

Article An Affine Model of a Riemann Surface Associated to a Schwarz–Christoffel Mapping

Richard Cushman

Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada; r.h.cushman@gmail.com

Abstract: In this paper, we construct an affine model of a Riemann surface with a flat Riemannian metric associated to a Schwarz–Christoffel mapping of the upper half plane onto a rational triangle. We explain the relation between the geodesics on this Riemann surface and billiard motions in a regular stellated *n*-gon in the complex plane.

Keywords: Schwarz-Christofell; Rieman surface; discrete subgroup

MSC: 30C30; 30F10

1. Introduction

We give a section by section summary of the contents of this paper.

In §1 we define the Schwarz–Christoffel conformal map F_Q (2) of the complex plane less $\{0,1\}$ onto a quadrilateral Q, which is formed by reflecting a rational triangle $T_{n_0n_1n_\infty}$ in the real axis.

In §2, following Aurell and Itzykson [1] we associate to the map F_Q the affine Riemann surface S in \mathbb{C}^2 defined by $\eta^n = \xi^{n-n_0}(1-\xi)^{n-n_1}$, where \mathbb{C}^2 has coordinates (ξ, η) and $n = n_0 + n_1 + n_\infty$. Thinking of S as a branched covering

$$\pi: \mathcal{S} \to \mathbb{C} \setminus \{0, 1\} : (\xi, \eta) \mapsto \xi$$

with branch points at (0,0), (1,0) and ∞ corresponding to the branch values 0, 1, and ∞ , respectively, we show that S has genus $\frac{1}{2}(n+2-(d_0+d_1+d_\infty))$, where $d_j = \gcd(n, n_j)$ for $j = 0, 1, \infty$. Let S_{reg} be the set of nonsingular points of S. The map $\hat{\pi} = \pi_{|S_{\text{reg}}} : S_{\text{reg}} \rightarrow \mathbb{C} \setminus \{0,1\}$ is a holomorphic *n*-fold covering map with covering group the cyclic group generated by

$$\mathcal{R}: \mathcal{S}_{\text{reg}} \subseteq \mathbb{C}^2 \to \mathcal{S}_{\text{reg}} \subseteq \mathbb{C}^2: (\xi, \eta) \mapsto (\xi, e^{2\pi i/n} \eta).$$

In §3 we build a model \widetilde{S}_{reg} of the affine Riemann surface S_{reg} . The quadrilateral Q is holomorphically diffeomorphic to a fundamental domain \mathcal{D} of the action of the covering group on S_{reg} . Rotating Q by

$$R: \mathbb{C} \to \mathbb{C}: z \mapsto e^{2\pi i/n} z$$

gives a regular stellated *n*-gon K^* , which is invariant under the dihedral group *G* generated by the mappings *R* and $U : \mathbb{C} \to \mathbb{C} : z \mapsto \overline{z}$. We study the group theoretic properties of K^* . We show that K^* is invariant under the reflection $S^{(j)} = R^{n_j}U$ in the ray $\{t e^{2\pi i n_n/n} \in \mathbb{C} \mid t \ge 0\}$ for $j = 0, 1, \infty$. To construct the model \widetilde{S}_{reg} of the affine Riemann surface S_{reg} from the regular stellated *n*-gon K^* we follow Richens and Berry [2]. We identify two nonadjacent closed edges of $cl(K^*)$, the closure of K^* , if one edge is obtained from the other by a reflection $S_k^{(j)} = R^k S^{(j)} R^{-k}$ for some $j = 0, 1, \infty$. The identification space $(cl(K^*) \setminus O)^{\sim}$, where O is the center of K^* , is a complex manifold except at points

Citation: Cushman, R. An Affine Model of a Riemann Surface Associated to a Schwarz–Christoffel Mapping. *Axioms* **2021**, *10*, *49*. https://doi.org/10.3390/ axioms10020049

Academic Editor: Anna Maria Fino

Received: 19 January 2021 Accepted: 23 March 2021 Published: 1 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). corresponding to O or a vertex of $cl(K^*)$, where it has a conical singularity. The action of *G* on $K^* \setminus O$ induces a free and proper action on the identification space $(K^* \setminus O)^{\sim}$, whose orbit space \widetilde{S}_{reg} is a complex manifold with compact closure in \mathbb{CP}^2 , with genus $\frac{1}{2}(n+2-(d_0+d_1+d_\infty))$. Moreover \widetilde{S}_{reg} is holomorphically diffeomorphic to the affine Riemann surface S_{reg} .

In §4, we construct an affine model \widetilde{S}_{reg} of the Riemann surface S_{reg} . In other words, we find a discrete subgroup \mathfrak{G} of the 2-dimensional Euclidean group E(2), which acts freely and properly on $\mathbb{C} \setminus \mathbb{V}^+$ such that after forming an identification space $(\mathbb{C} \setminus \mathbb{V}^+)^\sim$ the \mathfrak{G} orbit space $(\mathbb{C} \setminus \mathbb{V}^+)^\sim /\mathfrak{G}$ is holomorphically diffeomorphic to S_{reg} . We now describe the group \mathfrak{G} . Reflect the regular stellated *n*-gon K^* in its edges, and then in the edges of the reflected regular stellated *n*-gons, et cetera. We obtain a group \mathcal{T} generated by 2n translations τ_k so that $\tau_1^{\ell_1} \circ \cdots \circ \tau_{2n}^{\ell_{2n}}$ sends the center O of K^* to the center of a repeatedly reflected reflected *n*-gon. The set \mathbb{V}^+ is the union of the image under $\tau_1^{\ell_1} \circ \cdots \circ \tau_{2n}^{\ell_{2n}}$ of a vertex of $cl(K^*)$ and its center O for every $(\ell_1, \ldots, \ell_{2n}) \in (\mathbb{Z}_{\geq 0})^{2n}$. Let \mathfrak{G} be the semi-direct product $G \ltimes \mathcal{T}$. The fundamental domain of the \mathfrak{G} action on $\mathbb{C} \setminus \mathbb{V}^+$ is $cl(K^*)$ less its vertices and center. Identifying equivalent open edges of $K^* \setminus O$ and then taking G orbits, it follows that the affine model \widetilde{S}_{reg} of the affine Riemann surface S_{reg} is the \mathfrak{G} orbit space $(\mathbb{C} \setminus \mathbb{V}^+)^\sim /\mathfrak{G}$.

In §5 we show that the mapping

$$\delta_Q: \mathcal{D} \subseteq \mathcal{S}_{\text{reg}} \subseteq \mathbb{C}^2 \to Q \subseteq \mathbb{C}: (\xi, \eta) \mapsto (F_Q \circ \widehat{\pi})(\xi, \eta) = z$$

straightens the nowhere vanishing holomorphic vector field *X* (11) on S_{reg} , that is, $T_{(\xi,\eta)}\delta_Q X(\xi,\eta) = \frac{\partial}{\partial z}\Big|_{z=\delta_Q(\xi,\eta)}$ for every $(\xi,\eta) \in \mathcal{D}$. We pull back the flat metric $\gamma = dz \circ d\overline{z}$ on \mathbb{C} by δ_Q to the metric Γ on S_{reg} . So δ_Q is a local developing map. Since $\frac{\partial}{\partial z}$ is the geodesic vector field on $(Q, \gamma|_Q)$, it follows that *X* is a holomorphic geodesic vector field on (S_{reg}, Γ) .

In §6 we study the geometry of the developing map δ_Q . The dihedral group \mathcal{G} generated by \mathcal{R} and $\mathcal{U} : S_{\text{reg}} \to S_{\text{reg}} : (\xi, \eta) \mapsto (\overline{\xi}, \overline{\eta})$ is a group of isometries of (S_{reg}, Γ) . The group G generated by \mathcal{R} and $\mathcal{U} : \mathbb{C} \to \mathbb{C} : z \mapsto \overline{z}$ is a group of isometries of $(Q, \gamma|_Q)$. Extend the holomorphic map δ_Q to a holomorphic map map $\delta_{K^*} : S_{\text{reg}} \to K^*$ by requiring that $R^{j} \circ \delta_{K^*} = \delta_Q \circ \mathcal{R}^{j}$ on $\mathcal{R}^{-j}(\mathcal{D})$. This works since \mathcal{D} is a fundamental domain of the action of the covering group on S_{reg} , which implies $S_{\text{reg}} = \prod_{0 \le j \le n} \mathcal{R}^{j}(\mathcal{D})$. Thus, the local holomorphic diffeomorphism δ_{K^*} intertwines the \mathcal{G} action on (S_{reg}, Γ) with the G action on $(K^*, \gamma|_{K^*})$ and intertwines the local geodesic flow of the holomorphic geodesic vector field X with the local geodesic flow of the holomorphic vector field $\frac{\partial}{\partial z}$.

Following Richens and Berry [2] we impose the condition: when a geodesic, starting at a point in $int(cl(K^*) \setminus O)$, meets ∂K^* it undergoes a reflection in the edge of K^* that it meets. Such geodesics never meet a vertex of $cl(K^*)$. Thus, this type of geodesic becomes a billiard motion in $K^* \setminus O$, which is defined for all time. Billiard motions in polygons have been extensively studied. For a nice overview see Berger ([3], chpt. XI) and references therein. An argument shows that $\hat{\mathcal{G}}$ invariant geodesics on $(\mathcal{S}_{reg}, \Gamma)$ correspond under the map $\delta_{K^* \setminus O}$ to billiard motions on $(K^* \setminus O, \gamma|_{(K^* \setminus O)})$.

Repeatedly reflecting a billiard motion in an edge of $K^* \setminus O$ and suitable edges of suitable \mathcal{T} translations of $K^* \setminus O$ gives a straight line motion λ on $\mathbb{C} \setminus \mathbb{V}^+$. The image of the segment of a billiard motion, where λ intersects $K^* \setminus O$, in the orbit space $(\mathbb{C} \setminus \mathbb{V}^+)^{\sim} / \mathfrak{G} = \widetilde{S}_{\text{reg}}$, is a geodesic. Here we use the flat Riemannian metric $\widehat{\gamma}$ on $\widetilde{S}_{\text{reg}}$, which is induced by the \mathfrak{G} invariant Euclidean metric γ on $\mathbb{C} \setminus \mathbb{V}^+$ restricted to $K^* \setminus O$. Consequently, $(\widetilde{S}_{\text{reg}}, \widehat{\gamma})$ is an affine analogue of the affine Riemann surface S_{reg} thought of as the orbit space of a discrete subgroup of PGl(2, \mathbb{C}) acting on \mathbb{C} with the Poincaré metric, see Weyl [4].

2. A Schwarz-Christoffel Mapping

Consider the conformal Schwarz-Christoffel mapping

$$F_T: \mathbb{C}^+ = \{\xi \in \mathbb{C} \,|\, \text{Im}\, \xi \ge 0\} \to T = T_{n_0 n_1 n_\infty} \subseteq \mathbb{C}: \xi \mapsto \int_0^{\xi} \frac{\mathrm{d}w}{w^{1 - \frac{n_0}{n}} \,(1 - w)^{1 - \frac{n_1}{n}}} = z \quad (1)$$

of the upper half plane \mathbb{C}^+ to the rational triangle $T = T_{n_0n_1n_\infty}$ with interior angles $\frac{n_0}{n}\pi$, $\frac{n_1}{n}\pi$, and $\frac{n_\infty}{n}\pi$, see Figure 1. Here $n_0 + n_1 + n_\infty = n$ and $n_j \in \mathbb{Z}_{\geq 1}$ for j = 0, 1 and ∞ with $1 \le n_0 \le n_1 \le n_\infty$. Because n_∞ is greater than or equal to either n_0 or n_1 , it follows that the corresponding side *OC* is the longest side of the triangle $T = \triangle OCD$.

In the integrand of (1) we use the following choice of complex *n*th root. Suppose that $w \in \mathbb{C} \setminus \{0,1\}$. Let $w = r_0 e^{i\theta_0}$ and $1 - w = r_1 e^{i\theta_1}$ where $r_0, r_1 \in \mathbb{R}_{>0}$ and $\theta_0, \theta_1 \in [0, 2\pi)$. For $w \in (0, 1)$ on the real axis we have $\theta_0 = \theta_1 = 0$, $w = r_0 > 0$, and $1 - w = r_1 > 0$. So $(w^{n-n_0}(1-w)^{n-n_1})^{1/n} = (r_0^{n-n_0}r_1^{n-n_1})^{1/n}$. In general for $w \in \mathbb{C} \setminus \{0,1\}$, we have

$$(w^{n-n_0}(1-w)^{n-n_1})^{1/n} = (r_0^{n-n_0}r_1^{n-n_1})^{1/n}e^{i((n-n_0)\theta_0 + (n-n_1)\theta_1)/n}.$$

From (1) we get

$$F_T(0) = 0, F_T(1) = C, \text{ and } F_T(\infty) = D,$$

where $C = \int_0^1 \frac{\mathrm{d}w}{w^{1-\frac{n_0}{n}}(1-w)^{1-\frac{n_1}{n}}}$ and $D = \mathrm{e}^{\frac{n_0}{n}\pi i} \left(\frac{\sin\frac{n_1}{n}\pi}{\sin\frac{n_0}{n}}\right) C$. Consequently, the bijective holomorphic mapping F_T sends $\mathrm{int}(\mathbb{C}^+ \setminus \{0,1\})$, the interior of the upper half plane less 0 and 1, onto $\mathrm{int} T$, the interior of the rational triangle $T = T_{n_0n_1n_\infty}$, and sends the boundary of $\mathbb{C}^+ \setminus \{0,1\}$ to the edges of ∂T less their end points O, C and D, see Figure 1. Thus, the image of $\mathbb{C}^+ \setminus \{0,1\}$ under F_T is $\mathrm{cl}(T) \setminus \{O, C, D\}$. Here $\mathrm{cl}(T)$ is the closure of T in \mathbb{C} .

Figure 1. The rational triangle $T = T_{n_0 n_1 n_{\infty}}$.

Because $F_T|_{[0,1]}$ is real valued, we may use the Schwarz reflection principle to extend F_T to the holomorphic diffeomorphism

$$F_Q: \mathbb{C} \setminus \{0,1\} \to Q = T \cup \overline{T} \subseteq \mathbb{C}: \xi \mapsto z = \begin{cases} F_T(\xi), & \text{if } \xi \in \mathbb{C}^+ \setminus \{0,1\}\\ \overline{F_T(\overline{\xi})}, & \text{if } \xi \in \overline{\mathbb{C}^+ \setminus \{0,1\}}. \end{cases}$$
(2)

Here $Q = Q_{n_0n_1n_\infty}$ is a quadrilateral with internal angles $2\pi \frac{n_0}{n}$, $\pi \frac{n_\infty}{n}$, $2\pi \frac{n_1}{n}$, and $\pi \frac{n_\infty}{n}$ and vertices at O, D, C, and \overline{D} , see Figure 2. The conformal mapping F_Q sends $\mathbb{C} \setminus \{0, 1\}$ onto $cl(Q) \setminus \{O, D, C, \overline{D}\}$.

Figure 2. The rational quadrilateral *Q*.

3. The Geometry of an Affine Riemann Surface

Let ξ and η be coordinate functions on \mathbb{C}^2 . Consider the affine Riemann surface $S = S_{n_0,n_1,n_\infty}$ in \mathbb{C}^2 , associated to the holomorphic mapping F_Q , defined by

$$g(\xi,\eta) = \eta^n - \xi^{n-n_0} (1-\xi)^{n-n_1} = 0,$$
(3)

see Aurell and Itzykson [1]. We determine the singular points of S by solving

$$0 = dg(\xi, \eta)$$

= $-(n - n_0)\xi^{n - n_0 - 1}(1 - \xi)^{n - n_1 - 1}(1 - \frac{2n - n_0 - n_1}{n - n_0}\xi) d\xi + n\eta^{n - 1} d\eta$ (4)

For $(\xi, \eta) \in S$, we have $dg(\xi, \eta) = 0$ if and only if $(\xi, \eta) = (0, 0)$ or (1, 0). Thus, the set S_{sing} of singular points of S is $\{(0, 0), (1, 0)\}$. So the affine Riemann surface $S_{\text{reg}} = S \setminus S_{\text{sing}}$ is a complex submanifold of \mathbb{C}^2 . Actually, $S_{\text{reg}} \subseteq \mathbb{C}^2 \setminus \{\eta = 0\}$, for if $(\xi, \eta) \in S$ and $\eta = 0$, then either $\xi = 0$ or $\xi = 1$.

Lemma 1. Topologically S_{reg} is a compact Riemann surface $\overline{S} \subseteq \mathbb{CP}^2$ of genus $g = \frac{1}{2}(n+2-(d_0+d_1+d_\infty))$ less three points: [0:0:1], [1:0:1], and [0:1:0]. Here $d_j = \text{gcd}(n_j, n)$ for $j = 0, 1, \infty$.

Proof. Consider the (projective) Riemann surface $\overline{S} \subseteq \mathbb{CP}^2$ specified by the condition $[\xi : \eta : \zeta] \in \overline{S}$ if and only if

$$G(\xi,\eta,\zeta) = \zeta^{n-n_0-n_1}\eta^n - \xi^{n-n_0}(\zeta-\xi)^{n-n_1} = 0.$$
(5)

Thinking of *G* as a polynomial in η with coefficients which are polynomials in ξ and ζ , we may view \overline{S} as the branched covering

$$\overline{\pi}: \mathcal{S} \subseteq \mathbb{CP}^2 \to \mathbb{CP}: [\xi:\eta:\zeta] \mapsto [\xi:\zeta]. \tag{6}$$

When $\zeta = 1$ we get the affine branched covering

$$\pi = \overline{\pi} | \mathcal{S} : \mathcal{S} = \overline{\mathcal{S}} \cap \{ \zeta = 1 \} \subseteq \mathbb{C}^2 \to \mathbb{C} = \mathbb{CP} \cap \{ \zeta = 1 \} : (\xi, \eta) \mapsto \xi.$$
(7)

From (3) it follows that $\eta = \omega_k (\xi^{n-n_0} (1-\xi)^{n-n_1})^{1/n}$, where ω_k for k = 0, 1, ..., n-1 is an *n*th root of unity with and $()^{1/n}$ is the complex *n*th root used in the definition of the mapping F_T (1). Thus, the branched covering mapping $\overline{\pi}$ (6) has *n* "sheets" except at its branch points. Since

$$\eta = \xi^{1 - \frac{n_0}{n}} (1 - \xi)^{1 - \frac{n_1}{n}} = \xi^{1 - \frac{n_0}{n}} \left(1 - (1 - \frac{n_1}{n})\xi + \cdots \right)$$
(8a)

and

$$\eta = (1 - \xi)^{1 - \frac{n_1}{n}} (1 - (1 - \xi))^{1 - \frac{n_0}{n}}$$

$$= (1-\xi)^{1-\frac{n_1}{n}} \left(1 - (1-\frac{n_0}{n})(1-\xi) + \cdots\right),$$
(8b)

it follows that $\xi = 0$ and $\xi = 1$ are branch points of the mapping $\overline{\pi}$ of degree $\frac{n}{d_0}$ and $\frac{n}{d_1}$, since $d_j = \gcd(n, n_j) = \gcd(n - n_j, n_j)$ for j = 0, 1, see McKean and Moll ([5], p. 39). Because

$$\eta = \left(\frac{1}{\xi}\right)^{-\left(1-\frac{n_0}{n}\right)} \left(1-\frac{1}{\frac{1}{\xi}}\right)^{1-\frac{n_1}{n}} = (-1)^{1-\frac{n_1}{n}} \xi^{2-\frac{n_0+n_1}{n}} (1-\frac{1}{\xi})^{1-\frac{n_1}{n}}$$
$$= (-1)^{1-\frac{n_1}{n}} \xi^{1+\frac{n_\infty}{n}} \left(1-(1-\frac{n_1}{n})\frac{1}{\xi}+\cdots\right), \tag{8c}$$

 ∞ is a branch point of the mapping $\overline{\pi}$ of degree $\frac{n}{d_{\infty}}$, where $d_{\infty} = \gcd(n, n_{\infty})$. Hence the ramification index of 0, 1, ∞ is $d_0(\frac{n}{d_0} - 1) = n - d_0$, $n - d_1$, and $n - d_{\infty}$, respectively. Thus, the map $\overline{\pi}$ has d_0 fewer sheets at 0, d_1 fewer at 1, and d_{∞} fewer at ∞ than an *n*-fold covering of \mathbb{CP} . Thus, the total ramification index *r* of the mapping $\overline{\pi}$ is $r = (n - d_0) + (n - d_1) + (n - d_{\infty})$. By the Riemann–Hurwitz formula, the genus *g* of \overline{S} is r = 2n + 2g - 2. In other words,

$$g = \frac{1}{2} \left(n + 2 - (d_0 + d_1 + d_\infty) \right).$$
(9)

Consequently, the affine Riemann surface S is the compact connected surface \overline{S} less the point at ∞ , namely, $S = \overline{S} \setminus \{[0:1:0]\}$. So S_{reg} is the compact connected surface \overline{S} less three points: [0:0:1], [1:0:1], and [0:1:0]. \Box

Examples of $\overline{S} = \overline{S}_{n_0, n_1, n_\infty}$

- 1. $n_0 = 1, n_0 = 1, n_\infty = 4; n = 6$. So $d_0 = 1, d_1 = 1, d_\infty = 2$. Hence 2g = 8 4 = 4. So g = 2.
- 2. $n_0 = 2, n_1 = 2, n_\infty = 3; n = 7$. So $d_0 = d_1 = d_\infty = 1$. Hence 2g = 9 3 = 6. So g = 3.

Table 1 below lists all the partitions $\{n_1, n_0, n_\infty\}$ of n, which give a low genus Riemann surface $\overline{S} = \overline{S}_{n_0, n_1, n_\infty}$

g	$n_0, n_1, n_\infty; n$	8	$n_0, n_1, n_\infty; n$
1	1, 1, 1; 3	3	2, 2, 3; 7
1	1, 1, 2; 4	3	1, 3, 3; 7
1	1, 2, 3; 6	3	1, 1, 5; 7
2	1, 2, 2; 5	3	2, 3, 3; 8
2	1, 1, 3; 5	3	1, 2, 5; 8
2	1, 1, 4; 6	3	1, 1, 6; 8
2	1, 3, 4; 8	3	2, 3, 4; 9
2	2, 3, 5; 10	3	1, 3, 5; 9
2	1, 4, 5; 10	3	1, 2, 6; 9
		3	3, 4, 5; 12
		3	1, 5, 6; 12
		3	1, 3, 8; 12
		3	2, 5, 7; 14
		3	1, 6, 7; 14

Table 1. Based on the table in Aurell and Itzykson ([1], p. 193).

Corollary 1. If *n* is an odd prime number and $\{n_1, n_0, n_\infty\}$ is a partition of *n* into three parts, then the genus of \overline{S} is $\frac{1}{2}(n-1)$.

Proof. Because *n* is prime, we get $d_0 = d_1 = d_\infty = 1$. Using the formula $g = \frac{1}{2}(n+2-(d_0+d_1+d_\infty))$ we obtain $g = \frac{1}{2}(n-1)$. \Box

Corollary 2. The singular points of the Riemann surface \overline{S} are [0:0:1], [1:0:1], and if $n_{\infty} > 1$ then also [0:1:0].

Proof. A point $[\xi : \eta : \zeta] \in \overline{S}_{sing}$ if and only if $[\xi : \eta : \zeta] \in \overline{S}$, that is,

$$0 = G(\xi, \eta, \zeta) = \zeta^{n - (n_0 + n_1)} \eta^n - \xi^{n - n_0} (\zeta - \xi)^{n - n_1}$$
(10a)

and

$$(0,0,0) = DG(\xi,\eta,\zeta) = \left(-\xi^{n-n_0-1}(\zeta-\xi)^{n-n_1-1}((n-n_0)(\zeta-\xi)-(n-n_1)\xi), n\eta^{n-1}\zeta^{n-(n_0+n_1)}, (n-(n_0+n_1))\eta^n\zeta^{n-n_0-n_1-1} - (n-n_1)\xi^{n-n_0}(\zeta-\xi)^{n-n_1-1}\right)$$
(10b)

We need only check the points [0:0:1], [1:0:1] and [0:1:0]. Since the first two points are singular points of $S = \overline{S} \setminus \{[0:1:0]\}$, they are singular points of \overline{S} . Thus, we need to see if [0:1:0] is a singular point of \overline{S} . Substituting (0,1,0) into the right hand side of (10b) we get $\{ {}^{(0,0,1), \text{ if } n_{\infty} = n - (n_0 + n_1) = 1 \atop (0,0,0), \text{ if } n_{\infty} > 1.}$ Thus, [0:1:0] is a singular point of \overline{S} only if $n_{\infty} > 1$. \Box

Lemma 2. The mapping

$$\widehat{\pi} = \pi | \mathcal{S}_{\text{reg}} : \mathcal{S}_{\text{reg}} \subseteq \mathbb{C}^2 \to \mathbb{C} \setminus \{0, 1\} : (\xi, \eta) \mapsto \xi \tag{11}$$

is a surjective holomorphic local diffeomorphism.

Proof. Let $(\xi, \eta) \in S_{\text{reg}}$ and let

$$X(\xi,\eta) = \eta \frac{\partial}{\partial \xi} + \frac{n-n_0}{n} \frac{\xi^{n-n_0-1} (1-\xi)^{n-n_1-1} (1-\frac{2n-n_0-n_1}{n-n_0}\xi)}{\eta^{n-2}} \frac{\partial}{\partial \eta}.$$
 (12)

By hypothesis $(\xi, \eta) \in S_{\text{reg}}$ implies that $\eta \neq 0$. The vector $X(\xi, \eta)$ is defined and is nonzero. From $(X \sqcup dg)(\xi, \eta) = 0$ and $T_{(\xi,\eta)}S_{\text{reg}} = \ker dg(\xi, \eta)$, it follows that $X(\xi, \eta) \in T_{(\xi,\eta)}S_{\text{reg}}$. Using the definition of $X(\xi, \eta)$ (12) and the definition of the mapping π (7), we see that the tangent of the mapping $\hat{\pi}$ (11) at $(\xi, \eta) \in S_{\text{reg}}$ is given by

$$T_{(\xi,\eta)}\widehat{\pi}: T_{(\xi,\eta)}\mathcal{S}_{\text{reg}} \to T_{\xi}(\mathbb{C} \setminus \{0,1\}) = \mathbb{C}: X(\xi,\eta) \mapsto \eta \frac{\partial}{\partial \xi}.$$
(13)

Since $X(\xi, \eta)$ and $\eta \frac{\partial}{\partial \xi}$ are nonzero vectors, they form a complex basis for $T_{(\xi,\eta)}S_{\text{reg}}$ and $T_{\xi}(\mathbb{C} \setminus \{0,1\})$, respectively. Thus, the complex linear mapping $T_{(\xi,\eta)}\hat{\pi}$ is an isomorphism. Hence $\hat{\pi}$ is a local holomorphic diffeomorphism. \Box

Corollary 3. $\hat{\pi}$ (11) is a surjective holomorphic *n* to 1 covering map.

Proof. We only need to show that $\hat{\pi}$ is a covering map. First we note that every fiber of $\hat{\pi}$ is a finite set with *n* elements, since for each fixed $\xi \in \mathbb{C} \setminus \{0,1\}$ we have $\hat{\pi}^{-1}(\xi) = \{(\xi,\eta) \in S_{\text{reg}} | \eta = \omega_k (\xi^{n-n_0} (1-\xi)^{n-n_1})^{1/n} \}$. Here ω_k for $k = 0, 1, \ldots, n-1$, is an *n*th root of 1 and $()^{1/n}$ is the complex *n*th root used in the definition of the Schwarz–Christoffel map F_Q (2). Hence the map $\hat{\pi}$ is a proper surjective holomorphic submersion, because each fiber is compact. Thus, the mapping $\hat{\pi}$ is a presentation of a locally trivial fiber bundle with fiber consisting of *n* distinct points. In other words, the map $\hat{\pi}$ is a *n* to 1 covering mapping. \Box

Consider the group $\widehat{\mathcal{G}}$ of linear transformations of \mathbb{C}^2 generated by

$$\mathcal{R}: \mathbb{C}^2 \to \mathbb{C}^2: (\xi, \eta) \mapsto (\xi, \mathrm{e}^{2\pi i/n} \eta).$$

Clearly $\mathcal{R}^n = \mathrm{id}_{\mathbb{C}^2} = e$, the identity element of $\widehat{\mathcal{G}}$ and $\widehat{\mathcal{G}} = \{e, \mathcal{R}, \dots, \mathcal{R}^{n-1}\}$. For each $(\xi, \eta) \in \mathcal{S}$ we have

$$(\mathrm{e}^{2\pi i/n}\eta)^n - \xi^{n-n_0}(1-\xi)^{n-n_1} = \eta^n - \xi^{n-n_0}(1-\xi)^{n-n_1} = 0.$$

So $\mathcal{R}(\xi, \eta) \in S$. Thus, we have an action of $\widehat{\mathcal{G}}$ on the affine Riemann surface S given by

$$\Phi: \widehat{\mathcal{G}} \times \mathcal{S} \to \mathcal{S}: (g, (\xi, \eta)) \mapsto g(\xi, \eta).$$
(14)

Since $\widehat{\mathcal{G}}$ is finite, and hence is compact, the action Φ is proper. For every $g \in \widehat{\mathcal{G}}$ we have $\Phi_g(0,0) = (0,0)$ and $\Phi_g(1,0) = (1,0)$. So Φ_g maps \mathcal{S}_{reg} into itself. At $(\xi,\eta) \in \mathcal{S}_{\text{reg}}$ the isotropy group $\widehat{\mathcal{G}}_{(\xi,\eta)}$ is $\{e\}$, that is, the $\widehat{\mathcal{G}}$ -action Φ on \mathcal{S}_{reg} is free. Thus, the orbit space $\mathcal{S}_{\text{reg}}/\widehat{\mathcal{G}}$ is a complex manifold.

Corollary 4. Consider the holomorphic mapping

$$\rho: \mathcal{S}_{\text{reg}} \subseteq \mathbb{C}^2 \to \mathcal{S}_{\text{reg}} / \widehat{\mathcal{G}} \subseteq \mathbb{C}^2: (\xi, \eta) \mapsto [(\xi, \eta)],$$

where $[(\xi, \eta)]$ is the $\widehat{\mathcal{G}}$ -orbit $\{\Phi_g(\xi, \eta) \in \mathcal{S}_{reg} | g \in \widehat{\mathcal{G}}\}$ of (ξ, η) in \mathcal{S}_{reg} . The $\widehat{\mathcal{G}}$ principal bundle presented by the mapping ρ is isomorphic to the bundle presented by the mapping $\widehat{\pi}$ (11).

Proof. We use invariant theory to determine the orbit space S/\hat{G} . The algebra of polynomials on \mathbb{C}^2 , which are invariant under the \hat{G} -action Φ , is generated by $\pi_1 = \xi$ and $\pi_2 = \eta^n$. Since $(\xi, \eta) \in S$, these polynomials are subject to the relation

$$\pi_2 - \pi_1^{n-n_0} (1 - \pi_1)^{n-n_1} = \eta^n - \xi^{n-n_0} (1 - \xi)^{n-n_1} = 0.$$
(15)

Equation (15) defines the orbit space S/\hat{G} as a complex subvariety of \mathbb{C}^2 . This subvariety is homeomorphic to \mathbb{C} , because it is the graph of the function $\pi_1 \mapsto \pi_1^{n-n_0}(1-\pi_1)^{n-n_1}$. Consequently, the orbit space S_{reg}/\hat{G} is holomorphically diffeomorphic to $\mathbb{C} \setminus \{0, 1\}$.

It remains to show that $\widehat{\mathcal{G}}$ is the group of covering transformations of the bundle presented by the mapping $\widehat{\pi}$ (11). For each $\xi \in \mathbb{C} \setminus \{0,1\}$ look at the fiber $\widehat{\pi}^{-1}(\xi)$. If $(\xi,\eta) \in \widehat{\pi}^{-1}(\xi)$, then $\mathcal{R}^{\pm 1}(\xi,\eta) = (\xi, e^{\pm 2\pi i/n}\eta) \in \mathcal{S}_{\text{reg}}$, since $(\xi, e^{\pm 2\pi i/n}\eta) \neq (0,0)$ or (1,0) and $(\xi, e^{\pm 2\pi i/n}\eta) \in \mathcal{S}$. Thus, $\Phi_{\mathcal{R}^{\pm 1}}(\widehat{\pi}^{-1}(\xi)) \subseteq \widehat{\pi}^{-1}(\xi)$. So $\widehat{\pi}^{-1}(\xi) \subseteq \Phi_{\mathcal{R}}(\widehat{\pi}^{-1}(\xi)) \subseteq \widehat{\pi}^{-1}(\xi)$. Hence $\Phi_{\mathcal{R}}(\widehat{\pi}^{-1}(\xi)) = \widehat{\pi}^{-1}(\xi)$. Thus, $\Phi_{\mathcal{R}}$ is a covering transformation for the bundle presented by the mapping $\widehat{\pi}$. So $\widehat{\mathcal{G}}$ is a subgroup of the group of covering transformations. These groups are equal because $\widehat{\mathcal{G}}$ acts transitively on each fiber of the mapping $\widehat{\pi}$.

4. Another Model for S_{reg}

We construct another model \widetilde{S}_{reg} for the smooth part S_{reg} of the affine Riemann surface S (3) as follows. Let $\mathcal{D} \subseteq S_{reg}$ be a fundamental domain for the $\widehat{\mathcal{G}}$ action Φ (14) on S_{reg} . So $(\xi, \eta) \in \mathcal{D}$ if and only if for $\xi \in \mathbb{C} \setminus \{0, 1\}$ we have $\eta = (\xi^{n-n_0}(1-\xi)^{n-n_1})^{1/n}$. Here $()^{1/n}$ is the n^{th} root used in the definition of the mapping F_Q (2). The domain \mathcal{D} is a connected subset of S_{reg} with nonempty interior. Its image under the map $\widehat{\pi}$ (11) is $\mathbb{C} \setminus \{0, 1\}$. Thus, \mathcal{D} is one "sheet" of the covering map $\widehat{\pi}$. So $\widehat{\pi}|_{\mathcal{D}}$ is one to one.

Using the extended Schwarz–Christoffel mapping F_Q (2), we give a more geometric description of the fundamental domain \mathcal{D} . Consider the mapping

$$\delta: \mathcal{D} \subseteq \mathcal{S}_{\text{reg}} \to Q \subseteq \mathbb{C}: (\xi, \eta) \mapsto F_Q(\widehat{\pi}(\xi, \eta)), \tag{16}$$

where the map $\hat{\pi}$ is given by Equation (11). The map δ is a holomorphic diffeomorphism of int \mathcal{D} onto int Q, which sends $\partial \mathcal{D}$ homeomorphically onto ∂Q . Look at cl(Q), which is a closed quadrilateral with vertices O, D, C, and \overline{D} . The set $\delta(\mathcal{D})$ contains the open edges OD, DC, and $C\overline{D}$ but *not* the open edge $O\overline{D}$ of cl(Q), see Figure 3 above.

Figure 3. The image *Q* of the fundamental domain \mathcal{D} under the mapping δ . The open edges *OD*, *C* \overline{D} , and *CD* of the quadrilateral are included; while the open edge *O* \overline{D} is excluded.

Let $K^* = K^*_{n_0,n_1,n_\infty} = \prod_{0 \le j \le n-1} R^j (\delta(\mathcal{D}))$ be the region in \mathbb{C} formed by repeatedly rotating $Q = \delta(\mathcal{D})$ through an angle $2\pi/n$. Here R is the rotation $\mathbb{C} \to \mathbb{C} : z \mapsto e^{2\pi i/n} z$. We say that the quadrilateral $Q = Q_{2n_0,n_\infty,2n_1,n_\infty}$ forms K^* , see Figure 4 above.

Figure 4. The regular duodecagon *K* and the stellated regular duodecagon $K^* = K_{4,4,4}^*$ formed by rotating the quadrilateral $Q_{4,4,4}$ through an angle $2\pi/12$ around the origin.

Theorem 1. The connected set K^* is a regular stellated *n*-gon with its 2*n* vertices omitted, which is formed from the quadrilateral $Q' = OD'C\overline{D'}$, see Figure 5.

Figure 5. The dart in the figure is the quadrilateral $Q' = OD'C\overline{D'}$, which is the union of the triangles $T = \Delta OD'C$ and the triangle $\overline{T'}$.

Proof. By construction the quadrilateral $Q' = OD'C\overline{D'}$ is contained in the quadrilateral $Q = ODC\overline{D}$. Note that $Q \subseteq \bigcup_{j=\lceil -\frac{n_1+1}{2}\rceil}^{\lfloor \frac{n_1+1}{2} \rfloor} R^j(Q')$. Thus,

$$K^* = \bigcup_{j=0}^n R^j(Q) \subseteq \bigcup_{j=0}^n R^j(Q') \subseteq \bigcup_{j=0}^n R^j(Q) = K^*.$$

So $K^* = \bigcup_{j=0}^n R^j(Q')$. Thus, K^* is the regular stellated *n*-gon less its vertices, one of whose open sides is the diagonal $D'\overline{D'}$ of Q'. \Box

We would like to extend the mapping δ (16) to a mapping of S_{reg} onto K^* . Let

$$\delta_{\Phi_{\pi^{j}}(\mathcal{D})}: \Phi_{\mathcal{R}^{j}}(\mathcal{D}) \subseteq \mathcal{S}_{\text{reg}} \to \mathcal{R}^{j}(\delta(\mathcal{D})) \subseteq K^{*}: (\xi, \eta) \mapsto \mathcal{R}^{j}\delta(\Phi_{\mathcal{R}^{-j}}(\xi, \eta)),$$

where Φ is the $\hat{\mathcal{G}}$ action defined in Equation (14). So we have a mapping

$$\delta_{K^*}: \mathcal{S}_{\text{reg}} \subseteq \mathbb{C}^2 \to K^* \subseteq \mathbb{C} \tag{17}$$

defined by $(\delta_{K^*})|_{\Phi_{\mathcal{R}^j}(\mathcal{D})} = \delta|_{\Phi_{\mathcal{R}^j}(\mathcal{D})}$. The mapping δ_{K^*} is defined on S_{reg} , because $S_{\text{reg}} = \prod_{0 \leq j \leq n-1} \Phi_{\mathcal{R}^j}(\mathcal{D})$, since \mathcal{D} is a fundamental domain for the $\widehat{\mathcal{G}}$ -action Φ (14) on S_{reg} . Because $K^* = \prod_{0 \leq j \leq n-1} R^j(\delta(\mathcal{D}))$, the mapping δ_{K^*} is surjective. Hence δ_{K^*} is holomorphic, since it is continuous on S_{reg} and is holomorphic on the dense open subset $\prod_{0 \leq j \leq n-1} \mathcal{R}^j(\text{int } \mathcal{D})$ of S_{reg} . Let $U : \mathbb{C} \to \mathbb{C} : z \mapsto \overline{z}$ and let G be the group generated by the rotation R and the reflection U subject to the relations $R^n = U^2 = e$ and $RU = UR^{-1}$. Shorthand $G = \langle U, R | U^2 = e = R^n \& RU = UR^{-1} \rangle$. Then $G = \{e; R^p U^\ell, \ell = 0, 1 \& p = 0, 1, \dots, n-1\}$. The group G is the dihedral group D_{2n} . The closure $cl(K^*)$ of $K^* = \prod_{0 \leq j \leq n-1} R^j(Q)$ in \mathbb{C} is invariant under \widehat{G} , the subgroup of G generated by the rotation R. Because the quadrilateral Q is invariant under the reflection U. So $cl(K^*)$ is invariant under the group G.

We now look at some group theoretic properties of K^* .

Lemma 3. If *F* is a closed edge of the polygon $cl(K^*)$ and $g|_F = id|_F$ for some $g \in G$, then g = e.

Proof. Suppose that $g \neq e$. Then $g = R^p U^\ell$ for some $\ell \in \{0, 1\}$ and some $p \in \{0, 1, ..., n-1\}$. Let $g = R^p U$ and suppose that F is an edge of $cl(K^*)$ such that $int(F) \cap \mathbb{R} \neq \emptyset$, where $\mathbb{R} = \{\operatorname{Re} z \mid z \in \mathbb{C}\}$. Then U(F) = F, but $U|_F \neq id_F$. So $g|_F = R^p U|_F \neq id_F$. Now suppose that $int(F) \cap \mathbb{R} = \emptyset$. Then $U(F) \neq F$. So $U|_F \neq id_F$. Hence $g|_F \neq id_F$. Finally, suppose that $g = R^p$ with $p \neq 0$. Then $g(F) \neq F$. So $g|_F \neq id_F$. \Box

Lemma 4. For $j = 0, 1, \infty$ put $S^{(j)} = \mathbb{R}^{n_j} U$. Then $S^{(j)}$ is a reflection in the closed ray $\ell^j = \{te^{i\pi n_j/n} \in \mathbb{C} \mid t \in OD\}$. The ray ℓ^0 is the closure of the side OD of the quadrilateral $Q = ODC\overline{D}$ in Figure 5.

Proof. $S^{(j)}$ fixes every point on the closed ray ℓ^j , because

$$S^{(j)}(\{te^{i\pi n_j/n} | t \in OD\}) = R^{n_j}(\{te^{-i\pi n_j/n} | t \in OD\}) = \{te^{i\pi n_j/n} | t \in OD\}.$$

Since $(S^{(j)})^2 = (R^{n_j}U)(R^{n_j}U) = R^{n_j}(UU)R^{-n_j} = e$, it follows that $S^{(j)}$ is a reflection in the closed ray ℓ^j . \Box

Corollary 5. For every $j = 0, 1, \infty$ and every $k \in \{0, 1, ..., n-1\}$ let $S_k^{(j)} = R^k S^{(j)} R^{-k}$. Here $S_n^{(j)} = S_0^{(j)} = S_0^{(j)}$, because $R^n = e$. Then $S_k^{(j)}$ is a reflection in the closed ray $R^k \ell^j$.

Proof. This follows because $(S_k^{(j)})^2 = R^k (S^{(j)})^2 R^{-k} = e$ and $S_k^{(j)}$ fixes every point on the closed ray $R^k \ell^j$, for

$$S_{k}^{(j)}(R^{k}(\{te^{i\pi n_{j}/n} | t \in OD\})) = R^{k}S^{(j)}(\{te^{i\pi n_{j}/n} | t \in OD\}))$$
$$= R^{k}(\{te^{i\pi n_{j}/n} | t \in OD\}).$$

Corollary 6. For every $j = 0, 1, \infty$, every $S_k^{(j)}$ with k = 0, 1, ..., n - 1, and every $g \in G$, we have $gS_k^{(j)}g^{-1} = S_r^{(j)}$ for a unique $r \in \{0, 1, ..., n - 1\}$.

Proof. We compute. For every k = 0, 1, ..., n - 1 we have

$$RS_k^{(j)}R^{-1} = R(R^k S^{(j)}R^{-k})R^{-1} = R^{(k+1)}S^{(j)}R^{-(k+1)} = S_{k+1}^{(j)}$$
(18)

and

$$US_{k}^{(j)}U^{-1} = U(R^{(k+n_{j})}UR^{-(k+n_{j})})U = R^{-(k+n_{j})}UR^{(k+n_{j})}$$

= $S_{-(k+2n_{j})}^{(j)} = S_{t}^{(j)}$, (19)

where $t = -(k + 2n_j) \mod n$. Since *R* and *U* generate the group *G*, the corollary follows. \Box

Corollary 7. For $j = 0, 1, \infty$ let G^j be the group generated by the reflections $S_k^{(j)}$ for k = 0, 1, ..., n - 1. Then G^j is a normal subgroup of G.

Proof. Clearly G^j is a subgroup of G. From Equations (18) and (19) it follows that $gS_k^{(j)}g^{-1} \in G^j$ for every $g \in G$ and every k = 0, 1, ..., n - 1, since G is generated by R and U. However, G^j is generated by the reflections $S_k^{(j)}$ for k = 0, 1, ..., n - 1, that is, every $g' \in G^j$ may be written as $S_{i_1}^{(j)} \cdots S_{i_p}^{(j)}$, where for $\ell \in \{1, ..., p\}$ we have $i_\ell \in \{0, 1, ..., n - 1\}$. So $gg'g^{-1} = g(S_{i_1}^{(j)} \cdots S_{i_p}^{(j)})g^{-1} = (gS_{i_1}^{(j)}g^{-1}) \cdots (gS_{i_p}^{(j)}g^{-1}) \in G^j$ for every $g \in G$, that is, G^j is a normal subgroup of G. \Box

As a first step in constructing the model S_{reg} of S_{reg} from the regular stellated *n*-gon K^* we look at certain pairs of edges of $cl(K^*)$. For each $j = 0, 1, \infty$ we say two distinct closed edges E and E' of $cl(K^*)$ are *adjacent* if and only if they intersect at a vertex of $cl(K^*)$. For $j = 0, 1, \infty$ let \mathcal{E}^j be the set of unordered pairs of *equivalent* closed edges E and E' of $cl(K^*)$, that is, the edges E and E' are not adjacent and $E' = S_m^{(j)}(E)$ for some generator $S_m^{(j)}$ of G^j . Recall that for x and y in some set, the unordered pair [x, y] is precisely one of the ordered pairs (x, y) or (y, x). Note that $\bigcup_{j=0,1,\infty} \mathcal{E}^j$ is the set of all unordered pairs of $cl(K^*)$ are equivalent if and only if E' is obtained from E by reflection in the line $R^m \ell^j$ for some $m \in \{0, 1, ..., n-1\}$ and some $j = 0, 1, \infty$. In Figure 6, where $K^*, = K_{1,1,4}^*$, parallel edges of K^* , which are labeled with the same letter, are G^0 -equivalent. This is no coincidence.

Figure 6. The triangulation $\mathcal{T}_{cl}(K^*)$ of the regular stellated hexagon K^* . The vertices of $cl(K^*)$ are labeled $X_i = R^j X$ for X = A, B, C and equivalent edges by a, b, c, d, e, f.

11 of 30

Lemma 5. Let K^* be formed from the quadrilateral $Q = T \cup \overline{T}$, where T is the isosceles rational triangle $T_{n_0n_0n_\infty}$ less its vertices. Then nonadjacent edges of $\partial \operatorname{cl}(K^*)$ are G^0 -equivalent if and only if they are parallel, see Figure 7.

Proof. In Figure 7, let *OAB* be the triangle *T* with $\angle AOB = \alpha$, $\angle OAB = \beta$, and $\angle ABO = \gamma$. Let *OABA*" be the quadrilateral formed by reflecting the triangle *OAB* in its edge *OB*. The quadrilateral *OABA*" reflected it its edge *OA* is the quadrilateral *OAB'A'*. Let *AC'* be perpendicular to *A'B'* and *AC* be perpendicular to *A''B*, see Figure 7. Then *CAC'* is a straight line if and only if $\angle C'AB' + \angle B'AB + \angle BAC = \pi$. By construction $\angle C'AB' = \angle BAC = \pi/2 - 2\gamma$ and $\angle B'AB = 2\pi - 2\beta$. So

$$\pi = 2(\frac{\pi}{2} - 2\gamma) + 2(\pi - \beta) = 3\pi - 2(\beta + \gamma) - 2\gamma$$
$$= 3\pi - 2(\alpha + \beta + \gamma) + 2(\alpha - \gamma) = \pi + 2(\alpha - \gamma),$$

if and only if $\alpha = \gamma$. Hence the edges A''B and A'B' are parallel if and only if the triangle *OAB* is isosceles. \Box

Figure 7. The geometric configuration.

Theorem 2. Let K^* be the regular stellated *n*-gon formed from the rational quadrilateral $Q_{n_0n_1n_\infty}$ with $d_j = \gcd(n_j, n)$ for $j = 0, 1, \infty$. The G orbit space formed by first identifying equivalent edges of the regular stellated *n*-gon K^* formed from Q less O and then acting on the identification space by the group G is \widetilde{S}_{reg} , which is a smooth 2-sphere with g handles, where $g = \frac{1}{2}(n + 2 - (d_0 + d_1 + d_\infty))$, less some points corresponding to the image of the vertices of $cl(K^*)$.

Example 1. Before we begin proving Theorem 2 we consider the following special case. Let $K^* = K_{1,1,4}^*$ be a regular stellated hexagon formed by repeatedly rotating the quadrilateral $Q' = OD'C\overline{D'}$ by R through an angle $2\pi/6$, see Figure 6.

Let G^0 be the group generated by the reflections $S_k^{(0)} = R^k S^{(0)} R^{-k} = R^{2k+1} U$ for k = 0, 1, ..., 5. Here $S^{(0)} = RU$ is the reflection which leaves the closed ray $\ell^0 = \{te^{i\rho/6} | t \in OD'\}$ fixed. Define an equivalence relation on $cl(K^*)$ by saying that two points x and y in $cl(K^*)$ are *equivalent*, $x \sim y$, if and only if 1) x and y lie on $\partial cl(K^*)$ with x on the closed edge E and $y = S_m^{(0)}(x) \in S_m^{(0)}(E)$ for some reflection $S_m^{(0)} \in G^0$ or 2) if x and y lie in the interior of $cl(K^*)$ and x = y. Let $cl(K^*)^{\sim}$ be the space of equivalence classes and let

$$\rho: \operatorname{cl}(K^*) \to \operatorname{cl}(K^*)^{\sim}: p \mapsto [p] \tag{20}$$

be the identification map which sends a point $p \in cl(K^*)$ to the equivalence class [p], which contains p. Give $cl(K^*)$ the topology induced from \mathbb{C} . Placing the quotient topology on $cl(K^*)^{\sim}$ turns it into a connected topological manifold without boundary, whose closure is compact. Let K^* be $cl(K^*)$ less its vertices. The identification space $(K^* \setminus O)^{\sim} = \rho(K^* \setminus O)$ is a connected 2-dimensional smooth manifold without boundary.

Let
$$G = \langle R, U | R^6 = e = U^2 \& RU = UR^{-1} \rangle$$
. The usual *G*-action

$$G \times \operatorname{cl}(K^*) \subseteq G \times \mathbb{C} \to \operatorname{cl}(K^*) \subseteq \mathbb{C} : (g, z) \mapsto g(z)$$

preserves equivalent edges of $cl(K^*)$ and is free on $K^* \setminus O$. Hence it induces a *G* action on $(K^* \setminus O)^{\sim}$, which is free and proper. Thus, its orbit map

$$\sigma: (K^* \setminus \mathcal{O})^{\sim} \to (K^* \setminus \mathcal{O})^{\sim} / G = \widetilde{\mathcal{S}}_{reg}: z \mapsto zG$$

is surjective, smooth, and open. The orbit space $\widetilde{S}_{reg} = \sigma((K^* \setminus O)^{\sim})$ is a connected 2-dimensional smooth manifold. The identification space $(K^* \setminus O)^{\sim}$ has the orientation induced from an orientation of $K^* \setminus O$, which comes from \mathbb{C} . So \widetilde{S}_{reg} has a complex structure, since each element of *G* is a conformal mapping of \mathbb{C} into itself.

Our aim is to specify the topology of \tilde{S}_{reg} . The regular stellated hexagon $K^* \setminus O$ less the origin has a triangulation $\mathcal{T}_{K^*\setminus O}$ made up of 12 open triangles $R^j(\triangle OCD')$ and $R^j(\triangle OC\overline{D}')$ for j = 0, 1, ..., 5; 24 open edges $R^j(OC)$, $R^j(O\overline{D}')$, $R^j(C\overline{D}')$, and $R^j(CD')$ for j = 0, 1, ..., 5; and 12 vertices $R^j(D')$ and $R^j(C)$ for j = 0, 1, ..., 5, see Figure 6.

Consider the set \mathcal{E}^0 of unordered pairs of equivalent closed edges of $cl(K^*)$, that is, \mathcal{E}^0 is the set $[E, S_k^{(0)}(E)]$ for k = 0, 1, ..., 5, where E is a closed edge of $cl(K^*)$. Table 2 lists the elements of \mathcal{E}^0 . G acts on \mathcal{E}^0 , namely, $g \cdot [E, S_k^{(0)}(E)] = [g(E), gS_k^{(0)}g^{-1}(g(E))]$, for $g \in G$. Since G^0 is the group generated by the reflections $S_k^{(0)}$, k = 0, 1, ..., 5, it is a normal subgroup of G. Hence the action of G on \mathcal{E}^0 restricts to an action of G^0 on \mathcal{E}^0 and the Gaction permutes G^0 -orbits in \mathcal{E}^0 . Thus, the set of G^0 -orbits in \mathcal{E}^0 is G-invariant.

Table 2. The set \mathcal{E}^0 . Here $D'_k = R^k(D')$ and $\overline{D'_k} = R^k(\overline{D'})$ for k = 0, 2, 4 and $C_k = R^k(C)$ for $k = \{0, 1, \dots, 5\}$, see Figure 6.

$a = \left[\overline{D'}C, S_0^{(0)}(\overline{D'}C) = \overline{D'_2}C_1\right]$	$b = \left[D'C_1, S_1^{(0)}(D'C_1) = D'_2C_2 \right]$
$d = \left[\overline{D'_2}C_2, S_2^{(0)}(\overline{D'_2}C_2) = \overline{D'_4}C_3\right]$	$c = \left[D_2'C_3, S_3^{(0)}(D_2'C_3) = D_4'C_4\right]$
$e = \left[\overline{D'_4}C_4, S_4^{(0)}(\overline{D'_4}C_4) = \overline{D'}C_5\right]$	$f = \left[D'_4C_5, S_5^{(0)}(D'_4C_5) = D'C\right]$

We now look at the G^0 -orbits on \mathcal{E}^0 . We compute the G^0 -orbit of $d \in \mathcal{E}^0$ as follows. We have

$$(UR) \cdot d = \left[UR(\overline{D_2'}C_2), UR(S_2^{(0)}(\overline{D_2'}C_2)) \right] = \left[UR(\overline{D_2'}C_2), UR(\overline{D_4'}C_3)) \right]$$
$$= \left[U(D_2'C_3), U(D_4'C_4) \right] = \left[\overline{D_4'}C_5, \overline{D_2'}C_2 \right] = d.$$

Since

$$R^{2} \cdot d = R^{2} \cdot \left[\overline{D'_{2}}C_{2}, S_{2}^{(0)}(\overline{D'_{2}}C_{2})\right] = \left[R^{2}(\overline{D'_{2}}C_{2}), R^{2}S_{2}^{(0)}R^{-2}(R^{2}(\overline{D'_{2}}C_{2}))\right]$$
$$= \left[\overline{D'_{4}}C_{4}, S_{4}^{(0)}(\overline{D'_{4}}C_{4})\right] = \left[\overline{D'_{4}}C_{4}, \overline{D'}C_{5}\right] = e$$

and

$$R^{4} \cdot d = \left[R^{4}(\overline{D'_{4}}C_{2}), R^{4}S_{2}^{(0)}R^{-4}(R^{4}(\overline{D'_{2}}C_{2}))\right]$$
$$= \left[\overline{D'}C, S_{6}^{(0)}(\overline{D'}C)\right] = \left[\overline{D'}C, S_{0}^{(0)}(\overline{D'}C)\right] = \left[\overline{D'}C, \overline{D'_{2}}C_{1}\right] = a,$$

the G^0 orbit $G^0 \cdot d$ of $d \in \mathcal{E}^0$ is $(G^0 / \langle UR | (UR)^2 = e \rangle) \cdot d = H^0 \cdot d = \{a, d, e\}$. Here $H^0 = \langle V = R^2 | V^3 = e \rangle$, since $G^0 = \langle V = R^2, UR | V^3 = e = (UR)^2 \& V(UR) = (UR)V^{-1} \rangle$. Similarly, the G^0 -orbit $G^0 \cdot f$ of $f \in \mathcal{E}^0$ is $H^0 \cdot f = \{b, c, f\}$. Since $G^0 \cdot d \cup G^0 \cdot f = \mathcal{E}^0$, we have found all G^0 -orbits on \mathcal{E}^0 . The *G*-orbit of *OC* is $R^j(OC)$ for j = 0, 1, ..., 5, since U(OC) = OC; while the *G*-orbit of OD' is $R^{j}(OD')$, $R^{j}(O\overline{D'})$ for j = 0, 1, ..., 5, since $U(OD') = O\overline{D'}$.

Suppose that *B* is an end point of the closed edge *E* of cl(*K**). Then *E* lies in a unique $[E, S_m^{(0)}(E)]$ of \mathcal{E}^0 . Let $G^0 \cdot [E, S_m^{(0)}(E)]$ be the G^0 -orbit of $[E, S_m^{(0)}(E)]$. Then $g' \cdot B$ is an end point of the closed edge g'(E) of $g' \cdot [E, S_m^{(0)}(E)] \in \mathcal{E}^0$ for every $g' \in G^0$. So $\mathcal{O}(B) = \{g' \cdot B \mid g' \in G^0\}$ the G^0 -orbit of the vertex *B*. It follows from the classification of G^0 -orbits on \mathcal{E}^0 that $\mathcal{O}(D') = \{D', D'_2, D'_4\}$ and $\mathcal{O}(\overline{D'}) = \{\overline{D'}, \overline{D'}_2, \overline{D'}_4\}$ are G^0 -orbits of the vertices of cl(K^*), which are permuted by the action of *G* on \mathcal{E}^0 . Furthermore, $\mathcal{O}(C) = \{C, C_1, \ldots, C_5\}$ and $\mathcal{O}(D' \& \overline{D'}) = \{D', \overline{D'}, D'_2, \overline{D'}_2, D'_4, \overline{D'}_4\}$ are *G*-orbits of cl(K^*), which are end points of the rays *OC* and *OD'*, respectively.

To determine the topology of the *G* orbit space \tilde{S}_{reg} we find a triangulation of \tilde{S}_{reg} . Note that the triangulation $\mathcal{T}_{K^*\setminus O}$ of $K^*\setminus O$, illustrated in Figure 6, is *G*-invariant. Its image under the identification map ρ is a *G*-invariant triangulation $\mathcal{T}_{(K^* \setminus O)^{\sim}}$ of $(K^* \setminus O)^{\sim}$. After identification of equivalent edges, each vertex $\rho(v)$, each open edge $\rho(E)$, having $\rho(O)$ as an end point, or each open edge $\rho([F, F'])$, where [F, F'] is a pair of equivalent edges of $cl(K^*)$, and each open triangle $\rho(T)$ in $\mathcal{T}_{(K^* \setminus O)^{\sim}}$ lies in a unique *G* orbit. It follows that $\sigma(\rho(v)), \sigma(\rho(E))$ or $\sigma(\rho([F, F']))$, and $\sigma(\rho(T))$ is a vertex, an open edge, and an open triangle, respectively, of a triangulation $\mathcal{T}_{\widetilde{\mathcal{S}}_{reg}} = \sigma(\mathcal{T}_{(K^* \setminus O)^{\sim}})$ of $\widetilde{\mathcal{S}}_{reg}$. The triangulation $\mathcal{T}_{\widetilde{\mathcal{S}}_{\mathrm{reg}}} \text{ has 4 vertices, corresponding to the } G \text{ orbits } \sigma(\rho(\mathcal{O}(D'))), \sigma(\rho(\mathcal{O}(\overline{D'}))), \sigma(\rho(\mathcal{O}(C))), \sigma(\rho(\mathcal{O}(C)))), \sigma(\rho(\mathcal{O}(C))), \sigma(\rho(\mathcal{O}(C)))), \sigma(\rho(\mathcal{O}(C)))), \sigma(\rho(\mathcal{O}(C)))) = 0$ and $\sigma(\rho(\mathcal{O}(D'\&\overline{D'})))$; 18 open edges corresponding to $\sigma(\rho(R^j(OC))), \sigma(\rho(R^j(OD')))$, and $\sigma(\rho(R^{j}(CD')))$ for $j = 0, 1, \dots, 5$; and 12 open triangles $\sigma(\rho(R^{j}(\triangle OCD')))$ and $\sigma(\rho(R^j(\triangle OC\overline{D'})))$ for $j = 0, 1, \dots, 5$. Thus, the Euler characteristic $\chi(\widetilde{S}_{reg})$ of \widetilde{S}_{reg} is 4-18+12 = -2. Since \widetilde{S}_{reg} is a 2-dimensional smooth real manifold, $\chi(\widetilde{S}_{reg}) = 2-2g$, where g is the genus of \widetilde{S}_{reg} . Hence g = 2. So \widetilde{S}_{reg} is a smooth 2-sphere with 2 handles, less a finite number of points, which lies in a compact topological space $S = cl(K^*)^{\sim}/G$, that is its closure, see Figure 8. This completes the example.

Figure 8. The *G*-orbit space \widetilde{S}_{reg} is 2-sphere with two handles.

Proof of Theorem 2. We now begin the construction of \widetilde{S}_{reg} by identifying equivalent edges of $cl(K^*)$. For each $j = 0, 1, \infty$ let $[E, S_m^{(j)}(E)]$ be an unordered pair of equivalent closed edges of $cl(K^*)$. We say that x and y in $cl(K^*)$ are *equivalent*, $x \sim y$, if 1) x and y lie in $\partial cl(K^*)$ with $x \in E$ and $y = S_m^{(j)}(x) \in S_m^{(0)}(E)$ for some $m \in \{0, 1, ..., n-1\}$ and some $j = 0, 1, \infty$ or 2) x and y lie in int $cl(K^*)$ and x = y. The relation \sim is an equivalence relation on $cl(K^*)$. Let $cl(K^*)^{\sim}$ be the set of equivalence classes and let

$$\rho: \operatorname{cl}(K^*) \to \operatorname{cl}(K^*)^{\sim}: p \mapsto [p] \tag{21}$$

be the map which sends p to the equivalence class [p], that contains p. Compare this argument with that of Richens and Berry [2]. Give $cl(K^*)$ the topology induced from \mathbb{C} and put the quotient topology on $cl(K^*)^{\sim}$. \Box

Theorem 3. Let K^* be $cl(K^*)$ less its vertices. Then $(K^* \setminus O)^{\sim} = \rho(K^* \setminus O)$ is a smooth manifold. *Furthermore,* $cl(K^*)^{\sim}$ *is a topological manifold.*

Proof. To show that $(K^* \setminus O)^{\sim}$ is a smooth manifold, let E_+ be an open edge of K^* . For $p_+ \in E_+$ let D_{p_+} be a disk in \mathbb{C} with center at p_+ , which does not contain a vertex of

cl(*K*^{*}). Set $D_{p_+}^+ = K^* \cap D_{p_+}$. For each $j = 0, 1, \infty$ let E_- be an open edge of K^* , which is equivalent to E_+ via the reflection $S_m^{(j)}$, that is, $[cl(E_+), cl(E_-) = S_m^{(j)}(cl(E_+))] \in \mathcal{E}^j$ is an unordered pair of $S_m^{(j)}$ equivalent edges. Let $p_- = S_m^{(j)}(p_+)$ and set $D_{p_-}^- = S_m^{(j)}(D_{p_+}^+)$. Then $V_{[p]} = \rho(D_{p_+}^+ \cup D_{p_-}^-)$ is an open neighborhood of $[p] = [p_+] = [p_-]$ in $(K^* \setminus O)^\sim$, which is a smooth 2-disk, since the identification mapping ρ is the identity on int K^* . It follows that $(K^* \setminus O)^\sim$ is a smooth 2-dimensional manifold without boundary.

We now handle the vertices of $cl(K^*)$. Let v_+ be a vertex of $cl(K^*)$ and set $D_{v_+} = \widetilde{D} \cap cl(K^*)$, where \widetilde{D} is a disk in \mathbb{C} with center at the vertex $v_+ = r_0 e^{i\pi\theta_0}$. The map

$$W_{v_{\pm}}: D_{\pm} \subseteq \mathbb{C} \to D_{v_{\pm}} \subseteq \mathbb{C}: re^{i\pi\theta} \mapsto |r - r_0|e^{i\pi s(\theta - \theta_0)}$$

with $r \ge 0$ and $0 \le \theta \le 1$ is a homeomorphism, which sends the wedge with angle π to the wedge with angle πs . The latter wedge is formed by the closed edges E'_+ and E_+ of $cl(K^*)$, which are adjacent at the vertex v_+ such that $e^{i\pi s}E'_+ = E_+$ with the edge E'_+ being swept out through $int cl(K^*)$ during its rotation to the edge E_+ . Because $cl(K^*)$ is a rational regular stellated *n*-gon, the value of *s* is a rational number for each vertex of $cl(K^*)$. For each $j = 0, 1, \infty$ let $E_- = S_m^{(j)}(E_+)$ be an edge of $cl(K^*)$, which is equivalent to E_+ and set $v_- = S_m^{(j)}(v_+)$. Then v_- is a vertex of $cl(K^*)$, which is the center of the disk $D_{v_-} = S_m^{(j)}(D_{v_+})$. Set $D_- = \overline{D}_+$. Then $D = D_+ \cup D_-$ is a disk in \mathbb{C} . The map $W : D \to \rho(D_{v_+} \cup D_{v_-})$, where $W|_{D_+} = \rho \circ W_{v_+}$ and $W|_{D_-} = \rho \circ S_m^{(0)} \circ W_{v_+} \circ^-$, is a homeomorphism of D into a neighborhood $\rho(D_{v_+} \cup D_{v_-})$ of $[v] = [v_+] = [v_-]$ in $cl(K^*)^{\sim}$. Consequently, the identification space $cl(K^*)^{\sim}$ is a topological manifold. \Box

We now describe a triangulation of $K^* \setminus O$. Let $T' = T_{1,n_1,n-(1+n_1)}$ be the open rational triangle $\triangle OCD'$ with vertex at the origin O, longest side OC on the real axis, and interior angles $\frac{1}{n}\pi$, $\frac{n_1}{n}\pi$, and $\frac{n-1-n_1}{n}\pi$. Let Q' be the quadrilateral $T' \cup \overline{T'}$. Then Q' is a subset of the quadrilateral $Q = ODC\overline{D}$, see Figure 5. Moreover $K^* = \bigcup_{\ell=0}^{n-1} R^{\ell}(Q')$. The 2n triangles $cl(R^j(T')) \setminus \{O\}$ and $cl(R^k(\overline{T'})) \setminus O$ with $k = 0, 1, \ldots, n-1$ form a triangulation $\mathcal{T}_{K^*\setminus O}$ of $K^* \setminus O$ with 2n vertices $R^k(C)$ and $R^k(D')$ for $k = 0, 1, \ldots, n-1$; and 2n open triangles $R^k(T')$, $R^k(\overline{DT'})$, and $R^k(C\overline{D'})$ for $k = 0, 1, \ldots, n-1$; and 2n open triangles $R^k(T')$, $R^k(\overline{T'})$ with $k = 0, 1, \ldots, n-1$. The image of the triangulation $\mathcal{T}_{K^*\setminus O}$ under the identification map ρ (21) is a triangulation $\mathcal{T}_{(K^*\setminus O)^{\sim}}$ of the identification space $(K^* \setminus O)^{\sim}$.

The action of *G* on $cl(K^*)$ preserves the set of unordered pairs of $S_m^{(j)}$ equivalent edges of $cl(K^*)$ for each $j = 0, 1, \infty$. Hence *G* induces an action on $cl(K^*)^{\sim}$, which is proper, since *G* is finite. The *G* action is free on $K^* \setminus O$ and thus on $(K^* \setminus O)^{\sim}$ by Lemma A2. We have proved

Lemma 6. The G-orbit space $\widetilde{S} = cl(K^*)^{\sim}/G$ is a compact connected topological manifold with $\widetilde{S}_{reg} = (K^* \setminus O)^{\sim}/G$ being a smooth manifold. Let

$$\sigma: \operatorname{cl}(K^*)^{\sim} \to \widetilde{\mathcal{S}} = \operatorname{cl}(K^*)^{\sim}/G: z \mapsto zG.$$

Then σ is the G orbit map, which is surjective, continuous, and open. The restriction of σ to $K^* \setminus O$ has image \tilde{S}_{reg} and is a smooth open mapping.

We now determine the topology of the orbit space $S_{\text{reg.}}$. For each $j = 0, 1, \infty$ and $\ell_j = 0, 1, \ldots, d_j - 1$ let $A_{\ell_j}^j$ be an end point of a closed edge E of $cl(K^*)$, which lies on the unordered pair $[E, S_{\ell_j}^{(j)}(E)] \in \mathcal{E}^j$. Then $H^j \cdot A_{\ell_j}^{(j)}$ is an end point of the edge $H^j \cdot E$ of the unordered pair $H^j \cdot [E, S_{\ell_j}^{(j)}(E)]$ of \mathcal{E}^j . See Appendix A for the definition of the group H_j . The sets $\mathcal{O}(A_{\ell}^{(j)}) = \{H^j \cdot A_{\ell_j}^{(j)}\}$ with $\ell_j = 0, 1, \ldots, d_j - 1$ are permuted by G. The action of G on $K^* \setminus O$ preserves the set of open edges of the triangulation $\mathcal{T}_{K^*\setminus O}$. There are

(23)

3*n*-orbits: $R^k(OC)$; $R^k(O\overline{D'})$, since $OD' = R(O\overline{D'})$; and $R^k(CD)$, since $C\overline{D'} = U(CD)$ for k = 0, 1, ..., n - 1. So the image of the triangulation $\mathcal{T}_{K^*\setminus O}$ under the continuous open map

$$\mu = \sigma \circ \pi|_{K^* \setminus \mathcal{O}} : K^* \setminus \mathcal{O} \to \mathcal{S}_{\text{reg}}$$
(22)

is a triangulation $\mathcal{T}_{\widetilde{S}_{reg}}$ of the *G*-orbit space \widetilde{S}_{reg} with $d_0 + d_1 + d_{\infty}$ vertices $\mu(\mathcal{O}(A_{\ell_j}^{(j)}))$, where $j = 0, 1, \infty$ and $\ell_j = 0, 1, \dots, d_j - 1$; 3*n* open edges $\mu(R^k(OC)), \mu(R^j(O\overline{D'}))$, and $\mu(R^k(CD))$ for $k = 0, 1, \dots, n - 1$; and 2*n* open triangles $\mu(R^k(T'))$ and $\mu(R^k(\overline{T'}))$ for $k = 0, 1, \dots, n - 1$. Thus, the Euler characteristic $\chi(\widetilde{S}_{reg})$ of \widetilde{S}_{reg} is $d_0 + d_1 + d_{\infty} - 3n + 2n =$ $d_0 + d_1 + d_{\infty} - n$. However, \widetilde{S}_{reg} is a smooth manifold. So $\chi(\widetilde{S}_{reg}) = 2 - 2g$, where *g* is the genus of \widetilde{S}_{reg} . Hence $g = \frac{1}{2}(n + 2 - (d_0 + d_1 + d_{\infty}))$. Compare this argument with that of Weyl ([4], p. 174). This proves Theorem 2.

Since the quadrilateral Q is a fundamental domain for the action of G on K^* , the G orbit map $\overline{\mu} = \sigma \circ \pi : K^* \subseteq \mathbb{C} \to \widetilde{S}$ restricted to Q is a bijective continuous open mapping. However, $\delta_Q : \mathcal{D} \subseteq S \to Q \subseteq \mathbb{C}$ is a bijective continuous open mapping of the fundamental domain \mathcal{D} of the \mathcal{G} action on S. Consequently, the \mathcal{G} orbit space is homeomorphic to the G orbit space \widetilde{S} . The mapping $\overline{\mu}$ is holomorphic except possibly at 0 and the vertices of $cl(K^*)$. So the mapping $\overline{\mu} \circ \delta_{K^*} : S_{reg} \to \widetilde{S}_{reg}$ is a holomorphic diffeomorphism.

5. An Affine Model of S_{reg}

We construct an affine model of the affine Riemann surface S_{reg} as follows. Return to the regular stellated *n*-gon $K^* = K^*_{n_0n_1n_{\infty}}$, which is formed from the quadrilateral $Q = Q_{n_0n_1n_{\infty}}$ less its vertices. Repeatedly reflecting in the edges of K^* and then in the edges of the resulting reflections of K^* et cetera, we obtain a covering of $\mathbb{C} \setminus \mathbb{V}^+$ by certain translations of K^* . Here \mathbb{V}^+ is the union of the translates of the vertices of $\operatorname{cl}(K^*)$ and its center O. Let \mathfrak{T} be the group generated by these translations. The semidirect product $\mathfrak{G} = G \ltimes \mathfrak{T}$ acts freely, properly and transitively on $\mathbb{C} \setminus \mathbb{V}^+$. It preserves equivalent edges of $\mathbb{C} \setminus \mathbb{V}^+$ and it acts freely and properly on $(\mathbb{C} \setminus \mathbb{V}^+)^{\sim}$, the space formed by identifying equivalent edges in $\mathbb{C} \setminus \mathbb{V}^+$. The orbit space $(\mathbb{C} \setminus \mathbb{V}^+)^{\sim}/\mathfrak{G}$ is holomorphically diffeomorphic to $\widetilde{S}_{\text{reg}}$ and is the desired affine model of S_{reg} . We now justify these assertions.

First we determine the group \mathcal{T} of translations.

Lemma 7. Each of the 2n sides of the regular stellated n-gon K^* is perpendicular to exactly one of the directions

$$e^{[\frac{1}{2}-\frac{1}{n}+2k\frac{1}{n}]\pi t}$$
 or $e^{[-\frac{1}{2}-\frac{1}{n}+\frac{1}{n}+(2k+1)\frac{1}{n}]\pi t}$,

for $k = 0, 1, \ldots, n - 1$.

Proof. From Figure 9 we have $\angle D'CO = \frac{n_1}{n}\pi$. So $\angle COH = \frac{1}{2}\pi - \frac{n_1}{n}\pi$. Hence the line ℓ_0 , containing the edge CD' of K^* , is perpendicular to the direction $e^{\left[\frac{1}{2} - \frac{n_1}{n}\right]\pi}$. Since $\triangle CO\overline{D'}$ is the reflection of $\triangle COD'$ in the line segment OC, the line ℓ_1 , containing the edge $C\overline{D'}$ of K^* , is perpendicular to the direction $e^{\left[-\frac{1}{2} + \frac{n_1}{n}\right]\pi}$. Because the regular stellated *n*-gon K^* is formed by repeatedly rotating the quadrilateral $Q' = OD'C\overline{D'}$ through an angle $\frac{2\pi}{n}$, we find that Equation (23) holds. \Box

Figure 9. The regular stellated *n*-gon K^* two of whose sides are CD' and $C\overline{D'}$.

Since $\angle COH = \frac{1}{2}\pi - \frac{n_1}{n}\pi$, it follows that $|H| = |C| \sin \pi \frac{n_1}{n}$ is the distance from the center *O* of *K*^{*} to the line ℓ_0 containing the side *CD'*, or to the line ℓ_1 containing the side $C\overline{D'}$. So $u_0 = (|C| \sin \pi \frac{n_1}{n})e^{[\frac{1}{2} - \frac{n_1}{n}]\pi i}$ is the closest point *H* on ℓ_0 to *O* and $u_1 = (|C| \sin \pi \frac{n_1}{n})e^{[-\frac{1}{2} + \frac{n_1}{n}]\pi i}$ is the closest point *H* on ℓ_1 to *O*. Since the regular stellated *n*-gon *K*^{*} is formed by repeatedly rotating the quadrilateral $Q' = OD'C\overline{D'}$ through an angle $\frac{2\pi}{n}$, the point

$$u_{2k} = R^k u_0 = (|C| \sin \pi \frac{n_1}{n}) e^{\left[\frac{1}{2} - \frac{n_1}{n} + 2k\frac{1}{n}\right]\pi i}$$
(24)

lies on the line $\ell_{2k} = R^k \ell_0$, which contains the edge $R^k(CD')$ of K^* ; while

$$u_{2k+1} = R^k u_1 = \left(|C| \sin \pi \frac{n_1}{n} \right) e^{\left[-\frac{1}{2} + \frac{n_1}{n} - \frac{1}{n} + (2k+1)\frac{1}{n} \right] \pi i}$$
(25)

lies on the line $\ell_{2k+1} = R^k \ell_1$, which contains the edge $R^k(C\overline{D'})$ of K^* for every $k \in \{0, 1, ..., n-1\}$. Furthermore, the line segments Ou_{2k} and Ou_{2k+1} are perpendicular to the line ℓ_{2k} and ℓ_{2k+1} , respectively, for $k \in \{0, 1, ..., n-1\}$.

Corollary 8. *For* k = 0, 1, ..., n - 1 *we have*

$$\overline{u_{2k}} = u_{2(n-k)+1}$$
 and $\overline{u_{2k+1}} = u_{2(n-k)}$. (26)

Proof. We compute. From (24) it follows that

$$\overline{u_{2k}} = U(u_{2k}) = UR^{k}(u_{0}) = R^{-k}(U(u_{0}))$$
$$= R^{-k}(u_{1}) = R^{n-k}(u_{1}) = u_{2(n-k)+1}, \text{ using (25)};$$

while from (25) we get

$$\overline{u_{2k+1}} = U(u_{2k+1}) = UR^k(u_1) = R^{-k}(U(u_1)) = R^{n-k}(u_0) = u_{2(n-k)}.$$

Corollary 9. *For* $k, \ell \in \{0, 1, ..., 2n - 1\}$ *we have*

$$u_{(k+2\ell) \bmod 2n} = R^{\ell} u_k.$$
⁽²⁷⁾

Proof. If k = 2i, then $u_k = R^i u_0$, by definition. So

$$R^{\ell}u_{k} = R^{\ell+i}u_{0} = u_{(2i+2\ell) \mod 2n} = u_{(k+2\ell) \mod 2n}.$$

If k = 2i + 1, then $u_{\ell} = R^i u_1$, by definition. So

$$R^{\ell}u_{k} = R^{\ell+i}u_{1} = u_{(2(i+\ell)+1) \mod 2n} = u_{(k+2\ell) \mod 2n}$$

For k = 0, 1, ..., 2n - 1 let τ_k be the translation

$$\tau_k : \mathbb{C} \to \mathbb{C} : z \mapsto z + 2u_k. \tag{28}$$

Corollary 10. *For* $k, l \in \{0, 1, ..., 2n - 1\}$ *we have*

$$\tau_{(k+2\ell) \bmod 2n} \circ R^{\ell} = R^{\ell} \circ \tau_k.$$
⁽²⁹⁾

Proof. For every $z \in \mathbb{C}$, we have

$$\tau_{(k+2\ell) \mod 2n}(z) = z + 2u_{(k+2\ell) \mod 2n}, \text{ using (28)}$$

= $z + 2R^{\ell}u_k$ by (27)
= $R^{\ell}(R^{-\ell}z + 2u_k) = R^{\ell} \circ \tau_k(R^{-\ell}z).$

Reflecting the regular stellated *n*-gon K^* in its edge CD' contained in ℓ_0 gives a congruent regular stellated *n*-gon K_0^* with the center *O* of K^* becoming the center $2u_0$ of K_0^* .

Lemma 8. The collection of all the centers of the regular stellated *n*-gons, formed by reflecting *K*^{*} *in its edges and then reflecting in the edges of the reflected regular stellated n*-gons *et cetera, is*

$$\{\tau_0^{\ell_0} \circ \cdots \circ \tau_{2n-1}^{\ell_{2n-1}}(0) \in \mathbb{C} | (\ell_0, \dots, \ell_{2n-1}) \in (\mathbb{Z}_{\geq 0})^{2n} \} = \\ = \{ 2 \sum_{\ell_0, \dots, \ell_{2n-1}=0}^{\infty} (\ell_0 u_0 + \cdots + \ell_{2n-1} u_{2n-1}) \},\$$

where for k = 0, 1, ..., 2n - 1 *we have*

$$\tau_k^{\ell_k} = \overbrace{\tau_k \circ \cdots \circ \tau_k}^{\ell_k} : \mathbb{C} \to \mathbb{C} : z \mapsto z + 2\ell_j u_k.$$

Proof. For each $k_0 = 0, 1, ..., 2n - 1$ the center of the 2n regular stellated congruent n-gon $K_{k_0}^*$ formed by reflecting in an edge of K^* contained in the line ℓ_{k_0} is $\tau_{k_0}(0) = 2u_{k_0}$. Repeating the reflecting process in each edge of $K_{k_0}^*$ gives 2n congruent regular stellated n-gons $K_{k_0k_1}^*$ with center at $\tau_{k_1}(\tau_{k_0}(0)) = 2(u_{k_1} + u_{k_0})$, where $k_1 = 0, 1, ..., 2n - 1$. Repeating this construction proves the lemma. \Box

The set \mathbb{V} of vertices of the regular stellated *n*-gon K^* is

$$\{V_{2k} = Ce^{2k(\frac{1}{n}\pi i)}, V_{2k+1} = D'e^{(2k+1)(\frac{1}{n}\pi i)} \text{ for } 0 \le k \le n-1\},\$$

see Figure 5. Clearly the set \mathbb{V} is *G* invariant.

Corollary 11. The set

$$\mathbb{V}^{+} = \{ v_{\ell_0 \cdots \ell_{2n-1}} = \tau_0^{\ell_0} \circ \cdots \circ \tau_{2n-1}^{\ell_{2n-1}}(V) | \\ V \in \mathbb{V} \cup \{ O \} \& (\ell_0, \dots, \ell_{2n-1}) \in (\mathbb{Z}_{\geq 0})^{2n} \}$$
(30)

is the collection of vertices and centers of the congruent regular stellated n-gons K^* , $K^*_{k_1}$, $K^*_{k_0k_1}$, ...

Proof. This follows immediately from Lemma 8. \Box

Corollary 12. *The union of* K^* , $K^*_{k_0}$, $K^*_{k_0k_1}$, ..., $K^*_{k_0k_1...k_{\ell'}}$, ..., where $\ell \ge 0, 0 \le j \le \ell$, and $0 \le k_j \le 2n - 1$, covers $\mathbb{C} \setminus \mathbb{V}^+$, that is,

$$K^* \cup \bigcup_{\ell \ge 0} \bigcup_{0 \le j \le \ell} \bigcup_{0 \le k_j \le 2n-1} K^*_{k_0 k_1 \cdots k_\ell} = \mathbb{C} \setminus \mathbb{V}^+.$$

Proof. This follows immediately from $K^*_{k_0k_1\cdots k_\ell} = \tau_{k_\ell} \circ \cdots \circ \tau_{k_0}(K^*)$. \Box

Let \mathcal{T} be the abelian subgroup of the 2-dimensional Euclidean group E(2) generated by the translations τ_k (28) for k = 0, 1, ..., 2n - 1. It follows from Corollary 12 that the regular stellated *n*-gon K^* with its vertices and center removed is the fundamental domain for the action of the abelian group \mathcal{T} on $\mathbb{C} \setminus \mathbb{V}^+$. The group \mathcal{T} is isomorphic to the abelian subgroup \mathfrak{T} of $(\mathbb{C}, +)$ generated by $\{2u_k\}_{k=0}^{2n-1}$.

Next we define the group \mathfrak{G} and show that it acts freely, properly, and transitively on $\mathbb{C} \setminus \mathbb{V}^+$. Consider the group $\mathfrak{G} = G \ltimes \mathfrak{T} \subseteq G \times \mathfrak{T}$, which is the semidirect product of the dihedral group *G*, generated by the rotation *R* through $2\pi/n$ and the reflection *U* subject to the relations $\mathbb{R}^n = e = U^2$ and $\mathbb{R}U = U\mathbb{R}^{-1}$, and the abelian group \mathfrak{T} . An element $(\mathbb{R}^j U^\ell, 2u_k)$ of \mathfrak{G} is the affine linear map

$$(R^{j}U^{\ell}, 2u_{k}): \mathbb{C} \to \mathbb{C}: z \mapsto R^{j}U^{\ell}z + 2u_{k}.$$

Multiplication in & is defined by

$$(R^{j}U^{\ell}, 2u_{k}) \cdot (R^{j'}U^{\ell'}, 2u_{k'}) = (R^{j+j'}U^{\ell+\ell'}, (R^{j}U^{\ell})(2u_{k'}) + 2u_{k}),$$
(31)

which is the composition of the affine linear map $(R^{j'}U^{\ell'}, 2u_{k'})$ followed by $(R^{j}U^{\ell}, 2u_{k})$. The mappings $G \to \mathfrak{G} : R^{j} \mapsto (R^{j}U^{\ell}, 0)$ and $\mathfrak{T} \to \mathfrak{G} : 2u_{k} \mapsto (e, 2u_{k})$ are injective, which allows us to identify the groups G and \mathfrak{T} with their image in \mathfrak{G} . Using (31) we may write an element $(R^{j}U^{\ell}, 2u_{k})$ of \mathfrak{G} as $(e, 2u_{k}) \cdot (R^{j}U^{\ell}, 0)$. So

$$(e, 2u_{(j+2k) \mod 2n}) \cdot (R^{k}U^{\ell}, 0) = (R^{k}U^{\ell}, 2u_{(j+2k) \mod 2n}),$$

For every $z \in \mathbb{C}$ we have

$$R^{k}U^{\ell}z + 2u_{(j+2k) \mod 2n} = R^{k}U^{\ell}z + R^{k}U^{\ell}(2u_{j}), \text{ using (27)}$$

that is,

$$(R^{k}U^{\ell}, 2u_{(j+2k) \mod 2n}) = (R^{k}U^{\ell}, R^{k}U^{\ell}(2u_{j})) = (R^{k}U^{\ell}, 0) \cdot (e, 2u_{j})$$

Hence

$$(e, 2u_{(j+2k) \mod 2n}) \cdot (R^k U^\ell, 0) = (R^k U^\ell, 0) \cdot (e, 2u_j),$$
(32)

which is just Equation (29). The group \mathfrak{G} acts on \mathbb{C} as E(2) does, namely, by affine linear orthogonal mappings. Denote this action by

$$\psi: \mathfrak{G} \times \mathbb{C} \to \mathbb{C} : ((g, \tau), z) \mapsto \tau(g(z)).$$

Lemma 9. The set \mathbb{V}^+ (30) is invariant under the \mathfrak{G} action.

Proof. Let $v \in \mathbb{V}^+$. Then for some $(\ell'_0, \ldots, \ell'_{2n-1}) \in \mathbb{Z}_{\geq 0}^{2n}$ and some $w \in \mathbb{V} \cup \{O\}$

$$v = \tau_0^{\ell'_0} \circ \cdots \circ \tau_{2n-1}^{\ell'_{2n-1}}(w) = \psi_{(e,2u')}(w),$$

where $u' = \sum_{k=0}^{2n-1} \ell'_k u_k$. For $(R^j U^{\ell}, 2u) \in \mathfrak{G}$ with j = 0, 1, ..., n-1 and $\ell = 0, 1$ we have

$$\psi_{(R^{j}U^{\ell},2u)}v = \psi_{(R^{j}U^{\ell},2u)} \circ \psi_{(e,2u')}(w) = \psi_{(R^{j}U^{\ell},2u) \cdot (e,2u')}(w)$$

$$= \psi_{(R^{j}U^{\ell}, R^{j}U^{\ell}(2u')+2u)}(w) = \psi_{(e,2(R^{j}U^{\ell}u'+u))\cdot(R^{j}U^{\ell},0)}(w)$$

= $\psi_{(e,2(R^{j}U^{\ell}u'+u))}(\psi_{(R^{j}U^{\ell},0)}(w)) = \psi_{(e,2(R^{j}U^{\ell}u'+u))}(w'),$ (33)

where $w' = \psi_{(R^{j}U^{\ell}, 0)}(w) = R^{j}U^{\ell}(w) \in \mathbb{V} \cup \{O\}$. If $\ell = 0$, then

$$R^{j}u' = R^{j}(\sum_{k=0}^{2n-1}\ell'_{k}u_{k}) = \sum_{k=0}^{2n-1}\ell'_{k}R^{j}(u_{k}) = \sum_{k=0}^{2n-1}\ell'_{k}u_{(k+2j) \mod 2n};$$

while if $\ell = 1$, then

$$R^{j}U(u') = \sum_{k=0}^{2n-1} \ell'_{k}R^{j}(U(u_{k})) = \sum_{k=0}^{2n-1} \ell'_{k}R^{j}(u_{k'(k)}) = \sum_{k=0}^{2n-1} \ell'_{k}u_{(k'(k)+2j) \mod 2n}.$$

Here $k'(k) = {2n-k-1, \text{ if } k \text{ is even} \atop 2n-k-1, \text{ if } k \text{ is odd}, }$ see Corollary 8. So $(e, 2(R^j U^{\ell} u' + u)) \in \mathfrak{T}$, which implies $\psi_{(e,2(R^j U^{\ell} u' + u))}(w') \in \mathbb{V}^+$, as desired. \Box

Lemma 10. *The action of* \mathfrak{G} *on* $\mathbb{C} \setminus \mathbb{V}^+$ *is free.*

Proof. Suppose that for some $v \in \mathbb{C} \setminus \mathbb{V}^+$ and some $(R^j U^\ell, 2u) \in \mathfrak{G}$ we have $v = \psi_{(R^j U^\ell, 2u)}(v)$. Then v lies in some $K^*_{k_0 k_1 \cdots k_\ell}$. So for some $v' \in K^*$ we have

$$v = \tau_0^{\ell'_0} \circ \cdots \tau_{2n-1}^{\ell'_{2n-1}}(v') = \psi_{(e,2u')}(v'),$$

where $u' = \sum_{j=0}^{2n-1} \ell'_{j} u_{j}$ for some $(\ell'_{0}, \dots, \ell'_{2n-1}) \in (\mathbb{Z}_{\geq 0})^{2n}$. Thus,

$$\psi_{(e,2u')}(v') = \psi_{(R^{j}U^{\ell},2u)\cdot(e,2u')}(v') = \psi_{(R^{j}U^{\ell},2R^{j}U^{\ell}u'+2u)}(v').$$

This implies $R^j U^{\ell} = e$, that is, $j = \ell = 0$. So $2u' = 2R^j U^{\ell} u' + 2u = 2u' + 2u$, that is, u = 0. Hence $(R^j U^{\ell}, u) = (e, 0)$, which is the identity element of \mathfrak{G} . \Box

Lemma 11. *The action of* \mathcal{T} *(and hence* \mathfrak{G} *) on* $\mathbb{C} \setminus \mathbb{V}^+$ *is transitive.*

Proof. Let $K_{k_0 \cdots k_{\ell}}^*$ and $K_{k'_0 \cdots k'_{\ell'}}^*$ lie in

$$\mathbb{C} \setminus \mathbb{V}^+ = K^* \cup \bigcup_{\ell \ge 0} \bigcup_{0 \le j \le \ell} \bigcup_{0 \le k_j \le 2n-1} K^*_{k_0 k_1 \cdots k_\ell}.$$

Since $K^*_{k_0\cdots k_{\ell}} = \tau_{k_{\ell}}\circ\cdots\circ\tau_{k_0}(K^*)$ and $K^*_{k'_0\cdots k'_{\ell'}} = \tau_{k'_{\ell'}}\circ\cdots\circ\tau_{k'_0}(K^*)$, it follows that $(\tau_{k'_{\ell'}}\circ\cdots\circ\tau_{k'_0})\circ(\tau_{k_{\ell}}\circ\cdots\circ\tau_{k_0})^{-1}(K^*_{k_0\cdots k_{\ell}}) = K^*_{k'_0\cdots k'_{\ell'}}$. \Box

The action of \mathfrak{G} on $\mathbb{C} \setminus \mathbb{V}^+$ is proper because \mathfrak{G} is a discrete subgroup of E(2) with no accumulation points.

We now define an edge of $\mathbb{C} \setminus \mathbb{V}^+$ and what it means for an unordered pair of edges to be equivalent. We show that the group \mathfrak{G} acts freely and properly on the identification space of equivalent edges.

Let *E* be an open edge of *K*^{*}. Since $E_{k_0 \cdots k_\ell} = \tau_{k_0} \cdots \tau_{k_\ell}(E) \in K^*_{k_0 \cdots k_\ell}$, it follows that $E_{k_0 \cdots k_\ell}$ is an open edge of $K^*_{k_0 \cdots k_\ell}$. Let

$$\mathfrak{E} = \{ E_{k_0 \cdots k_\ell} | \ell \ge 0, \ 0 \le j \le \ell \& 0 \le k_j \le 2n - 1 \}.$$

Then \mathfrak{E} is the set of open edges of $\mathbb{C} \setminus \mathbb{V}^+$ by 12. Since $\tau_{k_\ell} \circ \cdots \circ \tau_{k_0}(0)$ is the center of $K^*_{k_0 \cdots k_\ell}$, the element $(e, \tau_{k_\ell} \circ \cdots \circ \tau_{k_0}) \cdot (g, (\tau_{k_\ell} \circ \cdots \circ \tau_{k_0})^{-1})$ of \mathfrak{G} is a rotation-reflection of

 $K^*_{k_0\cdots k_\ell}$, which sends an edge of $K^*_{k_0\cdots k_\ell}$ to another edge of $g * K^*_{k_0\cdots k_\ell}$. Thus, \mathfrak{G} sends \mathfrak{E} into itself. For $j = 0, 1, \infty$ let $\mathfrak{E}^j_{k_0\cdots k_\ell}$ be the set of unordered pairs $[E_{k_0\cdots k_\ell}, E'_{k_0\cdots k_\ell}]$ of equivalent open edges of $K^*_{k_0\cdots k_\ell}$, that is, $E_{k_0\cdots k_\ell} \cap E'_{k_0\cdots k_\ell} = \emptyset$, so the open edges $E_{k_0\cdots k_\ell} = \tau_{k_0}\cdots \tau_{k_\ell}(E)$ and $E'_{k_0\cdots k_\ell} = \tau_{k_0}\cdots \tau_{k_\ell}(E')$ of $\operatorname{cl}(K^*_{k_0\cdots k_\ell})$ are not adjacent, which implies that the open edges E and E' of K^* are not adjacent, and for some generator $S^{(j)}_m$ of the group G^j of reflections with $j = 0, 1, \infty$ we have

$$E'_{k_0\cdots k_{\ell}} = (\tau_{k_0} \circ \cdots \circ \tau_{k_0}) \big(S_m^{(j)} ((\tau_{k_{\ell}} \circ \cdots \circ \tau_{k_0})^{-1} (E_{k_0 \cdots k_{\ell}})) \big).$$

Let $\mathfrak{E}^{j} = \bigcup_{\ell \geq 0} \bigcup_{0 \leq j \leq \ell} \bigcup_{0 \leq k_{j} \leq 2n-1} \mathfrak{E}^{j}_{k_{0} \cdots k_{\ell}}$. So $\bigcup_{j=0,1,\infty} \mathfrak{E}^{j}$ is the set of unordered pairs of equivalent edges of $\mathbb{C} \setminus \mathbb{V}^{+}$. Define an action * of \mathfrak{G} on $\bigcup_{j=0,1,\infty} \mathcal{E}^{j}$ by

$$(g,\tau) * [E_{k_0 \cdots k_{\ell}}, E'_{k_0 \cdots k_{\ell}}] = ([(\tau' \circ \tau)(g(\tau')^{-1}(E_{k_0 \cdots k_{\ell}})), (\tau' \circ \tau)(g((\tau')^{-1}(E'_{k_0 \cdots k_{\ell}}))])$$

= [(g, \tau) * E_{k_0 \cdots k_{\ell}}, (g, \tau) * E'_{k_0 \cdots k_{\ell}}],

where $\tau' = \tau_{k_{\ell}} \circ \cdots \tau_{k_0}$.

Define a relation \sim on $\mathbb{C} \setminus \mathbb{V}^+$ as follows. We say that x and $y \in \mathbb{C} \setminus \mathbb{V}^+$ are related, $x \sim y$, if 1) $x \in F = \tau(E) \in \mathfrak{E}^j$ and $y \in F' = \tau(E') \in \mathfrak{E}^j$ such that $[F, F'] = [\tau(E), \tau(E')] \in \mathfrak{E}^0$, where $[E, E'] \in \mathcal{E}^j$ with $E' = S_m^{(j)}(E)$ for some $S_m^{(j)} \in G^j$ and $y = \tau(S_m^{(j)}(\tau^{-1}(x)))$ for some $j = 0, 1, \infty$, or 2) $x, y \in (\mathbb{C} \setminus \mathbb{V}^+) \setminus \mathfrak{E}$ and x = y. Then \sim is an equivalence relation on $\mathbb{C} \setminus \mathbb{V}^+$. Let $(\mathbb{C} \setminus \mathbb{V}^+)^{\sim}$ be the set of equivalence classes and let Π be the map

$$\Pi: \mathbb{C} \setminus \mathbb{V}^+ \to (\mathbb{C} \setminus \mathbb{V}^+)^\sim : p \mapsto [p], \tag{34}$$

which assigns to every $p \in \mathbb{C} \setminus \mathbb{V}^+$ the equivalence class [p] containing p.

Lemma 12. $\Pi|_{K^*}$ is the map ρ (20).

Proof. This follows immediately from the definition of the maps Π and ρ . \Box

Lemma 13. The usual action of \mathfrak{G} on \mathbb{C} , restricted to $\mathbb{C} \setminus \mathbb{V}^+$, is compatible with the equivalence relation \sim , that is, if $x, y \in \mathbb{C} \setminus \mathbb{V}$ and $x \sim y$, then $(g, \tau)(x) \sim (g, \tau)(y)$ for every $(g, \tau) \in \mathfrak{G}$.

Proof. Suppose that $x \in F = \tau'(E)$, where $\tau' \in \mathcal{T}$. Then $y \in F' = \tau'(E')$, since $x \sim y$. So for some $S_m^{(j)} \in G^j$ with $j = 0, 1, \infty$, we have $(\tau')^{-1}(y) = S_m^{(j)}(\tau^{-1}(x))$. Let $(g, \tau) \in \mathfrak{G}$. Then

$$(g,\tau)\big((\tau')^{-1}(y)\big) = g((\tau')^{-1}(y)) + u_{\tau} = g\big(S_m^{(j)}(\tau^{-1}(x))\big) + u_{\tau}.$$

So $(g, \tau)(y) \in (g, \tau) * F'$. However, $(g, \tau)(x) \in (g, \tau) * F$ and $[(g, \tau) * F, (g, \tau) * F'] = (g, \tau) * [F, F']$. Hence $(g, \tau)(x) \sim (g, \tau)(y)$. \Box

Because of Lemma 13, the usual \mathfrak{G} -action on $\mathbb{C} \setminus \mathbb{V}^+$ induces an action of \mathfrak{G} on $(\mathbb{C} \setminus \mathbb{V}^+)^{\sim}$.

Lemma 14. The action of \mathfrak{G} on $(\mathbb{C} \setminus \mathbb{V}^+)^\sim$ is free and proper.

Proof. The following argument shows that it is free. Using Lemma A2 we see that an element of \mathfrak{G} , which lies in the isotropy group $\mathfrak{G}_{[F,F']}$ for $[F,F'] \in \mathfrak{E}^0$, interchanges the edge *F* with the equivalent edge *F'* and thus fixes the equivalence class [p] for every $p \in F$. Hence the \mathfrak{G} action on $(\mathbb{C} \setminus \mathbb{V}^+)^{\sim}$ is free. It is proper because \mathfrak{G} is a discrete subgroup of the Euclidean group E(2) with no accumulation points. \Box

Theorem 4. The \mathfrak{G} -orbit space $(\mathbb{C} \setminus \mathbb{V}^+)^{\sim}/\mathfrak{G}$ is holomorphically diffeomorphic to the G-orbit space $(K^* \setminus O)^{\sim}/G = \widetilde{S}_{reg}$.

Proof. The claim follows because the fundamental domain of the \mathfrak{G} -action on $\mathbb{C} \setminus \mathbb{V}^+$ is $K^* \setminus O$ is the fundamental domain of the *G*-action on $K^* \setminus O$. Thus, $\Pi(\mathbb{C} \setminus \mathbb{V}^+)$ is a fundamental domain of the \mathfrak{G} -action on $(\mathbb{C} \setminus \mathbb{V}^+)^\sim$, which is equal to $\rho(K^* \setminus O) = (K^* \setminus O)^\sim$ by Lemma 12. Hence the \mathfrak{G} -orbit space $(\mathbb{C} \setminus \mathbb{V}^+)^\sim /\mathfrak{G}$ is equal to the *G*-orbit space \widetilde{S}_{reg} . So the identity map from $\Pi(\mathbb{C} \setminus \mathbb{V}^+)$ to $(K^* \setminus O)^\sim$ induces a holomorphic diffeomorphism of orbit spaces. \Box

Because the group \mathfrak{G} is a discrete subgroup of the 2-dimensional Euclidean group E(2), the Riemann surface $(\mathbb{C} \setminus \mathbb{V}^+)^{\sim}/\mathfrak{G}$ is an *affine* model of the affine Riemann surface S_{reg} .

6. The Developing Map and Geodesics

In this section, we show that the mapping

$$\delta: \mathcal{D} \subseteq \mathcal{S}_{\text{reg}} \to Q \subseteq \mathbb{C}: (\xi, \eta) \to (F_Q \circ \widehat{\pi})(\xi, \eta))$$
(35)

straightens the holomorphic vector field *X* (12) on the fundamental domain $\mathcal{D} \subseteq S_{\text{reg}}$, see [6] and Flaschka [7]. We also verify that *X* is the geodesic vector field for a flat Riemannian metric Γ on \mathcal{D} .

First we rewrite Equation (13) as

$$\Gamma_{(\xi,\eta)}\widehat{\pi}(X(\xi,\eta)) = \eta \frac{\partial}{\partial \xi}, \quad \text{for } (\xi,\eta) \in \mathcal{D}.$$
(36)

From the definition of the mapping F_Q (2) we get

$$\mathrm{d}z = \mathrm{d}F_Q = rac{1}{\left(\xi^{n-n_0}(1-\xi)^{n-n_1}
ight)^{1/n}}\,\mathrm{d}\xi = rac{1}{\eta}\,\mathrm{d}\xi,$$

where we use the same complex *n*th root as in the definition of F_Q . This implies

$$\frac{\partial}{\partial z} = T_{\xi} F_Q(\eta \frac{\partial}{\partial \xi}), \quad \text{for } (\xi, \eta) \in \mathcal{D}$$
(37)

For each $(\xi, \eta) \in \mathcal{D}$ using (36) and (37) we get

$$T_{(\xi,\eta)}\delta\big(X(\xi,\eta)\big) = \big(T_{\xi}F_{Q}\circ T_{(\xi,\eta)}\widehat{\pi}\big)\big(X(\xi,\eta)\big) = T_{\xi}F_{Q}(\eta\frac{\partial}{\partial\xi}) = \frac{\partial}{\partial z}\Big|_{z=\delta(\xi,\eta)}$$

So the holomorphic vector field *X* (12) on \mathcal{D} and the holomorphic vector field $\frac{\partial}{\partial z}$ on *Q* are δ -related. Hence δ sends an integral curve of the vector field *X* starting at $(\xi, \eta) \in \mathcal{D}$ onto an integral curve of the vector field $\frac{\partial}{\partial z}$ starting at $z = \delta(\xi, \eta) \in Q$. Since an integral curve of $\frac{\partial}{\partial z}$ is a horizontal line segment in *Q*, we have proved

Theorem 5. The holomorphic mapping δ (35) straightens the holomorphic vector field X (12) on the fundamental domain $\mathcal{D} \subseteq S_{\text{reg.}}$

We can say more. Let $u = \operatorname{Re} z$ and $v = \operatorname{Im} z$. Then

$$\gamma = \mathrm{d}u \circ \mathrm{d}u + \mathrm{d}v \circ \mathrm{d}v = \mathrm{d}z \circ \mathrm{d}z \tag{38}$$

is the flat Euclidean metric on \mathbb{C} . Its restriction $\gamma|_{\mathbb{C}\setminus \mathbb{V}^+}$ to $\mathbb{C}\setminus \mathbb{V}^+$ is invariant under the group \mathfrak{G} , which is a subgroup of the Euclidean group E(2).

Consider the flat Riemannian metric $\gamma|_Q$ on Q, where γ is the metric (38) on \mathbb{C} . Pulling back $\gamma|_Q$ by the mapping F_Q (2) gives a metric

$$\widetilde{\gamma} = F_Q^*(\gamma|_Q) = \left|\xi^{n-n_0}(1-\xi)^{n-n_1}\right|^{-2/n} \mathrm{d}\xi \circ \overline{\mathrm{d}\xi}$$

on $\mathbb{C} \setminus \{0,1\}$. Pulling the metric $\tilde{\gamma}$ back by the projection mapping $\tilde{\pi} : \mathbb{C}^2 \to \mathbb{C} : (\xi, \eta) \mapsto \xi$ gives

$$\widetilde{\Gamma} = \widetilde{\pi}^* \widetilde{\gamma} = \left| \xi^{n-n_0} (1-\xi)^{n-n_1} \right|^{-2/n} \mathrm{d}\xi \circ \overline{\mathrm{d}\xi}$$

on \mathbb{C}^2 . Restricting $\tilde{\Gamma}$ to the affine Riemann surface S_{reg} gives $\Gamma = \frac{1}{n} d\xi \circ \frac{1}{\bar{n}} \overline{d\xi}$.

Lemma 15. Γ *is a flat Riemannian metric on* S_{reg} .

Proof. We compute. For every $(\xi, \eta) \in S_{reg}$ we have

$$\begin{split} \Gamma(\xi,\eta)\big(X(\xi,\eta),X(\xi,\eta)\big) &= \\ &= \frac{1}{\eta}\,d\xi\big(\eta\frac{\partial}{\partial\xi} + \frac{n-n_0}{n}\frac{\xi(1-\xi)(1-\frac{2n-n_0-n_1}{n}\xi)}{\eta^{n-2}}\frac{\partial}{\partial\eta}\big) \cdot \frac{1}{\overline{\eta}}\,\overline{d\xi}\big(\overline{\eta\frac{\partial}{\partial\xi}} + \frac{n-n_0}{n}\frac{\overline{\xi(1-\xi)(1-\frac{2n-n_0-n_1}{n}\xi)}}{\overline{\eta}^{n-2}}\frac{\overline{\partial}}{\overline{\partial\eta}}\big) \\ &= \frac{1}{\eta}\,d\xi\big(\eta\frac{\partial}{\partial\xi}\big) \cdot \frac{1}{\overline{\eta}}\,\overline{d\xi}\big(\overline{\eta\frac{\partial}{\partial\xi}}\big) = 1. \end{split}$$

Thus, Γ is a Riemannian metric on S_{reg} . It is flat by construction. \Box

Because D has nonempty interior and the map δ (35) is holomorphic, it can be analytically continued to the map

$$\delta_Q : \mathcal{S}_{\text{reg}} \subseteq \mathbb{C}^2 \to Q \subseteq \mathbb{C} : (\xi, \eta) \mapsto F_Q(\widehat{\pi}(\xi, \eta)), \tag{39}$$

since $\delta = \delta_Q|_{\mathcal{D}}$. By construction $\delta_Q^*(\gamma|_Q) = \Gamma$. So the mapping δ_Q is an isometry of $(\mathcal{S}_{\text{reg}}, \Gamma)$ onto $(Q, \gamma|_Q)$. In particular, the map δ is an isometry of $(\mathcal{D}, \Gamma|_{\mathcal{D}})$ onto $(Q, \gamma|_Q)$. Moreover, δ is a local holomorphic diffeomorphism, because for every $(\xi, \eta) \in \mathcal{D}$, the complex linear mapping $T_{(\xi,\eta)}\delta$ is an isomorphism, since it sends $X(\xi, \eta)$ to $\frac{\partial}{\partial z}|_{z=\delta(\xi,\eta)}$. Thus, δ is a developing map in the sense of differential geometry, see Spivak ([8], p. 97) note on §12 of Gauss [9]. The map δ is local because the integral curves of $\frac{\partial}{\partial z}$ on Q are only defined for a finite time, since they are horizontal line segments in Q. Thus, the integral curves of X (12) on \mathcal{D} are defined for a finite time. Since the integral curves of $\frac{\partial}{\partial z}$ are geodesics on $(Q, \gamma|_Q)$, the image of a local integral curve of $\frac{\partial}{\partial z}$ under the local inverse of the mapping δ is a local integral curve of X. This latter local integral curve is a geodesic on $(\mathcal{D}, \Gamma|_{\mathcal{D}})$, since δ is an isometry. Thus, we have proved

Theorem 6. The holomorphic vector field X (12) on the fundamental domain \mathcal{D} is the geodesic vector field for the flat Riemannian metric $\Gamma|_{\mathcal{D}}$ on \mathcal{D} .

Corollary 13. The holomorphic vector field X on the affine Riemann surface S_{reg} is the geodesic vector field for the flat Riemannian metric Γ on S_{reg} .

Proof. The corollary follows by analytic continuation from the conclusion of Theorem 6, since int \mathcal{D} is a nonempty open subset of S_{reg} and both the vector field X and the Riemannian metric Γ are holomorphic on S_{reg} . \Box

7. Discrete Symmetries and Billiard Motions

Let G be the group of homeomorphisms of the affine Riemann surface S (3) generated by the mappings

$$\mathcal{R}: \mathcal{S} \to \mathcal{S}: (\xi, \eta) \mapsto (\xi, e^{2\pi i/n}\eta) \text{ and } \mathcal{U}: \mathcal{S} \to \mathcal{S}: (\xi, \eta) \mapsto (\overline{\xi}, \overline{\eta}),$$

Clearly, the relations $\mathcal{R}^n = \mathcal{U}^2 = e$ hold. For every $(\xi, \eta) \in \mathcal{S}$ we have

$$\mathcal{UR}^{-1}(\xi,\eta) = \mathcal{U}(\xi, e^{-2\pi i/n}\eta) = (\overline{\xi}, e^{2\pi i/n}\overline{\eta}) = \mathcal{R}(\overline{\xi},\overline{\eta}) = \mathcal{R}\mathcal{U}(\xi,\eta).$$

So the additional relation $\mathcal{UR}^{-1} = \mathcal{RU}$ holds. Thus, \mathcal{G} is isomorphic to the dihedral group.

Lemma 16. \mathcal{G} is a group of isometries of $(\mathcal{S}_{reg}, \Gamma)$.

Proof. For every $(\xi, \eta) \in S_{\text{reg}}$ we get

$$\begin{split} \mathcal{R}^* \Gamma(\xi,\eta) \left(X(\xi,\eta), X(\xi,\eta) \right) &= \Gamma \left(\mathcal{R}(\xi,\eta) \right) \left(T_{(\xi,\eta)} \mathcal{R} \left(X(\xi,\eta) \right), T_{(\xi,\eta)} \mathcal{R} \left(X(\xi,\eta) \right) \right) \\ &= \Gamma(\xi, e^{2\pi i/n} \eta) \left(e^{2\pi i/n} \eta \frac{\partial}{\partial \xi} + \frac{n-n_0}{n} \frac{\xi(1-\xi)(1-\frac{2n-n_0-n_1}{n-n_0}\xi)}{\eta^{n-2}} e^{2\pi i/n} \frac{\partial}{\partial \eta}, \\ &e^{2\pi i/n} \eta \frac{\partial}{\partial \xi} + \frac{n-n_0}{n} \frac{\xi(1-\xi)(1-\frac{2n-n_0-n_1}{n-n_0}\xi)}{\eta^{n-2}} e^{2\pi i/n} \frac{\partial}{\partial \eta} \right) \\ &= \frac{1}{|e^{2\pi i/n} \eta|^2} \, \mathrm{d}\xi \left(e^{2\pi i/n} \eta \frac{\partial}{\partial \xi} \right) \cdot \overline{\mathrm{d}\xi} \left(\overline{e^{2\pi i/n} \eta \frac{\partial}{\partial \xi}} \right) = 1 \\ &= \frac{1}{|\eta|^2} \, \mathrm{d}\xi (\eta \frac{\partial}{\partial \xi}) \cdot \overline{\mathrm{d}\xi} (\overline{\eta \frac{\partial}{\partial \xi}}) = \Gamma(\xi,\eta) \left(X(\xi,\eta), X(\xi,\eta) \right) \end{split}$$

and

$$\mathcal{U}^*\Gamma(\xi,\eta)\big(X(\xi,\eta),X(\xi,\eta)\big) = \Gamma\big(\mathcal{U}(\xi,\eta)\big)\big(T_{(\xi,\eta)}\mathcal{U}\big(X(\xi,\eta)\big),T_{(\xi,\eta)}\mathcal{U}\big(X(\xi,\eta)\big)\big)$$
$$= \frac{1}{|\eta|^2}\overline{\mathrm{d}\xi}(\overline{\eta}\frac{\overline{\partial}}{\partial\xi}) \cdot \overline{\mathrm{d}\overline{\xi}}(\overline{\eta}\frac{\overline{\partial}}{\partial\xi}) = \Gamma(\xi,\eta)\big(X(\xi,\eta),X(\xi,\eta)\big).$$

Recall that the group *G*, generated by the linear mappings

$$R: \mathbb{C} \to \mathbb{C}: z \mapsto e^{2\pi i/n} z$$
 and $U: \mathbb{C} \to \mathbb{C}: z \mapsto \overline{z},$

is isomorphic to the dihedral group.

Lemma 17. *G* is a group of isometries of (\mathbb{C}, γ) .

Proof. This follows because *R* and *U* are Euclidean motions. \Box

We would like the developing map δ_Q (39) to intertwine the actions of \mathcal{G} and G and the geodesic flows on (S_{reg}, Γ) and $(Q, \gamma|_Q)$. There are several difficulties. The first is: the group G does *not* preserve the quadrilateral Q. To overcome this difficulty we extend the mapping δ_Q (39) to the mapping δ_{K^*} (17) of the affine Riemann surface S_{reg} onto the regular stellated *n*-gon K^* .

Lemma 18. The mapping δ_{K^*} (17) intertwines the action Φ (14) of \mathcal{G} on \mathcal{S}_{reg} with the action

$$\Psi: G \times K^* \to K^*: (g, z) \mapsto g(z) \tag{40}$$

of G on the regular stellated n-gon K^* .

Proof. From the definition of the mapping δ_{K^*} we see that for each $(\xi, \eta) \in \mathcal{D}$ we have $\delta_{K^*}(\mathcal{R}^j(\xi,\eta)) = R^j \delta_{K^*}(\xi,\eta)$ for every $j \in \mathbb{Z}$. By analytic continuation we see that the preceding equation holds for every $(\xi,\eta) \in S_{\text{reg}}$. Since $F_Q(\overline{\xi}) = \overline{F_Q(\xi)}$ by construction and $\widehat{\pi}(\overline{\xi},\overline{\eta}) = \overline{\xi}$ (11), from the definition of the mapping δ (35) we get $\delta(\overline{\xi},\overline{\eta}) = \overline{\delta(\xi,\eta)}$ for every $(\xi,\eta) \in \mathcal{D}$. In other words, $\delta_{K^*}(\mathcal{U}(\xi,\eta)) = U\delta_{K^*}(\xi,\eta)$ for every $(\xi,\eta) \in \mathcal{D}$. By analytic continuation we see that the preceding equation holds for all $(\xi,\eta) \in S_{\text{reg}}$. Hence on S_{reg} we have

$$\delta_{K^*} \circ \Phi_g = \Psi_{\varphi(g)} \circ \delta_{K^*} \quad \text{for every } g \in \mathcal{G}.$$
(41)

The mapping $\varphi : \mathcal{G} \to G$ sends the generators \mathcal{R} and \mathcal{U} of the group \mathcal{G} to the generators R and U of the group G, respectively. So it is an isomorphism. \Box

There is a second more serious difficulty: the integral curves of $\frac{\partial}{\partial z}$ run off the quadrilateral Q in finite time. We fix this by requiring that when an integral curve reaches a point P on the boundary ∂Q of Q, which is not a vertex, it undergoes a specular reflection at P. (If the integral curve reaches a vertex of Q in forward or backward time, then the motion ends). This motion can be continued as a straight line motion, which extends the motion on the original segment in Q.

To make this precise, we give Q the orientation induced from \mathbb{C} and suppose that the incoming (and hence outgoing) straight line motion has the same orientation as ∂Q . If the incoming motion makes an angle α with respect to the inward pointing normal Nto ∂Q at P, then the outgoing motion makes an angle α with the normal N, see Richens and Berry [2]. Specifically, if the incoming motion to P is an integral curve of $\frac{\partial}{\partial z}$, then the outgoing motion, after reflection at P, is an integral curve of $R^{-1}\frac{\partial}{\partial z} = e^{-2\pi i/n}\frac{\partial}{\partial z}$. Thus, the outward motion makes a turn of $-2\pi/n$ at P towards the interior of Q, see Figure 10 (left). In Figure 10 (right) the incoming motion has the opposite orientation from ∂Q . This extended motion on Q is called a billiard motion. A billiard motion starting in the interior of $cl(Q) \setminus (cl(Q) \cap \mathbb{R})$ is defined for *all* time and remains in cl(Q) less its vertices, since each of the segments of the billiard motion is a straight line parallel to an edge of cl(Q) and does not hit a vertex of cl(Q), see Figure 11.

Figure 10. Reflection at a point *P* on ∂Q .

Figure 11. A periodic billiard motion in the equilateral triangle $T = T_{1,1,1}$ starting at *P*. First, extended by the reflection *U* to a periodic billiard motion in the quadrilateral $Q = T \cup U(T)$. Second, extended by the relection *S* to a periodic billiard motion in $Q \cup S(Q)$. Third, extended by the reflection *SR* to a periodic billiard motion in the stellateral triangle $H = K_{1,1,1}^* = Q \cup S(Q)SR(S(Q))$.

We can do more. If we apply a reflection *S* in the edge of *Q* in its boundary ∂Q , which contains the reflection point *P*, to the initial reflected motion at *P*, see Figure 12.

Figure 12. Continuation of a billiard motion in the quadrilateral Q to a billiard motion in the quarilateral S(Q) obtained by the reflection *S* in an edge of *Q*.

The motion in S(Q) when it reaches $\partial S(Q)$, et cetera, the extended motion becomes a billiard motion in the regular stellated *n*-gon $K^* = Q \cup \prod_{0 \le k \le n-1} SR^k(Q)$, see Figure 11. So we have verified

Theorem 7. A billiard motion in the regular stellated n-gon K^* , which starts at a point in the interior of $K^* \setminus O$ and does not hit a vertex of $cl(K^*)$, is invariant under the action of the isometry subgroup \widehat{G} of the isometry group G of $(K^*, \gamma|_{K^*})$ generated by the rotation R.

Let $\widehat{\mathcal{G}}$ be the subgroup of \mathcal{G} generated by the rotation \mathcal{R} . We now show

Lemma 19. The holomorphic vector field X (12) on S_{reg} is $\hat{\mathcal{G}}$ -invariant.

Proof. We compute. For every $(\xi, \eta) \in S_{\text{reg}}$ and for $\mathcal{R} \in \widehat{\mathcal{G}}$ we have

$$T_{(\xi,\eta)}\Phi_{\mathcal{R}}(X(\xi,\eta)) = e^{2\pi i/n} \left[\eta \frac{\partial}{\partial \xi} + \frac{n-n_0}{n} \frac{\xi(1-\xi)(1-\frac{2n-n_0-n_1}{n}\xi)}{\eta^{n-2}} \frac{\partial}{\partial \eta}\right]$$
$$= (e^{2\pi i/n}\eta) \frac{\partial}{\partial \xi} + \frac{n-n_0}{n} \frac{\xi(1-\xi)(1-\frac{2n-n_0-n_1}{n}\xi)}{(e^{2\pi i/n}\eta)^{n-2}} \frac{\partial}{\partial (e^{2\pi i/n}\eta)}$$
$$= X(\xi, e^{2\pi i/n}\eta) = X \circ \Phi_{\mathcal{R}}(\xi,\eta).$$

Hence for every $j \in \mathbb{Z}$ we get

$$T_{(\xi,\eta)}\Phi_{\mathcal{R}^{j}}(X(\xi,\eta)) = X \circ \Phi_{\mathcal{R}^{j}}(\xi,\eta)$$
(42)

for every $(\xi, \eta) \in S_{\text{reg}}$. In other words, the vector field *X* is invariant under the action of $\widehat{\mathcal{G}}$ on S_{reg} . \Box

Corollary 14. *For every* $(\xi, \eta) \in \mathcal{D}$ *we have*

$$X|_{\Phi_{\mathcal{D}^{j}}(\mathcal{D})} = T\Phi_{\mathcal{R}^{j}} X|_{\mathcal{D}}.$$
(43)

Proof. Equation (43) is a rewrite of Equation (42). \Box

Corollary 15. Every geodesic on (S_{reg}, Γ) is $\widehat{\mathcal{G}}$ -invariant.

Proof. This follows immediately from the lemma. \Box

Lemma 20. For every $(\xi, \eta) \in S_{reg}$ and every $j \in \mathbb{Z}$ we have

$$T_{\Phi_{\mathcal{R}^{j}}(\xi,\eta)}\delta_{K^{*}}(X(\xi,\eta)) = \frac{\partial}{\partial z}\Big|_{\delta_{K^{*}}(\Phi_{\mathcal{R}^{j}}(\xi,\eta))=R^{j}z.}$$
(44)

Proof. From Equation (41) we get $\delta_{K^*} \circ \Phi_{\mathcal{R}} = \Psi_{R^\circ} \delta_{K^*}$ on $S_{\text{reg.}}$. Differentiating the preceding equation and then evaluating the result at $X(\xi, \eta) \in T_{(\xi, \eta)} S_{\text{reg}}$ gives

$$\left(T_{\Phi_{\mathcal{R}}(\xi,\eta)}\delta_{K^{*}}\circ T_{(\xi,\eta)}\Phi_{\mathcal{R}}\right)X(\xi,\eta)=\left(T_{\delta_{K^{*}}(\xi,\eta)}\Psi_{R}\circ T_{(\xi,\eta)}\delta_{K^{*}}\right)X(\xi,\eta)$$

for all $(\xi, \eta) \in S_{\text{reg}}$. When $(\xi, \eta) \in D$, by definition $\delta_{K^*}(\xi, \eta) = \delta(\xi, \eta)$. So for every $(\xi, \eta) \in S_{\text{reg}}$

$$T_{(\xi,\eta)}\delta_{K^*}(X(\xi,\eta)) = T_{(\xi,\eta)}\delta(X(\xi,\eta)) = \frac{\partial}{\partial z}\Big|_{z=\delta_{(\xi,\eta)}} = \frac{\partial}{\partial z}\Big|_{z=\delta_{K^*}(\xi,\eta)}$$

Thus,

$$T_{\Phi_{\mathcal{R}}(\xi,\eta)}\delta_{K^*}\left(T_{(\xi,\eta)}\Phi_{\mathcal{R}}X(\xi,\eta)\right) = T_{\delta_{K^*}(\xi,\eta)}\Psi_R\left(\frac{\partial}{\partial z}\Big|_{z=\delta_{K^*}(\xi,\eta)}\right),\tag{45}$$

for every $(\xi, \eta) \in \mathcal{D}$. By analytic continuation (45) holds for every $(\xi, \eta) \in S_{\text{reg}}$. Now $T_{(\xi,\eta)}\Phi_{\mathcal{R}}$ sends $T_{(\xi,\eta)}S_{\text{reg}}$ to $T_{\Phi_{\mathcal{R}}(\xi,\eta)}S_{\text{reg}}$. Since $T_{(\xi,\eta)}\Phi_{\mathcal{R}}X(\xi,\eta) = e^{2\pi i/n}X(\xi,\eta)$ for every

 $(\xi,\eta) \in S_{\text{reg}}$, it follows that $e^{2\pi i/n}X(\xi,\eta)$ is in $T_{\Phi_{\mathcal{R}}(\xi,\eta)}S_{\text{reg}}$. Furthermore, since $T_{\delta_{K^*}(\xi,\eta)}\Psi_R$ sends $T_{\delta_{K^*}(\xi,\eta)}K^*$ to $T_{\Psi_R(\delta_{K^*}(\xi,\eta)}K^*$, we get

$$T_{\delta_{K^*}(\xi,\eta)}\Psi_R\left(\frac{\partial}{\partial z}\Big|_{z=\delta_{K^*}(\xi,\eta)}\right) = R\frac{\partial}{\partial z}\Big|_{Rz=\Psi_R(\delta_{K^*}(\xi,\eta))}$$

For every $(\xi, \eta) \in S_{\text{reg}}$ we obtain

$$T_{\Phi_{\mathcal{R}}(\xi,\eta)}\delta_{K^*}(X(\xi,\eta)) = \frac{\partial}{\partial z}\Big|_{Rz=\Psi_{\mathcal{R}}(\delta_{K^*}(\xi,\eta))},$$
(46)

that is, Equation (44) holds with j = 0. A similar calculation shows that Equation (46) holds with \mathcal{R} replaces by \mathcal{R}^{j} . This verifies Equation (44). \Box

We now show

Theorem 8. The image of a $\widehat{\mathcal{G}}$ invariant geodesic on $(\mathcal{S}_{reg}, \Gamma)$ under the developing map δ_{K^*} (17) is a billiard motion in K^* , see Figure 13.

Figure 13. (left) A billiard motion in $K^* = K^*_{1,1,1}$. (center) The points *c*, *c'* and *d*, *d'* in K^* are identified, which results in motion on a cylinder. (right) After identifying the points *a*, *a'* and *b*, *b'* on the cylinder the motion becomes a periodic geodesic on $\tilde{S}_{reg} = (K^* \setminus \{O\})^{\sim}/G$ on a smooth 2-torus less three points.

Proof. Because $\Phi_{\mathcal{R}^j}$ and Ψ_{R^j} are isometries of (S_{reg}, Γ) and $(K^*, \gamma|_{K^*})$, respectively, it follows from equation (41) that the surjective map $\delta_{K^*} : (S_{\text{reg}}, \Gamma) \to (K^*, \gamma|_{K^*})$ (17) is an isometry. Hence δ_{K^*} is a local developing map. Using the local inverse of δ_{K^*} and Equation (44), it follows that a billiard motion in $\operatorname{int}(K^* \setminus O)$ is mapped onto a geodesic in (S_{reg}, Γ) , which is possibly broken at the points $(\xi_i, \eta_i) = \delta_{K^*}^{-1}(p_i)$. Here $p_i \in \partial K^*$ are the points where the billiard motion undergoes a reflection. However, the geodesic on S_{reg} is smooth at (ξ_i, η_i) since the geodesic vector field X is holomorphic on S_{reg} . Thus, the image of the geodesic under the developing map δ_{K^*} is a billiard motion. \Box

Theorem 9. Under the restriction of the mapping

$$\nu = \sigma \circ \Pi : \mathbb{C} \setminus \mathbb{V}^+ \to (\mathbb{C} \setminus \mathbb{V}^+)^{\sim} / \mathfrak{G} = \widetilde{S}_{reg}$$

$$\tag{47}$$

to $K^* \setminus O$ the image of a billiard motion λ_z is a smooth geodesic $\widehat{\lambda}_{\nu(z)}$ on $(\widetilde{S}_{reg}, \widehat{\gamma})$, where $\nu^*(\widehat{\gamma}) = \gamma|_{\mathbb{C} \setminus \mathbb{V}^+}$.

Proof. Since the Riemannian metric γ on \mathbb{C} is invariant under the group of Euclidean motions, the Riemannian metric $\gamma|_{K^*\setminus O}$ on $K^* \setminus O$ is \widehat{G} -invariant. Hence $\gamma_{K^*\setminus O}$ is invariant under the reflection S_m for $m \in \{0, 1, ..., n-1\}$. So $\gamma|_{K^*\setminus O}$ pieces together to give a Riemannian metric γ^{\sim} on the identification space $(K^* \setminus O)^{\sim}$. In other words, the pull back of γ^{\sim} under the map $\Pi|_{K^*\setminus O} : K^* \setminus O \to (K^* \setminus O)^{\sim}$, which identifies equivalent edges of K^* , is the metric $\gamma|_{K^*\setminus O}$. Since $\Pi|_{K^*\setminus O}$ intertwines the *G*-action on $K^* \setminus O$ with the *G*-action on $(K^* \setminus O)^{\sim}$, the metric γ^{\sim} is \widehat{G} -invariant. It is flat because the metric γ is flat. So γ^{\sim} induces a flat Riemannian metric $\widehat{\gamma}$ on the orbit space $(K^* \setminus O)^{\sim}/G = \widetilde{S}_{reg}$. Since the billiard motion λ_z is a \widehat{G} -invariant broken geodesic on $(K^* \setminus O, \gamma_{K^*\setminus O})$, it gives rise to a *continuous* broken

geodesic $\lambda_{\Pi(z)}^{\sim}$ on $((K^* \setminus O)^{\sim}, \gamma^{\sim})$, which is \widehat{G} -invariant. Thus, $\widehat{\lambda}_{\nu(z)} = \nu(\lambda_z)$ is a piecewise smooth geodesic on the smooth *G*-orbit space $((K^* \setminus O)^{\sim}/G = \widetilde{S}_{reg}, \widehat{\gamma})$.

We need only show that $\lambda_{\nu(z)}$ is smooth. To see this we argue as follows. Let $s \subseteq K^*$ be a closed segment of a billiard motion γ_z , that does not meet a vertex of $cl(K^*)$. Then s is a horizontal straight line motion in $cl(K^*)$. Suppose that E_{k_0} is the edge of K^* , perpendicular to the direction u_{k_0} , which is first met by s and let P_{k_0} be the meeting point. Let S_{k_0} be the reflection in E_{k_0} . The continuation of the motion s at P_{k_0} is the horizontal line $RS_{k_0}(s)$ in $K_{k_0}^*$. Recall that $K_{k_0}^*$ is the translation of K^* by τ_{k_0} . Using a suitable sequence of reflections in the edges of a suitable $K_{k_0\cdots k_\ell}^*$ each followed by a rotation R and then a translation in \mathcal{T} corresponding to their origins, we extend s to a smooth straight line λ in $\mathbb{C} \setminus \mathbb{V}^+$, see Figure 14. The line λ is a geodesic in $(\mathbb{C} \setminus \mathbb{V}^+, \gamma|_{\mathbb{C} \setminus \mathbb{V}^+})$, which in K^* has image $\hat{\lambda}_{\nu(z)}$ under the \mathfrak{G} -orbit map ν (47) that is a smooth geodesic on $(\widetilde{S}_{\text{reg}}, \widehat{\gamma})$. The geodesic $\nu(\lambda)$ starts at $\nu(z)$. Thus, the smooth geodesic $\nu(\lambda)$ and the geodesic $\hat{\lambda}_{\nu(z)}$ are equal. In other words, $\hat{\lambda}_{\nu(z)}$ is a smooth geodesic. \Box

Figure 14. The billiard motion γ_z in the stellated regular 3-gon $K_{1,1,1}^*$ meets the edge 0, isreflected in this edge by S_0 , and then is rotated by R. This gives an extended motion $RS_0\gamma_z$, which is a straight line that is the same as reflecting γ_z by U and then translating by τ_0 .

Thus, the affine orbit space $S_{reg} = (\mathbb{C} \setminus \mathbb{V}^+)^{\sim} / \mathfrak{G}$ with flat Riemannian metric $\hat{\gamma}$ is the *affine* analogue of the Poincaré model of the affine Riemann surface S_{reg} as an orbit space of a discrete subgroup of PGl(2, \mathbb{C}) acting on the unit disk in \mathbb{C} with the Poincaré metric.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data was used in this research.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Group Theoretic Properties

In this appendix we discuss some group theoretic properties of the set of equivalent edges of $cl(K^*)$, which we use to determine the topology of \widetilde{S}_{reg} .

Let \mathcal{E} be the set of unordered pairs [E, E'] of nonadjacent edges of $cl(K^*)$. Define an action \cdot of G on \mathcal{E} by

$$g \cdot [E, E'] = [g(E), g(E')]$$

for every unordered pair [E, E'] of nonadjacent edges of $cl(K^*)$. For every $g \in G$ the edges g(E) and g(E') are nonadjacent. This follows because the edges E and E' are nonadjacent and the elements of G are invertible mappings of \mathbb{C} into itself. So $\emptyset = g(E \cap E') = g(E) \cap g(E')$. Thus, the mapping• is well defined. It is an action because for every g and $h \in G$ we have

$$g \cdot (h \cdot [E, E']) = g \cdot [h(E), h(E')] = [g(h(E), g(h(E'))] = [(gh)(E), (gh)(E')] = (gh) \cdot [E, E'].$$

Since $\mathcal{E} = \bigcup_{j=0,1,\infty} \mathcal{E}^j$, the action \cdot of G on \mathcal{E} induces an action \cdot of the group G^j of reflections on the set \mathcal{E}^j of equivalent edges of $cl(K^*)$, which is defined by

$$g_j \cdot [E, S_k^{(j)}(E)] = [g_j(E), g_j(S_k^{(j)}(E))] = [g_j(E), (g_j S_k^{(j)} g_j^{-1})(g_j(E))],$$

for every $g_j \in G^j$, every edge E of $cl(K^*)$, and every generator $S_k^{(j)}$ of G^j , where k = 0, 1, ..., n-1. Since $g_j S_k^{(j)} g_j^{-1} = S_r^{(j)}$ by Corollary 6, the mapping \cdot is well defined.

Lemma A1. The group G action • sends a G^{j} -orbit on \mathcal{E}^{j} to another G^{j} -orbit on \mathcal{E}^{j} .

Proof. Consider the G^j -orbit of $[E, S_m^{(j)}(E)] \in \mathcal{E}^j$. For every $g \in G$ we have

$$g \cdot (G^{j} \cdot [E, S_{m}^{(j)}(E)]) = (gG^{j}g^{-1}) \cdot (g \cdot [E, S_{m}^{(j)}(E)]) = G^{j} \cdot (g \cdot [E, S_{m}^{(j)}(E)]),$$

because G^j is a normal subgroup of G by Corollary 7. Since

$$g \cdot [E, S_m^{(j)}(E)] = [g(E), g(S_m^{(j)}(E))] = [g(E), gS_m^{(j)}g^{-1}(g(E))]$$

and $gS_m^{(j)}g^{-1} = S_r^{(j)}$ by Corollary 6, it follows that $g \cdot [E, S_m^{(j)}(E)] \in \mathcal{E}^j$. \Box

Lemma A2. For every $j = 0, 1, \infty$ and every k = 0, 1, ..., n - 1 the isotropy group $G_{e_k^j}^j$ of the G^j action on \mathcal{E}^j at $e_k^j = [E, S_k^{(j)}(E)]$ is $\langle S_k^{(j)} | (S_k^{(j)})^2 = e \rangle$.

Proof. Every $g \in G_{e^j}^j$ satisfies

$$e_k^j = [E, S_k^{(j)}(E)] = g \cdot e_k^j = g \cdot [E, S_k^{(j)}(E)]$$

if and only if

$$[E, S_k^{(j)}(E)] = [g(E), gS_k^{(j)}g^{-1}(g(E))] = [g(E), S_r^{(j)}(g(E))]$$

if and only if one of the statements 1) $g(E) = E \& S_k^{(j)}(E) = S_r^{(j)}(g(E))$ or 2) $E = g(S_r^{(j)}(E))$ & $g(E) = S_k^{(j)}(E)$ holds. From g(E) = E in 1) we get g = e using Lemma 3. To see this we argue as follows. If $g \neq e$, then $g = R^p (S^{(j)})^\ell$ for some $\ell = 0, 1$ and some $p \in \{0, 1, \dots, n-1\}$, see Equation (A1). Suppose that $g = R^p$ with $p \neq 0$. Then $g(E) \neq E$, which contradicts our hypothesis. Now suppose that $g = R^p S^{(j)}$. Then E = g(E) = $R^p S^{(j)}(E)$, which gives $R^{-p}(E) = S^{(j)}(E)$. Let A and B be end points of the edge E. Then the reflection $S^{(j)}$ sends A to B and B to A, while the rotation R^{-p} sends A to A and B to B. Thus, $R^{-p}(E) \neq S^{(j)}(E)$, which is a contradiction. Hence g = e. If $g(E) = S_k^{(j)}(E)$ in 2), then $(S_k^{(j)}g)(E) = E$. So $S_k^{(j)}g = e$ by Lemma 3, that is, $g = S_k^{(j)}$.

For every $j = 0, 1, \infty$ and every $m_j = 0, 1, \dots, \frac{n}{d_j} - 1$ let $G_{e_{m_jd_j}^j}^j = \{g_j \in G^j | g_j \cdot e_{m_jd_j}^j = e_{m_jd_j}^j\}$ be the isotropy group of the G^j action on \mathcal{E}^j at $e_{m_jd_j}^j = [E, S_{m_jd_j}^{(j)}(E)]$. Since $G_{e_{m_jd_j}^j}^j = \langle S_{m_jd_j}^{(j)} | (S_{m_jd_j}^{(j)})^2 = e \rangle$ is an abelian subgroup of G^j , it is a normal subgroup. Thus, $H^j = G^j / G_{e_{m_jd_j}^j}^j$ is a subgroup of G^j of order $(2n/d_j)/2 = n/d_j$. This proves

Lemma A3. For every $j = 0, 1, \infty$ and each $m_j = 0, 1, \dots, \frac{n}{d_j} - 1$ the G^j -orbit of $e^j_{m_j d_j}$ in \mathcal{E}^j is equal to the H^j -orbit of $e^j_{m_j d_j}$ in \mathcal{E}^j .

Lemma A4. For $j = 0, 1, \infty$ we have $H^j = \langle V = R^{d_j} | V^{n/d_j} = e \rangle$.

Proof. Since

$$S_{k}^{(j)} = R^{k} S^{(j)} R^{-k} = R^{k} (R^{n_{j}} U) R^{-k} = R^{2k+n_{j}} U = R^{2k} S^{(j)},$$
(A1)

we get $S_{m_j d_j}^{(j)} = R^{(2m_j + \frac{n_j}{d_j})d_j} U = (R^{d_j})^{m_j} S^{(j)}$. Because the group G^j is generated by the reflections $S_k^{(j)}$ for k = 0, 1, ..., n - 1, it follows that

$$G^{j} \subseteq \langle V = R^{d_{j}}, S_{m_{j}d_{j}}^{(j)} | V^{n/d_{j}} = e = (S_{m_{j}d_{j}}^{(j)})^{2} \& VS_{m_{j}d_{j}}^{(j)} = S_{m_{j}d_{j}}^{(j)} V^{-1} \rangle = K_{j}.$$

 K_j is a subgroup of G of order $2n/d_j$. Clearly the isotropy group $G_{e_{m_jd_j}^j}^j = \langle S_{m_jd_j}^{(j)} | (S_{m_jd_j}^{(j)})^2 = e \rangle$ is an abelian subgroup of K^j . Hence $H^j = G^j/G_{e_{m_jd_j}^j}^j \subseteq K^j/G_{e_{m_jd_j}^j}^j = L^j$, where L^j is a subgroup of K^j of order $(2n/d_j)/2 = n/d_j$. Thus, the group L^j has the same order as its subgroup H^j . So $H^j = L^j$. However, $L^j = \langle V = R^{d_j} | V^{n/d_j} = e \rangle$. \Box

Let
$$f_{\ell}^{j} = R^{\ell} \cdot e_{0}^{j}$$
. Then

$$f_{\ell}^{j} = R^{\ell} \cdot e_{0}^{j} = R^{\ell} \cdot [E, S^{(j)}(E)]$$

$$= [R^{\ell}(E), R^{\ell}S^{(j)}R^{-\ell}(R^{\ell}(E))] = [R^{\ell}(E), S_{\ell}^{(j)}(R^{\ell}(E))].$$

So

$$\begin{aligned} V^{m} \cdot f_{\ell}^{j} &= V^{m} \cdot [R^{\ell}(E), R^{\ell} S^{(j)} R^{-\ell}(R^{\ell}(E))] \\ &= [V^{m}(R^{\ell}(E)), V^{m} S^{(j)}_{\ell} V^{-m}(V^{m}(R^{\ell}(E)))] \\ &= [R^{md_{j}+\ell}(E), S^{(j)}_{md_{i}+\ell}(E)] = e^{j}_{md_{i}+\ell}. \end{aligned}$$

This proves

$$\bigcup_{\ell_j=0}^{d_j-1} H^j \cdot f_{\ell_j}^j = \bigcup_{\ell_j=0}^{d_j-1} \bigcup_{m_j=0}^{\frac{n}{d_j}-1} V^{m_j} \cdot f_{\ell_j}^j = \bigcup_{k=0}^{n-1} e_k^j,$$
(A2)

since every $k \in \{0, 1, ..., n-1\}$ may be written uniquely as $m_j d_j + \ell_j$ for some $m_j \in \{0, 1, ..., \frac{n}{d_j} - 1\}$ and some $\ell_j \in \{0, 1, ..., d_j - 1\}$.

References

- 1. Aurell, E.; Itzykson, C. Rational billiards and algebraic curves. J. Geom. Phys. 1988, 5, 191–208. [CrossRef]
- 2. Richens, P.J.; Berry, M.V. Pseudointegrable systems in classical and quantum mechanics. *Phys. D Nonlinear Phenom.* **1981**, 2, 495–512. [CrossRef]
- 3. Berger, M. Geometry Revealed. A Jacob's Ladder to Modern Higher Geometry; Springer: New York, NY, USA, 2010.
- 4. Weyl, H. *The Concept of a Riemann Surface*; Dover: Mineola, NY, USA, 2001.
- 5. McKean, H.; Moll, V. *Elliptic Curves*; Cambridge University Press: Cambridge, UK, 1999.
- 6. Bates, L.; Cushman, R. Complete integrability beyond Liouville–Arnol'd. Rep. Math. Phys. 2005, 56, 77–91. [CrossRef]
- 7. Flaschka, H. A remark on integrable Hamiltonian systems. Phys. Lett. A 1988, 131, 505–508. [CrossRef]

- 8. Spivak, M. A Comprehensive Introduction to Differential Geometry; Publish or Perish: Berkeley, CA, USA, 1979; Volume 2.
- 9. Gauss, C.F. Disquisitiones generales circa superficies curvas. In *English Translation: General Investigations of Curved Surfaces of 1825 and 1827*; Hiltebeitel, A., Morehead, J., Eds.; Princeton University Library: Princeton, NJ, USA, 1902. Available online: www.gutenberg.org/files/36856/36856-pdf.pdf (accessed on 1 February 2020).