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Abstract: In a recent article, the first and second kinds of multivariate Chebyshev polynomials
of fractional degree, and the relevant integral repesentations, have been studied. In this article,
we introduce the first and second kinds of pseudo-Lucas functions of fractional degree, and we
show possible applications of these new functions. For the first kind, we compute the fractional
Newton sum rules of any orthogonal polynomial set starting from the entries of the Jacobi matrix.
For the second kind, the representation formulas for the fractional powers of a r× r matrix, already
introduced by using the pseudo-Chebyshev functions, are extended to the Lucas case.
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1. Introduction

Applications of special functions and polynomials can be found in the solution to
every problem in mathematical physics, engineering, statistics, biology, and in general, in
applied mathematics. Among the numerous contributions, we want to mention here only
a few articles in support of this pleonastic statement [1–4]. An important class of these
functions is given by the hypergeometric functions, which unifies, through the introduction
of suitable parameters, almost all special functions (see, e.g., [5–10]).

The most widely used in this area are the Chebyshev polynomials and the functions
that constitute their extension to the case of the fractional index, which was recently
introduced [11,12].

The classical Chebyshev polynomials have been generalized to the multivariate
case [13–17]. A simple connection between the multivariate Lucas [18,19] and the Cheby-
shev polynomials has been shown in [20], and integral representations and generating
functions [21] were derived.

Multivariate versions of such polynomials have also proved important. The case of
pseudo-Chebyshev functions of fractional degree, generalizing the results in [11,12], have
been considered in [22,23].

Multivariate Lucas polynomials of the second kind have proved useful for computing
integer-exponent powers of a matrix [24]. In this regard it will not be useless to remember,
once again, that every holomorphic function of a matrix, and in particular the exponential,
is nothing but the polynomial interpolating the function on the matrix’s spectrum and then
it is useless to consider expansions in series of the given matrix. However, this definition is
also used today, despite it having been known of since the time of Sylvester [25]. Another
useful observation in this area is the fact that when writing the powers of a matrix using
the second kind of Lucas polynomials, only the invariants of the matrix are used—that is,
the elements of the matrix and not the eigenvalues (and sometimes the eigenvectors, as in
the case of the exponential). This results in a considerable economy of calculation.
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Therefore, the advantage of considering Lucas polynomials consists of reducing the
computational cost of such operations, and can be applied also in related problems, such as
the solutions of linear dynamical systems [4] and the computation of sums of the powers
of the zeros of a set of orthogonal polynomials [26].

Chebyshev multivariate functions of the second kind with a fractional index have
recently been used for computing the roots of nonsingular complex matrices [22], and those
of the first kind for computing the moments, with fractional exponent, of the density of
zeros of a set of orthogonal polynomials [23]

It remains to define the multivariate Lucas polynomials of the first and second kind of
fractional index (called for simplicity, pseudo-Lucas functions). This topic is considered in
this paper to complement the results achieved previously.

In particular, since the computation of roots of a non-singular complex matrix by using
the second kind of pseudo-Lucas functions is rather equivalent to that recently proposed
exploiting the second kind of pseudo-Chebyshev functions [22,23,27], we limit ourselves
to recall the the case of the square root a 3 × 3 matrix, but the obtained formulas can
be extended to more general roots, with the due cautions indicated in [23], in relation
to the multiplicities.

The first kind of pseudo-Lucas functions are applied, in what follows, to derive
the fractional Newton sum rules for a general set of orthogonal polynomials, defined
by a three-term recurrence relation (through its Jacobi matrix), extending the equations
proven in [26,28–30].

2. Basic Definitions

We consider the r× r , matrix A = (aij), , whose invariants are

u1 := tr A , u2 :=
1,r

∑
i<j

∣∣∣∣ aii aij
aji ajj

∣∣∣∣ , · · · , ur := detA . (1)

Using, for shortness, u := (u1, u2, . . . , ur), we denote by P(λ) = P(u; λ), its character-
istic polynomial, so that the characteristic equation is:

P(u; λ) := det(λI −A) = λr − u1λr−1 + u2λr−2 + . . . + (−1)rur = 0 . (2)

2.1. Recalling the Multivariate Lucas Polynomials

The Fk,n(u) functions are the basis of the r-dimensional vectorial space of solu-
tions of the homogeneous linear bilateral recurrence relation with constant coefficients
uk (k = 1, 2, . . . , r), (with ur 6= 0):

Xn = u1Xn−1 − u2Xn−2 + · · ·+ (−1)r−1urXn−r , (n ∈ Z) , (3)

whose characteristic equation coincides with (2).
All the properties of these functions and their applications can be found in [19,20].
The bilateral sequence {F1,n(u)}n∈Z was called, by É. Lucas [18], the fundamental

solution of the recursion (3) (in French “fonction fondamentale”).
It satisfies the initial conditions:

F1,−1 = 0, F1,0 = 0, . . . , F1,r−3 = 0, F1,r−2 = 1 . (4)

In what follows, we write:

Φn(u) := F1,n(u) = F1,n(u1, u2, . . . , ur), (n ∈ Z) , (5)

for denoting the multivariate second kind of Lucas polynomials, (short form—MSK
Lucas polynomials).
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For the integer powers of the matrix A, in [20,24] the representation formula was
shown:

An = F1,n−1(u)Ar−1 + F2,n−1(u)Ar−2 + · · ·+ Fr,n−1(u)I . (6)

Since all the Fk,n can be expressed in terms of the F1,n polynomials, the polynomials
Φn(u), defined by putting

Φn(u) := F1,n(u) = F1,n(u1, u2, . . . , ur) , (n ∈ Z) , (7)

appear as the natural tool for representing the integer powers of A, [20].
Another basic solution of the recursion (3) is the sum of integer powers of the roots of

the characteristic Equation (2). This solution is denoted by {Ψ(u)}n∈Z, and is called the
primordial solution (in French “fonction primordiale” by É. Lucas [18]):

Ψn(u) := Ψn(u1, u2, . . . , ur) , (n ∈ Z) . (8)

We use for them the acronym MFK Lucas polynomials.
These polynomials are computed by using the initial conditions derived from the New-

ton formulas, [20]. More precisely, denoting by λ1, λ2, . . . , λr the roots of the characteristic
Equation (2), we put:

Ψr−1 = u1 =
r

∑
h=1

λh

Ψr = u1Ψr−1 − 2u2 = u2
1 − 2u2 =

r

∑
h=1

λ2
h

. . .

Ψ2r−2 = u1Ψ2r−3 − u2Ψ2r−4 + · · ·+ (−1)r−2ur−1Ψr−1 + (−1)r−1rur =
r

∑
h=1

λr
h ,

(9)

For n > 2r− 2 we get:

Ψn = u1Ψn−1 − u2Ψn−2 + · · ·+ (−1)r−1urΨn−r =
r

∑
h=1

λn−r+2
h (10)

We have, in particular:

Ψr−2 = r =
r

∑
h=1

λ0
h .

The choice of the initial value of the indices is done in such a way that in the particular
case r = 2, and by having u1 = 2x and u2 = 1, the classical univariate Chebyshev
polynomials, with the same indexes, are recovered.

When r > 2, as it was remarked in [20], the MSK and MFK Lucas polynomials are
related, in a very simple way, to the multivariate Chebyshev polynomials, introduced by R.
Lidl and C. Wells [16], R. Lidl [15], and M. Bruschi and P.E. Ricci [21], and studied by K.B.
Dunn and R. Lidl [14], and R.J. Beerends [13]).

Integral Representations

An integral form of the SKM and FKM Lucas polynomials has been proven in [22,23].

Theorem 1. The SKM Lucas polynomials are represented by the integral formula:

Φn(u) =
1

2 π i

∮
γ

λn+1

P(λ)
dλ . (11)
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Theorem 2. The FKM Lucas polynomials are represented by the integral formula:

Ψn(u) =
1

2 π i

∮
γ

λn−r+2 P′(λ)
P(λ)

dλ . (12)

The integral representations (11) and (12) have been used in [22,23] for defining the
multivariate pseudo-Chebyshev functions of fractional order.

3. The Multivariate Pseudo-Lucas Functions

Using the integral representations (11) and (12), it is possible to define the second
(first) kind of multivariate Lucas functions for rational values of their indexes, which will
be denoted with the acronyms SKMP-L functions and FKMP-L functions. In fact we can
say by definition:

Definition 1. The SKMP-L functions are defined by the integral representation:

Φ p
q
(u) =

1
2 π i

∮
γ

λ
p
q +1

P(λ)
dλ . (13)

The FKMP-L functions are defined by the integral representation:

Ψ p
q
(u) =

1
2 π i

∮
γ

λ
p
q−r+2 P′(λ)

P(λ)
dλ . (14)

Note that the computation of the integrals in Equations (11)–(14) can be obtained
without knowing the roots λ1, λ2, . . . , λr, using the Gershgorin circle theorem and choosing
as γ a circle, centered at the origin, surrounding all the eigenvalues.

3.1. Applications of the SKMP-L Functions

The SKMP-L functions can be applied in computing matrix roots, (and in particular,
square roots), essentially with the same method used in [22,23], where the second kind of
pseudo-Chebyshev (shortly SKMP-C) functions have been exploited. (See also [27], where
the multiplicity problem of the roots was analyzed).

Here we show, for simplicity, only the case of the square root of a 3× 3 non-singular
complex matrix A, applying the SKMP-L functions to the particular case considered
in Section 2.1.

Using definition (13), assuming p/q = 1/2, Equation (6) becomes:

A1/2 = Φ−1/2(u)A2 + [−u2Φ−3/2(u) + u3Φ−5/2(u)]A+ u3Φ−3/2(u)I , (15)

where

Φ−1/2(u) =
1

2 π i

∮
γ

λ1/2

P(λ)
dλ , Φ−3/2(u) =

1
2 π i

∮
γ

λ−1/2

P(λ)
dλ ,

Φ−5/2(u) =
1

2 π i

∮
γ

λ−3/2

P(λ)
dλ .

The above equation can be obviously generalized to an r× r matrix and to a general
fractional exponent, according to the results proven in [22,23] using the SKMP-C functions.

3.2. Applications of the FKMP-L Functions

In [22,23] the SKMP-L functions have been applied in computing matrix roots (in par-
ticular, square roots) (see also [27], where the multiplicity problem of the roots was analyzed).
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In this Section we consider possible applications of the FKMP-L functions. As a matter
of fact, in an old article (see [31] and the references therein), the FKM Lucas polynomials,
according to Equation (12), have been used in order to represent the moments of the density
of zeros of an orthogonal polynomial set, defined by a three term recurrence relation.
The definition of the nth moment of the density of zeros of a polynomial of degree r

µ
(r)
n :=

1
r

r

∑
k=1

λn
k ,

can be extended to the fractional degree by the following one, which could be useful in
applied mathematics and statistics:

Definition 2. The fractional moments of the density of zeros of the polynomial P(λ), whose zeros
are given by λ1, λ2, . . . , λr, can be defined as

µ
(r)
p
q

:=
1
r

r

∑
k=1

λ
p
q
k , (16)

and are represented as

µ
(r)
p
q

=
1
r

Ψ p
q +r−2(u) =

1
2 π i

∮
γ

λ
p
q P′(λ)
r P(λ)

dλ =
1
r

[
λ

p
q
1 + λ

p
q
2 + · · ·+ λ

p
q
r

]
. (17)

4. A Recursion for the Coefficients of Orthogonal Polynomial Sets

We consider a polynomial set defined through a three-term recurrence relation:{
P−1 = 0, P0 = 1 ,
Pn(x) = (x− αn) Pn−1(x)− β2

n−1 Pn−2(x) , (n ≥ 1) ,
(18)

with real parameters αn and βn, and βn−1 6= 0. According to a theorem by Favard (see
e.g., [32]), the corresponding polynomials belong to a set orthogonal with respect to a
suitable measure.

The parameters are usually arranged in the tridiagonal symmetric Jacobi matrix Jn:

Jn =


α1 β1 0 0 . . . 0 0
β1 α2 β2 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . αn−1 βn−1
0 0 0 0 . . . βn−1 αn

 , (19)

characterizing the considered set of orthogonal polynomials. In several articles the Newton
sum rules of such polynomials have been determined, without computing the relevant
zeros, in different frameworks. This was done starting from the Jacobi matrix in [31]; from
the ordinary differential equation in [28]; from the three term recurrence relation in [30].
Additionally, the case of associated and co-recursive polynomials has been considered
in [29].

In what follows, in order to limit our approach, we will only consider the case of
polynomials generated by the recurrence (18).

In analogy to the preceding formulas, we put: u(n) := (u(1,n), u(2,n) . . . , u(n,n)), and

Pn(x) =
n

∑
k=0

(−1)k u(k,n) xn−k , (n = 1, 2, . . . ) , (20)
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and denote by

x1,n, x2,n, . . . , xn,n , (21)

the zeros of Pn(x), and by

yh(n) =
n

∑
k=1

xh
k,n , (h = 1, 2, . . . ) , (22)

the Newton sum rules corresponding to the zeros (21).
In [30] the following results were proven:

Theorem 3. For the coefficients u(k,n) appearing in Equation (20), the following recursion holds:

u(k,n) = u(k,n−1) + αn u(k−1,n−1) − β2
n−1 u(k−2,n−2) , (23)

(k = 1, 2, . . . , n; n = 1, 2, . . . ), where, by definition,

u(n,n−1) = u(−1,n−1) = u(−1,n−2) = u(−2,n−2) = 0 .

According to the Newton–Girard formulas, the starting values of the recursion in
Equation (23) are given by:

u(1,n) = y1(n) ,

u(2,n) =
[
u(1,n) y1(n)− y2(n)

]
/2 =

[
y2

1(n)− y2(n)
]
/2 ,

u(3,n) =
[
−u(1,n) y2(n) + u(2,n) y1(n) + y3(n)

]
/3 =

[
y2

1(n)− y2(n)
]
/6 ,

. . .
u(n,n) =

[
(−1)nu(1,n) yn−1(n) + (−1)n−1u(2,n) yn−2(n) + . . .

+ u(n−1,n) y1(n) + (−1)n−1yn(n)
]
/n .

(24)

Theorem 4. The coefficients of Pn(x) are recursively linked to the entries of the Jacobi matrix (19)
by Equation (23), and the relevant Newton sum rules are represented as

yh(n) =
n

∑
k=1

xh
k,n = Ψh+n−2

(
u(n)

)
, (h = 1, 2, . . . ) . (25)

5. The Case of Fractional Moments

Comparing Equations (9)–(12) with (14), the following result immediately follows:

Theorem 5. For any fixed rational numbers p/q, q 6= 0, and for any polynomial degree n, the
rational moments of the density of zeros of the polynomial Pn(x) defined in (20) can be computed as

µ
(n)
p
q

:=
1
n

n

∑
k=1

x
p
q
k,n

=
y p

q
(n)

n
=

1
n

Ψ p
q +n−2(u(n)) =

1
2 n π i

∮
γ

ξ
p
q P′n(ξ)
Pn(ξ)

dξ .

(26)

Using Equation (26), the computation of rational moments is performed without
knowing the zeros of Pn(x), since it is sufficient to assume as γ a circle, centered at the
origin, surrounding all the zeros of Pn(x). The value of the first member follows from the
computation of the contour integral.
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Remark 1. Recalling Cauchy’s bounds for the roots of polynomials [33,34], it immediately follows
that the radius of the circle γ could be chosen as

2 + max

{
|u(n−1,n)|
|u(n,n)|

,
|u(n−2,n)|
|u(n,n)|

, · · · ,
1

|u(n,n)|

}
. (27)

Remark 2. Note that the fractional powers have several determinations, depending on the denomi-
nator q, but in the examined case, dealing with orthogonal polynomials, all the zeros are real, so
in the preceding equations the roots are supposed to be the arithmetical values, and in the contour
integral the powers of ξ are intended to be the principal values.

6. Numerical Computations

In this section a few checks of the preceding Equation (26) have been performed by the
second author, considering particular Jacobi polynomials as the second kind of Chebyshev
polynomial U4(z), the Legendre polynomial P5(z), the third kind of Chebyshev polynomial
V4(z), and the fourth kind of Chebyshev polynomial W5(z) (see [35]).

The numerical computations confirm the results of Section 6, unless an error is smaller
than the machine error.

6.1. Second Kind of Chebyshev Polynomial U4(z)

We have: U4(z) = 16z4 − 12z2 + 1. By choosing p/q = 2/3, and denoting by ξk,
(k = 1, 2, 3, 4) the zeros of U4(z), we find:

µ
(4)
2
3

=
1

8πi

∮
γ

ξ
2
3 (64ξ3 − 24ξ)

16ξ4 − 12ξ2 + 1
dξ =

1
4

4

∑
k=1

Res

[
ξ

2
3
(
4ξ3 − 2

3 ξ
)

ξ4 − 3
4 ξ + 1

16
, ξk

]

= 0.662656547986741 =
1
4

4

∑
k=1

ξ
2
3
k .

6.2. Legendre Polynomial P5(z)

We have: P5(z) = 1
8
(
63z5 − 70z3 + 15z

)
. By choosing p/q = 2/5, and denoting by

ξk, (k = 1, 2, 3, 4, 5) the zeros of P5(z), we find:

µ
(5)
2
5

=
1

10πi

∮
γ

ξ
2
5

(
5ξ4 − 10

3 ξ2 + 5
21 ξ
)

ξ5 − 10
9 ξ3 + 5

21 ξ
dξ =

1
5

5

∑
k=1

Res

 ξ
2
5

(
5ξ4 − 10

3 ξ2 + 5
21 ξ
)

ξ5 − 10
9 ξ3 + 5

21 ξ
, ξk


= 0.696809509722981 =

1
5

5

∑
k=1

ξ
2
5
k .

6.3. Third Kind of Chebyshev Polynomial V4(z)

We have: V4(z) = P(1/2,−1/2)
4 (z) = 35

128
(
164 + 8z3 − 12z2 − 4z + 1

)
. By choosing

p/q = 2/3, and denoting by ξk, (k = 1, 2, 3, 4) the zeros of V4(z), we find:

µ
(4)
2
3

=
1

8πi

∮
γ

ξ
2
3 (4ξ3 + 3

2 ξ2 − 3
2 ξ − 1

4 )

ξ4 + 1
2 ξ3 − 3

4 ξ2 − 1
4 ξ + 1

16
dξ

=
1
4

4

∑
k=1

Res

 ξ
2
3

(
4ξ3 + 3

2 ξ2 − 3
2 ξ − 1

4

)
ξ4 + 1

2 ξ3 − 3
4 ξ2 − 1

4 ξ + 1
16

, ξk

 = 0.6844515633130234 =
1
4

4

∑
k=1

ξ
2
3
k .
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6.4. Fourth Kind Chebyshev Polynomial W5(z)

We have: W5(z) = P(−1/2,1/2)
5 (z) = 63

256
(
32z5 − 16z4 − 32z3 + 12z2 + 6z− 1

)
. By

choosing p/q = 6/5, and denoting by ξk, (k = 1, 2, 3, 4, 5) the zeros of W5(z), we find:

µ
(5)
6
5

=
1

10πi

∮
γ

ξ
6
5 (5ξ4 − 2ξ3 − 3ξ2 + 3

4 ξ + 3
16 )

ξ5 − 1
2 ξ4 − ξ3 + 3

8 ξ2 + 3
16 ξ − 1

32
dξ

=
1
5

5

∑
k=1

Res

[
ξ

6
5
(
5ξ4 − 2ξ3 − 3ξ2 + 3

4 ξ + 3
16
)

ξ5 − 1
2 ξ4 − ξ3 + 3

8 ξ2 + 3
16 ξ − 1

32
, ξk

]
= 0.5621593212493105

=
1
5

5

∑
k=1

ξ
6
5
k .

7. Conclusions

By using the integral representation formulas for the multivariate second (first) kind
of Lucas polynomials, it was possible to define the second (first) kind of pseudo-Lucas
functions of fractional order. An application of the second kind of pseudo-Lucas functions
have been touched on in the problem of computing matrix roots, according to the same
technique exploited by using the second kind of pseudo-Chebyshev functions. Furthermore,
recalling preceding papers on the sum rules for zeros of polynomials, we have used the
first kind of pseudo-Lucas functions of fractional degree in order to compute the fractional
moments of the density of zeros for an orthogonal polynomial set, starting from its Jacobi
matrix and avoiding the knowledge of zeros.
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