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Abstract: The purpose of this paper is to investigate some qualitative properties of solutions of
nonlinear fractional retarded Volterra integro-differential equations (FrRIDEs) with Caputo fractional
derivatives. These properties include uniform stability, asymptotic stability, Mittag–Leffer stability
and boundedness. The presented results are proved by defining an appropriate Lyapunov function
and applying the Lyapunov–Razumikhin method (LRM). Hence, some results that are available in
the literature are improved for the FrRIDEs and obtained under weaker conditions via the advantage
of the LRM. In order to illustrate the results, two examples are provided.
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1. Introduction

In recent years, a large number of books [1–3] and papers [4–24] have been devoted
to the study of various qualitative properties of solutions of scalars and systems of linear
and nonlinear Volterra integro-differential equations (IDEs) both without and with delay,
and that of some other kinds of differential equations due to their important applications
in population growth models, mathematical models of biological species living together,
mathematical models in physics, control engineering and signal processing, mathematical
models of heat transfer and radiation, standard closed electric RLC circuits, and so on.

In the relevant literature three methods, which are called the second Lyapunov method,
Lyapunov–Krasovskiı̆ method and Lyapunov–Razumikhin method, come to the forefront
to investigate qualitative properties of solutions of linear and nonlinear integro-differential
equations both without and with retardation. Among these methods, the second Lyapunov
method and Lyapunov–Krasovskiı̆ method are extensively used to study various qualitative
behaviors of solutions of integro-differential equations of integer order (see, [4–20]). To the
best of our knowledge, the Lyapunov–Razumikhin method is less used during that kind
of investigation [23,25,26]. However, when it is used for the appropriate problems, it is
more effective than the other two methods mentioned, the second Lyapunov method and
Lyapunov–Krasovskiı̆ method. To the best of our knowledge from the relevant literature,
the disadvantages of the Lyapunov second method and Lyapunov–Krasovskiı̆ method
are that both of these methods require the construction or definition of suitable Lyapunov
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function(s) and Lyapunov–Krasovskiı̆ functional(s), which can include double integrals
and additional terms. The construction of suitable Lyapunov function(s) and Lyapunov–
Krasovskiı̆ functional(s) for nonlinear functional differential equations remains an open
problem in the literature at this time. This case is known as a disadvantage. In addition,
the time derivatives of double integrals leads to stronger conditions for the negative or
negative -semi definite of the time derivative(s) of function(s) or functional(s) used as basic
tool(s) in the proof(s).

From this point of view, we would like to present the related work of Du [27]. Indeed,
in 1995, the author investigated the uniformly asymptotic stability of trivial solutions of
the system of nonlinear RIDEs of the form:

ẋ(t) = − f (t, x(t)) + g(t, x(t− τ)) +
∫ t

t−τ
h(t, s, x(s))ds (1)

or its equivalent system

ẋi(t) = − fi(t, x(t)) + gi(t, x(t− τ)) +

t∫
t−τ

hi(t, s, x(s))ds, (i = 1, 2, ..., n).

In this paper, we consider the following initial value problem (IVP) for the system
of nonlinear fractional retarded Volterra integro-differential equations (FrRIDEs) with
Caputo derivative:

C
to Dq

t x(t) =− f (t, x(t)) + g(t, x(t), x(t− τ)) +

t∫
t−τ

h(t, s, x(s))ds

+

t∫
t−ρ

p(t, s, x(s))ds + q(t, x(t), x(t− τ), x(t− ρ)), 0 < q < 1, (2)

x(t0 + θ) =φ(θ), x(t0) = φ(0) = x0, θ ∈ [−τ, 0] ∪ [−ρ, 0], (3)

where x = (x1, ..., xn)
T ∈ Rn, t ∈ R, s ∈ [−τ, ∞) ∪ [−ρ, ∞), τ and ρ are positive constants,

i.e., they are constant retardations, f = ( f1, ..., fn)
T ∈ C(R × Rn,Rn),

fi(t, x(t)) = fi(t, x1(t), ..., xn(t)), g = (g1, ..., gn)
T ∈ C(R × Rn × CH ,Rn),

CH =
{

φ : φ ∈ C and ‖φ‖t0
≤ H < ∞

}
, gi(t, x(t), x(t− τ)) = gi(t, x1(t), ..., xn(t), x1(t−

τ), ..., xn(t − τ)), h ∈ C(R× [−τ, ∞) × CH ,Rn), p ∈ C(R× [−ρ, ∞) × CH ,Rn) and q ∈
C(R×Rn × CH × CH ,Rn). It is supposed that f (t, 0) = 0, g(t, 0, 0) = 0, p(t, s, 0) = 0, and
h(t, s, 0) = 0. Then, the system of Volterra FrRIDEs (2) with a Caputo derivative includes
the zero solution, when q(.) ≡ 0.

In this article, motivated by the system of nonlinear RIDEs at Equation (1), i.e., the
result of Du [27] (Theorem 4), and those in the bibliography of this paper, we consider the
system of nonlinear FrRIDEs at Equation (2) with a Caputo derivative. As indicated above,
we plan to investigate the uniformly stability, asymptotic stability, and Mittag–Leffler
stability of the zero solution of Equation (2) with q ≡ 0, and the boundedness of all solutions
of Equation (2) with q 6= 0, by using the Razumikhin method (see [25,26,28–30]). It should
be noted that the Caputo derivative is applicable to continuously differentiable quadratic
Lyapunov functions to study qualitative properties of solutions of fractional differential
equations and fractional delay differential equations, etc. (see, for example, [25,26,31–37]).

It is known that the presence of the fractional derivatives in the system requires that
we use appropriately defined fractional derivatives of Lyapunov functions. In the literature,
four types of fractional derivatives are commonly applied to calculate the derivatives of
Lyapunov functions; these are the Caputo fractional derivative, the Caputo fractional
Dini derivative, the Riemann–Liouville fractional derivative, and the Grünwald–Letnikov
fractional derivative [32,36]. Not all of these will be employed here. The results pre-
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sented below are new contributions to the literature on delay fractional integro-differential
equations with Caputo derivatives.

2. Preliminaries

We begin by considering a system of fractional retarded differential equations (FrRDEs)
with a Caputo derivative of order q ∈ (0, 1) :

C
to Dq

t x(t) = F(t, xt), t ∈ J, J = [t0 − τ, T), T ≤ +∞, 0 ≤ t0 ≤ t, (4)

where x ∈ Rn, F(t, φ) ∈ J × C([−r, 0],Rn), F(t, 0) = 0, x(t0 + s) = φ(s) for s ∈ [−r, 0],
x(t+0 ) = φ(0), φ ∈ C([−r, 0],Rn), r > 0 is the constant retardation. For φ ∈ C([−r, 0],Rn),
we use the usual Euclidean norms ‖ . ‖ and ‖ . ‖t0

defined by

‖xt‖ = sup
−r≤s≤0

|x(t + s)| and ‖φ‖t0
= sup

t0−r≤s≤t0

‖φ(s)‖,

respectively.
Since the function F is continuous, for any initial data (t0, φ) ∈ R+ × C([−r, 0],Rn),

the initial value problem for the system of FrRDEs in Equation (4) has at the least one
solution x(t) = x(t, t0, φ) ∈ C1([t0, ∞),Rn). If the function F satisfies a Lipschitz condition
in x, then the solution is unique.

The following lemmas and other concepts are needed in the remainder of this paper.
Firstly, we give Lemma 1, which is a consequence of (Theorem 2) [31].

Lemma 1. Assume that for any initial data x(t0, φ0) ∈ R+ × C([−τ, 0],Rn), the system of
FrRIDEs in Equation (2) has a solution. If there exists a Lyapunov function V and strictly
increasing u, v ∈ C(R+,R+) with u(0) = v(0) = 0 and

u(‖x‖) ≤ V(t, x) ≤ v(‖x‖) for all t ≥ t0 − τ and all x ∈ Rn

and such that for any initial data (t0, φ0) ∈ R+ × C([−τ, 0],Rn) and any point s > t0 with

V(s + ξ, x(s + ξ)) < V(s, x(s)) for all ξ ∈ [−τ, 0),

the inequality
C
t0

Dq
t V(t, x(t)) ≤ 0 for all t ∈ (t0, s]

holds, then the zero function of Equation (2) with a zero initial condition is uniformly stable.

Lemma 2 ([31]). The zero solution of the FrRDEs in Equation (4) is asymptotically stable if there
exist a continuous function V(t, x), continuous increasing and positive definite functions u, v, ω
and a continuous non-decreasing function p(s) > s for s > 0 such that the following conditions
hold for all t ∈ J:

V(t, 0) ≡ 0, u(|x|) ≤ V(t, x) ≤ v(|x|) for all t ∈ J and all x ∈ Rn;
C
to Dq

t V(t, x(t)) ≤ −ω(|x(t)|) for all t ∈ (t0, s];

and
V(t + s, x(t + s)) < pV(t, x(t)) for all s ∈ [−τ, 0].

Lemma 3 ([38] Lemma 1). Let x(t) ∈ Rn be a vector of differentiable functions. Then for
any t ≥ t0,

1
2

C
to Dq

t (xTx) ≤ xT(t)C
to Dq

t x(t) for all q ∈ (0, 1],
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Lemma 4 ([38] Lemma 4). Let x(t) ∈ Rn be a vector of differentiable functions. Then, for
any t ≥ t0,

1
2

C
to Dq

t (xT Px) ≤ xT(t)PC
to Dq

t x(t) for all q ∈ (0, 1],

where P ∈ Rn×n is a constant, symmetric and positive definite matrix.

Definition 1 ([35] Definiton 3.1). The trivial solution of the system of FrRIDEs in Equation (2)
is said to be Mittag–Leffler stable provided the solution x(., φ) of (2) satisfies

‖x(t, φ)‖ ≤ [m(‖φ‖∞)Eq(−λ(t− t0)
q)]

b,

where q ∈ (0, 1), λ ≥ 0, b > 0,

‖φ‖∞ = max
θ∈[−τ,0]

‖φ(θ)‖,

m(0) = 0, m is a locally Lipschitz function and is non-negative, and

Eq(z) =
∞

∑
k=0

zk

Γ(qk + 1)

is the one-parameter Mittag–Leffler function, and Γ denotes the Gamma function.

Lemma 5 ([35] Lemma 2.1). Let x ∈ Rnbe a vector of differentiable functions. If a continuous
function V : [t0, ∞)×Rn → R+ satisfies

C
to Dq

t V(t, x(t)) ≤ −αV(t, x(t)),

then
V(t, x(t)) ≤ V(t0, x(t0))Eq(−α(t− t0)

q),

where α > 0 and 0 < q < 1.

Lemma 6 ([33] Property 1).

C
to Dq

t (ax(t) + by(t)) = aC
to Dq

t x(t) + bC
to Dq

t y(t),

where q ∈ (0, 1].

The contents of the next lemma are well known.

Lemma 7. Let x ∈ Rn, n ∈ N, n ≥ 1, and M ∈ Rn×n be a positive definite symmetric n× n-
matrix such that

λM ≥ λi(M) ≥ λm, (i = 1, 2, ..., n),

where λi(M) denotes the eigenvalues of M. Then

λM‖x‖2 ≥ 〈Mx, x〉 ≥ λm‖x‖2,

where λM and λm are the greatest and least eigenvalues of the matrix M, respectively.

We know that λM and λm are real and positive since M is a positive definite symmet-
ric matrix.

3. Razumikhin Analyses of Solutions

In the system of Volterra FrRIDEs in Equation (2), let q ≡ 0, i.e., we consider the
system in Equation (2) with Equation (3) replaced by
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C
to Dq

t x(t) =− f (t, x(t)) + g(t, x(t), x(t− τ)) +

t∫
t−τ

h(t, s, x(s))ds

+

t∫
t−ρ

p(t, s, x(s))ds. (5)

We will use the following hypotheses in our main results.

Hypothesis 1.

f (t, 0) = g(s, 0, 0) = h(t, s, 0) ≡ 0,

xi fi(t, x) > 0 as xi 6= 0, for t ∈ R+, all x ∈ Rn;

Hypothesis 2. The functions H and P satisfy the local Lipschitz condition in x, with

H(t, s, x) ≡
t∫

t−τ

‖h(t, s, x(s))‖ds, h(t, s, 0) = 0, ‖h(t, s, x(s))‖ ≤ h0‖x‖ for s ≤ t

and

P(t, s, x) ≡
t∫

t−ρ

‖p(t, s, x(s))‖ds, p(t, s, 0) = 0, ‖p(t, s, x(s))‖ ≤ p0‖x‖ for s ≤ t,

where h0 > 0, p0 > 0, h0, p0 ∈ R;

Hypothesis 3.

‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (τh0 + ρp0)‖x‖ ≥ 0 for t ∈ R+

and all x ∈ Rn, x(t− τ) ∈ CH ;

Hypothesis 4.

‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (τh0 + ρp0)‖x‖ ≥ ρ1‖x‖ for t ∈ R+

and all x ∈ Rn, x(t− τ) ∈ CH , where ρ1 > 0, ρ1 ∈ R;

Hypothesis 5. There exists q0 ∈ C(R+,R) such that

‖q(t, x, x(t− τ), x(t− ρ))‖ ≤ |q0(t)| ‖x‖ for all t ≥ t0, x ∈ Rn, x(t− τ),

x(t− ρ) ∈ CH ,

and
‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (q0(t) + τh0 + ρp0)‖x‖ ≥ 0 for t ∈ R+

and all x ∈ Rn, x(t− τ) ∈ CH .

Theorem 1. The zero solution of the system of FrRIDEs in Equation (5) with Caputo derivative is
uniformly stable if the conditions of Hypotheses 1–3 hold.

Proof. We define a Lyapunov function W := W(t, x) = W(t, x(t)) by

W(t, x) := ‖x‖ =
n

∑
i=1
|xi| = |x1|+ ... + |xn|. (6)
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For arbitrary initial data (t0, φ) ∈ R+ × C([−τ, 0] ∪ [−ρ, 0],Rn) and a point t > t0, it
follows that W(t, x) satisfies the Razumikhin condition (see [28–30])

W(t, x(t)) > W(t + s, x(t + s))

on the initial set [−τ, 0] ∪ [−ρ, 0], i.e.,

‖x(t)‖ > ‖x(t + s)‖ for all s ∈ [−τ, 0] ∪ [−ρ, 0].

Let x(t) = x(t, t0, φ) denote the solution of the IVP of Equation (5) such that x(t+0 + s) =
φ(s) for s ∈ [−τ, 0] ∪ [−ρ, 0]. From this point, it is clear that W(t, x) in Equation (6)
satisfies the relations

W(t, 0) = 0,
1
2
|x1|+ ... +

1
2
|xn| =

1
2
‖x‖ ≤W(t, x),

and
W(t, x) ≤ 5

4
|x1|+ ... +

5
4
|xn| =

5
4
‖x‖.

Taking the Caputo fractional derivative of the Lyapunov function W(t, x) in Equation (6)
along the system of FrRIDEs in Equation (5), making use the conditions of Hypotheses 1 and 2
and some elementary calculations, we obtain

C
to Dq

t W(t, x(t)) =C
to Dq

t (|x1(t)|+ |x2(t)|+ ... + |xn(t)|)
=C

to Dq
t |x1(t)|+ C

to Dq
t |x2(t)|+ ... + C

to Dq
t |xn(t)|

=(signx1(t))C
to Dq

t x1(t) + (signx2(t))C
to Dq

t x2(t) + ... + (signxn(t))C
to Dq

t xn(t)

=
n

∑
i=1

xi(t)C
to Dq

t xi(t)

=
n

∑
i=1

xi(t)[− fi(t, x(t)) + gi(t, x(t), x(t− τ))]

+
n

∑
i=1

xi(t)[
t∫

t−τ

hi(t, s, x(s))ds +
t∫

t−ρ

pi(t, s, x(s))ds]

≤
n

∑
i=1

[−| fi(t, x(t))|+ |gi(t, x(t), x(t− τ))|]

+
n

∑
i=1

[

t∫
t−τ

|hi(t, s, x(s))|ds +
t∫

t−ρ

|pi(t, s, x(s))|ds]

=− ‖ f (t, x(t))‖+ ‖g(t, x(t), x(t− τ))‖+
t∫

t−τ

‖h(t, s, x(s))‖ds

+

t∫
t−ρ

‖p(t, s, x(s))‖ds

≤− ‖ f (t, x(t))‖+ ‖g(t, x(t), x(t− τ))‖

+ h0

t∫
t−τ

‖x(s)‖ds + p0

t∫
t−ρ

‖x(s)‖ds. (7)
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Consider the integral terms such that

h0

t∫
t−τ

‖x(s)‖ds + p0

t∫
t−ρ

‖x(s)‖ds,

which are included in the inequality of Equation (7).
Letting s− t = ξ gives ds = dξ. Hence, for s = t− τ and s = t, it follows that ξ = −τ

and ξ = 0, respectively. Similarly, by the same transformation and way, for s = t − ρ
and s = t, we have ξ = −ρ and ξ = 0, respectively. In view of these estimates, using the
Razumikhin condition on the set s ∈ [−τ, 0] ∪ [−ρ, 0], we get

h0

t∫
t−τ

‖x(s)‖ds+p0

t∫
t−ρ

‖x(s)‖ds = h0

0∫
−τ

‖x(t + ξ)‖dξ + p0

0∫
−ρ

‖x(t + ξ)‖dξ

< h0

0∫
−τ

‖x(t)‖dξ + p0

0∫
−ρ

‖x(t)‖dξ

= h0‖x(t)‖
0∫
−τ

dξ + p0‖x(t)‖
0∫
−ρ

dξ

= h0τ‖x(t)‖+ p0ρ‖x(t)‖. (8)

Then, from Equations (7) and (8), it follows that

C
to Dq

t W(t, x(t)) ≤ −[‖ f (t, x(t))‖ − ‖g(t, x(t), x(t− τ))‖ − (τh0 + ρp0)‖x(t)‖] ≤ 0, (9)

that is, using the condition (H3), we have

C
to Dq

t W(t, x(t)) ≤ 0. (10)

Thus, from Lemma 1, the zero solution of the system of FrRIDEs in Equation (5) is uni-
formly stable.

Our next result deals with the asymptotic stability of the system in Equation (5).

Theorem 2. The zero solution of the system of FrRIDEs in Equation (5) is asymptotically stable if
the conditions of Hypotheses 1, 2 and 4 hold.

Proof. With W(t, x) defined as in Equation (6), from the conditions (H1), (H2), and (H4)
we easily conclude that

1
2
‖x‖ ≤W(t, x) ≤ 5

4
‖x‖

and
C
to Dq

t W(t, x(t)) ≤ −ρ1‖x(t)‖.

Hence, the zero solution of the system of FrRIDEs in Equation (5) is asymptotically stable
by Lemma 2.

The following theorem shows the Mittag–Leffler stability of the system FrRIDEs in
Equation (5).

Theorem 3. The zero solution of the system of FrRIDEs in Equation (5) is Mittag–Leffler stable if
the conditions of Hypotheses 1, 2 and 4 hold
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Proof. Again with the Lyapunov function W(t, x) defined as in Equation (6), from the
conditions of Hypotheses 1, 2 and 4, it is clear that

C
to Dq

t W(t, x(t)) ≤ −ρ1‖x(t)‖ = −ρ1W(t, x(t))

holds.
Using Lemma 5, we obtain

‖x(t)‖ = W(t, x(t)) ≤W(t0, x(t0))Eq(−ρ1(t− t0)
q)

= ‖x(t0)‖Eq(−ρ1(t− t0)
q)

=
[
m(x(t0))Eq(−ρ1(t− t0)

q)
]

≤
[
m(‖φ‖∞)Eq(−ρ1(t− t0)

q)
]

with m(x) = ‖x(t)‖, which is locally Lipschitz. Thus, the proof of Theorem 3 is completed
by using Definition 1.

4. Boundedness of Solutions of System in Equation (2)

We now turn our attention to the perturbed system in Equation (2).

Theorem 4. The solutions of the system of FrRIDEs in Equation (2) are bounded if the conditions
of Hypotheses 1, 2 and 5 hold.

Proof. We again consider the Lyapunov function defined in Equation (6). Calculating
the time derivative of the Lyapunov function W(t, x) along the system of FrRIDEs in
Equation (2) and using the conditions in Hypotheses 1, 2 and 5, we obtain

C
to Dq

t W(t, x(t)) ≤− [‖ f (t, x(t))‖ − ‖g(t, x(t), x(t− τ))‖ − (τh0 + ρp0)]‖x‖
+ ‖q(t, x, x(t− τ), x(t− ρ))‖
≤− ‖ f (t, x(t))‖+ ‖g(t, x(t), x(t− τ))‖+ (q(t) + τh0 + ρp0)‖x‖ ≤ 0.

Hence, we have
W(t, x(t)) ≤W(t0, φ(t0)).

As a result of this inequality, it follows that

W(t, x(t)) = ‖x(t)‖ = |x1(t)|+ ... + |xn(t)|
≤ ‖x(t0)‖ = |x1(t0)|+ ... + |xn(t0)| = W(t0, φ(t0)).

Let
K0 = ‖x(t0)‖ = |x1(t0)|+ ... + |xn(t0)|.

Hence, we obtain

‖x(t)‖ = |x1(t)|+ ... + |xn(t)| ≤ K0 for t ∈ R+.

Hence, it is clear that if t → ∞, then ‖x(t)‖ ≤ K0. This inequality completes the proof of
Theorem 4.

Remark 1. Here, if q = 1, the boundedness of solutions as t→ ∞ was proved without using the
Gronwall inequality, see Theorem 4. By this fact, we have removed some unnecessary conditions, and
we can obtain some boundedness results in the literature under less restrictive conditions (see, for
example, [12,13] and the bibliography therein). Here, we will not state the details of the discussions.

We now give the following example and solve the given system using MATLAB
software. In fact, the problem was solved using the 4th order Runge–Kutta method in
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MATLAB. Here, the graphs of Figures 1–4 show the behaviors of paths of the solutions of
Example 1 for different values of fractional order q.

Example 1. Consider the system of nonlinear Volterra IFrRDEs with Caputo derivative of or-
der q ∈ (0, 1):

(
C
to

Dq
t x1(t)

C
to

Dq
t x2(t)

)
=

 12x1(t) +
x1(t)

1+t2+x2
1(t)

12x2(t) +
x2(t)

1+t2+x2
2(t)

+

 x1(t)
1+t2+x2

1(t−
1
10 )

x2(t)
1+t2+x2

2(t−
1
10 )


+

t∫
t− 1

10

 sin x1(s)
1+t2+s2+x2

1(s)
sin x2(s)

1+t2+s2+x2
2(s)

ds +
t∫

t− 1
5

 x1(s)
1+t2+s2+x2

1(s)
x2(s)

1+t2+s2+x2
2(s)

ds, (11)

where t ≥ 1
10 , τ = 1

10 and ρ = 1
5 are the constant retardations and x(t) = x ∈ R2.

Comparing the system of IFrRDEs with Caputo derivative in Equation (11) with that
given by Equation (5), we have the following formulas:

f (t, x) = f (t, x1, x2) =

[
12x1 +

x1
1+t2+x2

1
12x2 +

x2
1+t2+x2

2

]
,

f (t, 0) = f (t, 0, 0) = 0,

f1(t, x1, x2) = 12x1 +
x1

1 + t2 + x2
1

,

x1 f1(t, x1, x2) = 12x2
1 +

x2
1

1 + t2 + x2
1
> 0,

x1 6= 0,

f2(t, x1, x2) = 12x2 +
x2

1 + t2 + x2
2

,

x2 f2(t, x1, x2) = 12x2
2 +

x2
2

1 + t2 + x2
2
> 0,

x2 6= 0,

−x1(t + 0) f1(t, x1, x2)− x2(t + 0) f2(t, x1, x2)

= −12x1sgnx1(t + 0)− x1sgnx1(t + 0)
1 + t2 + x2

1

−12x2sgnx2(t + 0)− x2sgnx2(t + 0)
1 + t2 + x2

2

≤ −11|x1| − 11|x2| = −11‖x‖ ≤ −‖ f (t, x)‖,

g(t, x, x(t− τ)) = g(t, x1, x2, x1(t−
1

10
), x2(t−

1
10

)) =

 x1
1+t2+x2

1(t−
1

10 )x2
1+t2+x2

2(t−
1

10 )

,

‖g(t, x, x(t− τ))‖ =
∥∥∥∥g(t, x1, x2, x1(t−

1
10

), x2(t−
1

10
))

∥∥∥∥ =

∥∥∥∥∥∥
 x1

1+t2+x2
1(t−

1
10 )x2

1+t2+x2
2(t−

1
10 )

 ∥∥∥∥∥∥
≤ |x1|

1 + t2 + x2
1(t−

1
10 )

+
|x2|

1 + t2 + x2
2(t−

1
10 )
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≤ |x1|+ |x2| = ‖x‖,

h(t, s, x) = h(t, s, x1, x2) =

 sin x1
1+t2+s2+x2

1
sin x2

1+t2+s2+x2
2

,

h(t, s, 0) = h(t, s, 0, 0) = 0,

‖h(t, s, x)‖ = ‖h(t, s, x1, x2)‖ =

∥∥∥∥∥∥
 sin x1

1+t2+s2+x2
1

sin x2
1+t2+s2+x2

2

 ∥∥∥∥∥∥
=

|sin x1|
1 + t2 + s2 + x2

1
+

|sin x2|
1 + t2 + s2 + x2

2

≤ |sin x1|+ |sin x2| ≤ |x1|+ |x2| = ‖x‖,

where h0 = 1,

H(t, s, x) ≡
t∫

t−τ

‖h(t, s, x(s))‖ds =
t∫

t− 1
10

∥∥∥∥∥∥
 sin x1(s)

1+t2+s2+x2
1(s)

sin x2(s)
1+t2+s2+x2

2(s)

 ∥∥∥∥∥∥ds

=

t∫
t− 1

10

|sin x1(s)|
1 + t2 + s2 + x2

1(s)
ds

+

t∫
t− 1

10

|sin x2(s)|
1 + t2 + s2 + x2

2(s)
ds

≤
t∫

t− 1
10

|sin x1(s)|ds +
t∫

t− 1
10

|sin x2(s)|ds

≤
t∫

t− 1
10

|x1(s)|ds +
t∫

t− 1
10

|x2(s)|ds =
t∫

t− 1
10

‖x(s)‖ds.

Let s− t = ξ, which implies ds = dξ. Then, for s = t− 1
10 , we derive ξ = − 1

10 , and
similarly for s = t, we have ξ = 0.

In view of these findings, using the given Razumikhin condition [28–30] on the initial
segment [− 1

10 , 0], it follows that

t∫
t− 1

10

‖x(s)‖ds =
0∫

− 1
10

‖x(t + ξ)‖dξ <

0∫
− 1

10

‖x(t)‖dξ =
1
10
‖x‖.

For this step, we consider the term:

P(t, s, x) ≡
t∫

t−ρ

‖p(t, s, x(s))‖ds
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with

p(t, s, x) = p(t, s, x1, x2) =

[ x1
1+t2+s2+x2

1x2
1+t2+s2+x2

2

]
, ρ =

1
5

.

In that case, we derive
p(t, s, 0, 0) = 0

and

‖p(t, s, x)‖ = ‖p(t, s, x1, x2)‖ =
∥∥∥∥∥
[ x1

1+t2+s2+x2
1x2

1+t2+s2+x2
2

] ∥∥∥∥∥
=

|x1|
1 + t2 + s2 + x2

1
+

|x2|
1 + t2 + s2 + x2

2

≤ |x1|+ |x2| = ‖x‖, where p0 = 1.

For the next step, it follows that

P(t, s, x) ≡
t∫

t−ρ

‖p(t, s, x(s))‖ds =
t∫

t− 1
5

∥∥∥∥∥∥
 x1(s)

1+t2+s2+x2
1(s)

x2(s)
1+t2+s2+x2

2(s)

 ∥∥∥∥∥∥ds

≤
t∫

t− 1
5

|x1(s)|ds +
t∫

t− 1
5

|x2(s)|ds =
t∫

t− 1
5

‖x(s)‖ds.

Let s− t = ξ, which implies ds = dξ. Then, for s = t− 1
5 , we derive ξ = − 1

5 . Similarly,
for s = t, we have ξ = 0. Then,

t∫
t− 1

5

‖x(s)‖ds =
0∫
− 1

5

‖x(t + ξ)‖dξ <

0∫
− 1

5

‖x(t)‖dξ =
1
5
‖x‖.

Hence, bringing together the above results, we derive

‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (τh0 + ρp0)‖x‖

≥ ‖ f (t, x)‖ −
∥∥∥∥g(t, x, x(t− 1

2
))

∥∥∥∥− (
1
10

+
1
5
)‖x‖

≥ 11‖x‖ − ‖x‖ − 3
10
‖x‖ = (9.7)‖x‖, where ρ1 =

97
10

. (12)

In the light of the above discussion, the conditions of Hypotheses 1–3 of Theorem 1,
and the conditions of Hypotheses 1, 2 and 4 of Theorems 2 and 3 hold. For this reason, the
zero solution of the system of FrRIDEs in Equation (11) with Caputo derivative is uniformly
stable, asymptotically stable and Mittag–Leffler stable.

In Figures 1–4, the system of FrRIDEs (11) was solved and the orbits of the solutions
x1(t), x2(t) were drawn for τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .
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Figure 1. The behaviors of uniformly, asymptotically and Mittag–Leffler stable solution x1(t) of the
system of of fractional retarded Volterra integro-differential equations (FrRIDEs) in Equation (11) for
q = 0.5, τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .

Figure 2. The behaviors of uniformly, asymptotically and Mittag–Leffler stable solution x2(t) of the
system of of FrRIDEs in Equation (11) for q = 0.5, τ = 1

10 , ρ = 1
5 and different initial values when

t ≥ 1
10 .
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Figure 3. The behaviors of uniformly, asymptotically and Mittag–Leffler stable solution x1(t) of the
system of of FrRIDEs in Equation (11) for q = 0.9, τ = 1

10 , ρ = 1
5 and different initial values when

t ≥ 1
10 .

Figure 4. The behaviors of uniformly, asymptotically and Mittag–Leffler stable solution x2(t) of the
system of of FrRIDEs in Equation (11) for q = 0.9, τ = 1

10 , ρ = 1
5 and different initial values and

different initial values when t ≥ 1
10 .

For the case q(.) 6= 0, we now give the second example and solve it using MATLAB
software.
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Example 2. Consider the system of nonlinear Volterra FrRIDEs with Caputo derivative of or-
der q ∈ (0, 1):

(
C
to

Dq
t x1(t)

C
to

Dq
t x2(t)

)
=

 12x1(t) +
x1(t)

1+t2+x2
1(t)

12x2(t) +
x2(t)

1+t2+x2
2(t)

+

 x1(t)
1+t2+x2

1(t−
1

10 )
x2(t)

1+t2+x2
2(t−

1
10 )


+

t∫
t− 1

10

 sin x1(s)
1+t2+s2+x2

1(s)
sin x2(s)

1+t2+s2+x2
2(s)

ds +
t∫

t− 1
5

 x1(s)
1+t2+s2+x2

1(s)
x2(s)

1+t2+s2+x2
2(s)

ds

+

 exp(t)x1
1+exp(2t)+|x1(t− 1

10 )|+|x1(t− 1
5 )|

exp(t)x2
1+exp(2t)+|x2(t− 1

10 )|+|x2(t− 1
5 )|

, (13)

where t ≥ 1
10 , τ = 1

10 and ρ = 1
5 are the constant delay terms and x(t) = x ∈ R2.

Comparing the systems of FrRIDEs in Equation (13) with Caputo derivative and
Equation (2), we note that the functions − f (t, x), g(t, x, x(t− 1

10 )), h(t, s, x) and p(t, s, x)
are the same as those in Example 1. Then, the satisfaction of the conditions of Hypotheses 1
and 2 have been shown in Example 1. For the verification of the condition of Hypothesis 5,
we consider the last term of Equation (13):

q(t, x, x(t− 1
10

), x(t− 1
5
)) =

 exp(t)x1
1+exp(2t)+|x1(t− 1

10 )|+|x1(t− 1
5 )|

exp(t)x2
1+exp(2t)+|x2(t− 1

10 )|+|x2(t− 1
5 )|


Clearly, it follows that

∣∣∣∣q(t, x, x(t− 1
10

), x(t− 1
5
))

∣∣∣∣ =
∣∣∣∣∣∣
 exp(t)x1

1+exp(2t)+|x1(t− 1
10 )|+|x1(t− 1

5 )|
exp(t)x2

1+exp(2t)+|x2(t− 1
10 )|+|x2(t− 1

5 )|

∣∣∣∣∣∣
=

exp(t)|x1|
1 + exp(2t) +

∣∣∣x1(t− 1
10 )
∣∣∣+ ∣∣∣x1(t− 1

5 )
∣∣∣

+
exp(t)|x2|

1 + exp(2t) +
∣∣∣x2(t− 1

10 )
∣∣∣+ ∣∣∣x2(t− 1

5 )
∣∣∣

≤ exp(t)|x1|
1 + exp(2t)

+
exp(t)|x2|

1 + exp(2t)

=
exp(t)

1 + exp(2t)
[|x1|+ |x2|] = |q0(t)|‖x‖,

where

|q0(t)| =
exp(t)

1 + exp(2t)
≤ 1

2
, |x1|+ |x2| = ‖x‖. (14)

In view of Equations (12) and (14), it is clear that

‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (q0(t) + τh0 + ρp0)‖x‖ ≥ (9.7)‖x‖ − exp(t)
1 + exp(2t)

‖x‖

≥ (9.7)‖x‖ − 1
2
‖x‖ = (9.2)‖x‖.

As a consequence of this inequality, the condition of Hypothesis 5 holds. Thus, the solutions
of the system of FrRIDEs in Equation (13) with Caputo derivative are bounded as t→ ∞ .
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The following graphs of Figures 5–8 show the behaviors of paths of the solutions of
Example 2 for different values of fractional order q.

Figure 5. The boundedness of solution x1(t) of the system of IFrRDEs in Equation (13) for q = 0.5,
τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .

Figure 6. The boundedness of solution x2(t) of the system of IFrRDEs in Equation (13) for q = 0.5,
τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .
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Figure 7. The boundedness of solution x1(t) of the system of IFrRDEs in Equation (13) for q = 0.9,
τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .

Figure 8. The boundedness of solution x2(t) of the system of IFrRDEs in Equation (13) for q = 0.5,
τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .

5. Discussions

We would like to explain the contributions of this paper to the relevant literature as
the following.

(1) To the best of our knowledge, in the literature, there are numerous papers on the
uniform stability, asymptotic stability, Mittag–Leffer stability and boundedness of frac-
tional differential equations of integer order both with and without delay. However,
there are no papers in the literature on the asymptotic stability, Mittag–Leffer stability
and boundedness of the FrRIDEs in Equation (2) with Caputo fractional derivative,
except the two papers of Hristova and Tunç [25,26], which include some results on
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the uniform stability. Next, qualitative behaviors of the FrRIDEs in Equation (2) have
not been discussed in the literature yet. Therefore, the results of this paper are new,
original and they have scientific novelty.

(2) If q = 1 in the FrRIDEs in Equation (2), then we have the system of RIDEs

ẋ(t) =− f (t, x(t)) + g(t, x(t), x(t− τ)) +

t∫
t−τ

h(t, s, x(s))ds

+

t∫
t−ρ

p(t, s, x(s))ds + q(t, x(t), x(t− τ), x(t− ρ)). (15)

It is clear that the system of RIDEs in Equation (15) includes, extends and improves
the system of RIDEs in Equation (1). This is a contribution to the topic and the
relevant literature.

(3) In Du [27] (Theorem 4), the uniform asymptotic stability of the zero solution of
the system of RIDEs in Equation (1) was proved using the Lyapunov–Krasovskiı̆
functional:

V(t, x(.)) := ‖x‖+
t∫

t−τ

‖g(s, x(s))‖ds +
t∫

t−τ

∞∫
t

‖h(u, s, x(s))‖duds.

We can prove the same result, [27] (Theorem 4) using the Lyapunov-Razumikhin
method and the Lyapunov function

W(t, x) := ‖x‖ =
n

∑
i=1
|xi| = |x1|+ ... + |xn|.

Clearly, this Lyapunov function does not include the term
t∫

t−τ

‖g(s, x(s))‖ds. The time

derivative of this term gives

d
dt

t∫
t−τ

‖g(s, x(s))‖ds = ‖g(t, x(t))‖ − ‖g(t− τ, x(t− τ))‖.

Based on this approach, we can obtain the result of Du [27] (Theorem 4) under weaker
conditions. Namely, we remove the following hypothesis from Du [27] (Theorem 4):

‖g(t− τ, x(t− τ))‖ − ‖g(t, x(t− τ))‖ ≥ 0, t ∈ R+.

To the best of our information, this is a stronger condition and the satisfaction of this
hypothesis can be difficult. Removing this condition from that of Du [27] (Theorem 4)
leads to an important and strong advantage during the applications of that kind
of equation.

(4) Du [27] (Theorem 4) proved the related theorem without giving an example in a
particular case, which verifies the hypotheses of [27] (Theorem 4). In this paper, we
provided two examples and solved them with MATLAB software, which verifies the
applicability of the results of this paper.

6. Conclusions

This paper has proposed an effective way to discuss some qualitative properties of
solutions of nonlinear Volterra integro-differential equations with Caputo fractional deriva-
tives and multiple constant retardations. Here, a new mathematical model consisting of
non-linear fractional Volterra integro-differential equations with Caputo fractional deriva-
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tives and two constant retardations was considered. New sufficient conditions for the
uniform stability, asymptotic stability and Mittag–Leffer stability of the zero solution, as
well as the boundedness of the solutions were obtained. The presented results were proved
by defining an appropriate Lyapunov function and applying the Lyapunov–Razumikhin
method. An advantage of the new function and method used here is that they eliminate us-
ing Gronwall’s inequality. Compared to related results in the literature, the conditions here
are new, more general, simple and convenient to apply. Examples to show the application
of the theorems have been included.
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