)
DC( Gt u() )t_o K(0,u(0)),

c u(9)—Cl(9,u(9)) _y e M(9)—€1(9,u(9)) .
A LG R Al L
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and u solves (28) if and only if u solves the integral equation
1 c
u(t) = €2(t,l/l(t)) L,’D(C) — C’U(ﬂ) — v(v(e) — U(d))( , AM(G)d(D(G)
—v [ Au(0)dv(6) + 1//6 w(©)dv(6) — | Bu(6)de(0)

—l—l//Cu Ydv(0 /Cu Ydo (6

~ Au(t) + Bu(t) + Cult >} Ot u(h),

Furthermore, if (B*) holds, then Df(u(t)) € C(I,R).

Proof. Let u be a solution of the problem (3) and (4). Assume that §; = @(t;) — @(t;_1),
a; € (tip, ), 0<a=ty <ty <h <..<tw=cn =0v(y)—v(t1) b € (7-1,7)
andd = 1 <71 <...< T = e < 1. Thus, the multi-point boundary hybrld cond1t10n (4)
will be

(b))
b))

o) — oy e = Glaua)y sy ) — by,
z;(co(tz) (D(tz—l))( €2(ai/u(ai)) )_ ];( (T]) (T]fl))( éz(b] u(

As the solution u of (3) and (4) is continuous, we have
m

. N ) u(“i) gl(“z (az)>
ril_rgol;(w(tz) @(ti—1))( o (s, u(a;)) )
u(b;) — g1 (bj, u(b;))

=v lim 3 u(T;) —ulT =
— ;Loo].;( (1) (Trl))( 0o (bj, u( bj))

or equivalently

c u(G)—Q(Q,u(Q)) - e u(e)_gl(e,u(e))
[ @y e = [ gy .

Now, from the continuity of the solution u in (5), we can obtain

u(t)z@(t,u(t))[ I (lim 3 (@(t) — @(ti1))Aula;)

im1Gi — VYL i1 1j mee

11*}00

v ;}gr;iw(rj) — ot 1)) Au(by) + v lim 2 — vt 1))Bu(by)
L

m

- Jim Y2(@(6) ~ 0(01))Bua) +v i 3 (0(5) ~o(5-1)Cu )

m

~ lim Y (@(t) = @(t;-1))Cu(a)) — Au(t) + Bu(t +Cu<t>] +a(tu(n)
i=1

—§2(t,u(t))[w(c)_w( 1 /CAu()d(DG —v/eAu()dv 9)

-I—V/;Bu(e)dv(G)—/ ()dco —i—v/ Cu(8)dv (0 /Cu )deo(6

— Au(t) + Bu(t) + Cu(t )} + C1(tu(t)).




Axioms 2021, 10, 65 24 of 26

and clearly u € C(I,R) solves the problem (28) if and only if solves (29). Similarly, by
taking ¢; = @(t;) — @(t;—1) and 17; = v(7;) — v(Tj_1) and m,n — oo in (Ds5), we get (27).
O

Example 3. Consider the fractional couple hybrid Sturm—Liouville differential problem

4 2 y(t) — sint +3 1
Dc5 <ln(€100 + t)Dc?) ( (t) 60 ( 2+1(n()1+t) )) - M(t)) + mu(t)
so0lu(t)] + THIn(1+f)

= cos?(t) tanh(u(t))

2 (u(t) — st +3
DCS (u( ) N ( 2+1(n()1+t) ))t—O = M(O),

a0 |u(t)] + TrIn(117) (30)
/% u(e)—6—09(7—0 (0)+3) 4030+ 1)
0 L| ( )|+2+ln(1+9)
200 T+In(1+06)
1 1 M(H)_%(m (9)+3)) 2
_ ( ‘ 4(6%),
N\ st lu(®)] + Frmire)
In this case, we take « = 2, B = 2, v = 1, v = 55, @(0) = 30+1, v(0) = 62,
p(t) = In(e' + 1), q(t) = m h(t) = COSB(t),f( (t)) = tanh(u(t)), C1(t,u(t)) =
SIS (Ayu(t) +3), ot u(t) = ohg|u(t)| + oy rg) and k(t,u(t)) = u(t). Therefore K = 1,

0
M =0,p=100, 9]l = g5, 1]l =1, @(0) =1, @(3) =2,v(3) = §,v(1) = 1. Also

[Cu(t,u(t)) =Gt o(t)] < 55 u(t) —o(t)]

and |Zo(t, u(t)) — a(t,0(t))| < [u(t) —o(t)|. Then, ||ull = x5, Il = g0, 1171 =185 =2,
1= % and ko = 0. Thus,

) —@(0) =1 # — — v(v(1) - U(%)) and © ~ 0.0468369692,

O+

r=12>01437418248 ~ 2“1
1= pl©—llal

and
|| 1]|© + ||fi]| =~ 0.0004722801 < 1,
Then, all the conditions of Theorem 3 are satisfied and the problem (30) has a solution.

Corollary 3. Let the hypotheses (D1)—(Dy) be satisfied. Let
)

1) - ) + vl - o)
pat B 1) [@(e) — @) — v(oe) v AT <
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where @(c) — @(a) # v(v(e) —v(d)), @(0) and v(0) are increasing functions, and the integrals
are meant in the Riemann—Stieltjes sense for 0 < a < ¢ < d < e < 1. Then, there exists a solution
u € C(I,R) of the fractional couple hybrid Sturm—Liouville differential problem:

Dt [pu)Df (u(t))} T q(u(t) = (O f(u(r),

DE(u(t))1=0 =0, (31)

Cc e
/ 1(0)de(6) = 1// 1(0)dv(6),
a d
and u solves (31) if and only if u solves the integral equation

ut) = s —am 1U(U(e) @ (/ﬂc Au(6)de(0) — y/; Au(6)dv(6)

@(c
+ u/; Bu(6)du(6) — / Bu(8)d(8)) — Au(t) + Bu(t).

Furthermore, Df(u(t)) € C(LR).

5. Conclusions

Scientists utilize various Sturm-Lioville equations for modeling various phenomena
and processes. This variety factor in investigating complicates the fractional Sturm-Lioville
equations and boosts scientists” ability for exact modelings of more phenomena. This
methods will lead scientists to make advanced software which help them to allow more
cost-free testing and less material consumption. In this paper, we investigate a coupled
hybrid version of the Sturm-Liouville differential equation. Indeed, we study the existence
of solutions for the coupled hybrid Sturm-Liouville differential equation with multi-point
boundary coupled hybrid condition. Furthermore, we study the existence of solutions for
the coupled hybrid Sturm-Liouville differential equation with integral boundary coupled
hybrid condition. We give an application and some examples to illustrate our results.
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