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1. Introduction

We give a section by section summary of the contents of this paper.
In §1 we define the Schwarz–Christoffel conformal map FQ (2) of the complex plane

less {0, 1} onto a quadrilateral Q, which is formed by reflecting a rational triangle Tn0n1n∞

in the real axis.
In §2, following Aurell and Itzykson [1] we associate to the map FQ the affine Riemann

surface S in C2 defined by ηn = ξn−n0(1− ξ)n−n1 , where C2 has coordinates (ξ, η) and
n = n0 + n1 + n∞. Thinking of S as a branched covering

π : S → C \ {0, 1} : (ξ, η) 7→ ξ

with branch points at (0, 0), (1, 0) and ∞ corresponding to the branch values 0, 1, and ∞,
respectively, we show that S has genus 1

2
(
n + 2− (d0 + d1 + d∞)

)
, where dj = gcd(n, nj)

for j = 0, 1, ∞. Let Sreg be the set of nonsingular points of S . The map π̂ = π|Sreg : Sreg →
C \ {0, 1} is a holomorphic n-fold covering map with covering group the cyclic group
generated by

R : Sreg ⊆ C2 → Sreg ⊆ C2 : (ξ, η) 7→ (ξ, e2πi/nη).

In §3 we build a model S̃reg of the affine Riemann surface Sreg. The quadrilateral Q is
holomorphically diffeomorphic to a fundamental domain D of the action of the covering
group on Sreg. Rotating Q by

R : C→ C : z 7→ e2πi/nz

gives a regular stellated n-gon K∗, which is invariant under the dihedral group G gen-
erated by the mappings R and U : C → C : z 7→ z. We study the group theoretic
properties of K∗. We show that K∗ is invariant under the reflection S(j) = Rnj U in the ray
{t e2πinn/n ∈ C t ≥ 0} for j = 0, 1, ∞. To construct the model S̃reg of the affine Riemann
surface Sreg from the regular stellated n-gon K∗ we follow Richens and Berry [2]. We
identify two nonadjacent closed edges of cl(K∗), the closure of K∗, if one edge is obtained
from the other by a reflection S(j)

k = RkS(j)R−k for some j = 0, 1, ∞. The identification
space (cl(K∗) \O)∼, where O is the center of K∗, is a complex manifold except at points
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corresponding to O or a vertex of cl(K∗), where it has a conical singularity. The action
of G on K∗ \O induces a free and proper action on the identification space (K∗ \O)∼,
whose orbit space S̃reg is a complex manifold with compact closure in CP2, with genus
1
2
(
n + 2− (d0 + d1 + d∞)

)
. Moreover S̃reg is holomorphically diffeomorphic to the affine

Riemann surface Sreg.
In §4, we construct an affine model S̃reg of the Riemann surface Sreg. In other words,

we find a discrete subgroup G of the 2-dimensional Euclidean group E(2), which acts freely
and properly on C \V+ such that after forming an identification space (C \V+)∼ the G

orbit space (C \ V+)∼/G is holomorphically diffeomorphic to Sreg. We now describe
the group G. Reflect the regular stellated n-gon K∗ in its edges, and then in the edges
of the reflected regular stellated n-gons, et cetera. We obtain a group T generated by 2n
translations τk so that τ`1

1 ◦ · · · ◦τ`2n
2n sends the center O of K∗ to the center of a repeatedly

reflected reflected n-gon. The set V+ is the union of the image under τ`1
1 ◦ · · · ◦τ`2n

2n of a
vertex of cl(K∗) and its center O for every (`1, . . . , `2n) ∈ (Z≥0)

2n. Let G be the semi-direct
product G n T . The fundamental domain of the G action on C \ V+ is cl(K∗) less its
vertices and center. Identifying equivalent open edges of K∗ \O and then taking G orbits,
it follows that the affine model S̃reg of the affine Riemann surface Sreg is the G orbit space
(C \V+)∼/G.

In §5 we show that the mapping

δQ : D ⊆ Sreg ⊆ C2 → Q ⊆ C : (ξ, η) 7→ (FQ◦ π̂)(ξ, η) = z

straightens the nowhere vanishing holomorphic vector field X (11) on Sreg, that is,
T(ξ,η)δQ X(ξ, η) = ∂

∂z z=δQ(ξ,η)
for every (ξ, η) ∈ D. We pull back the flat metric γ = dz⊙ dz

on C by δQ to the metric Γ on Sreg. So δQ is a local developing map. Since ∂
∂z is the geodesic

vector field on (Q, γ|Q), it follows that X is a holomorphic geodesic vector field on (Sreg, Γ).
In §6 we study the geometry of the developing map δQ. The dihedral group G

generated by R and U : Sreg → Sreg : (ξ, η) 7→ (ξ, η) is a group of isometries of (Sreg, Γ).
The group G generated by R and U : C→ C : z 7→ z is a group of isometries of (Q, γ|Q).
Extend the holomorphic map δQ to a holomorphic map map δK∗ : Sreg → K∗ by requiring
that Rj◦ δK∗ = δQ◦Rj on R−j(D). This works since D is a fundamental domain of the
action of the covering group on Sreg, which implies Sreg = q0≤j≤nRj(D). Thus, the local
holomorphic diffeomorphism δK∗ intertwines the G action on (Sreg, Γ) with the G action
on (K∗, γ|K∗) and intertwines the local geodesic flow of the holomorphic geodesic vector
field X with the local geodesic flow of the holomorphic vector field ∂

∂z .
Following Richens and Berry [2] we impose the condition: when a geodesic, starting

at a point in int(cl(K∗) \O), meets ∂K∗ it undergoes a reflection in the edge of K∗ that it
meets. Such geodesics never meet a vertex of cl(K∗). Thus, this type of geodesic becomes a
billiard motion in K∗ \O, which is defined for all time. Billiard motions in polygons have
been extensively studied. For a nice overview see Berger ([3], chpt. XI) and references
therein. An argument shows that Ĝ invariant geodesics on (Sreg, Γ) correspond under the
map δK∗\O to billiard motions on (K∗ \O, γ|(K∗\O)).

Repeatedly reflecting a billiard motion in an edge of K∗ \O and suitable edges of
suitable T translations of K∗ \O gives a straight line motion λ on C \V+. The image of the
segment of a billiard motion, where λ intersects K∗ \O, in the orbit space (C \V+)∼/G =

S̃reg, is a geodesic. Here we use the flat Riemannian metric γ̂ on S̃reg, which is induced by
the G invariant Euclidean metric γ on C \V+ restricted to K∗ \O. Consequently, (S̃reg, γ̂)
is an affine analogue of the affine Riemann surface Sreg thought of as the orbit space of a
discrete subgroup of PGl(2,C) acting on C with the Poincaré metric, see Weyl [4].
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2. A Schwarz–Christoffel Mapping

Consider the conformal Schwarz–Christoffel mapping

FT : C+ = {ξ ∈ C Im ξ ≥ 0} → T = Tn0n1n∞ ⊆ C : ξ 7→
∫ ξ

0

dw

w1− n0
n (1− w)1− n1

n
= z (1)

of the upper half plane C+ to the rational triangle T = Tn0n1n∞ with interior angles n0
n π,

n1
n π, and n∞

n π, see Figure 1. Here n0 + n1 + n∞ = n and nj ∈ Z≥1 for j = 0, 1 and ∞ with
1 ≤ n0 ≤ n1 ≤ n∞. Because n∞ is greater than or equal to either n0 or n1, it follows that the
corresponding side OC is the longest side of the triangle T = 4OCD.

In the integrand of (1) we use the following choice of complex nth root. Suppose that
w ∈ C \ {0, 1}. Let w = r0eiθ0 and 1− w = r1eiθ1 where r0, r1 ∈ R>0 and θ0, θ1 ∈ [0, 2π).
For w ∈ (0, 1) on the real axis we have θ0 = θ1 = 0, w = r0 > 0, and 1− w = r1 > 0. So(
wn−n0(1− w)n−n1

)1/n = (rn−n0
0 rn−n1

1 )1/n. In general for w ∈ C \ {0, 1}, we have

(
wn−n0(1− w)n−n1

)1/n = (rn−n0
0 rn−n1

1 )1/nei((n−n0)θ0+(n−n1)θ1)/n.

From (1) we get

FT(0) = 0, FT(1) = C, and FT(∞) = D,

where C =
∫ 1

0
dw

w1− n0
n (1−w)1− n1

n
and D = e

n0
n πi( sin

n1
n π

sin n∞
n π

)
C. Consequently, the bijective holo-

morphic mapping FT sends int(C+ \ {0, 1}), the interior of the upper half plane less 0 and
1, onto int T, the interior of the rational triangle T = Tn0n1n∞ , and sends the boundary of
C+ \ {0, 1} to the edges of ∂T less their end points O, C and D, see Figure 1. Thus, the
image of C+ \ {0, 1} under FT is cl(T) \ {O, C, D}. Here cl(T) is the closure of T in C.

Figure 1. The rational triangle T = Tn0n1n∞ .

Because FT |[0,1] is real valued, we may use the Schwarz reflection principle to extend
FT to the holomorphic diffeomorphism

FQ : C \ {0, 1} → Q = T ∪ T ⊆ C : ξ 7→ z =

{
FT(ξ), if ξ ∈ C+ \ {0, 1}
FT(ξ), if ξ ∈ C+ \ {0, 1}.

(2)

Here Q = Qn0n1n∞ is a quadrilateral with internal angles 2π n0
n , π n∞

n , 2π n1
n , and π n∞

n
and vertices at O, D, C, and D, see Figure 2. The conformal mapping FQ sends C \ {0, 1}
onto cl(Q) \ {O, D, C, D}.
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Figure 2. The rational quadrilateral Q.

3. The Geometry of an Affine Riemann Surface

Let ξ and η be coordinate functions on C2. Consider the affine Riemann surface
S = Sn0,n1,n∞ in C2, associated to the holomorphic mapping FQ, defined by

g(ξ, η) = ηn − ξn−n0(1− ξ)n−n1 = 0, (3)

see Aurell and Itzykson [1]. We determine the singular points of S by solving

0 = dg(ξ, η)

= −(n− n0)ξ
n−n0−1(1− ξ)n−n1−1(1− 2n−n0−n1

n−n0
ξ)dξ + nηn−1 dη (4)

For (ξ, η) ∈ S , we have dg(ξ, η) = 0 if and only if (ξ, η) = (0, 0) or (1, 0). Thus, the set
Ssing of singular points of S is {(0, 0), (1, 0)}. So the affine Riemann surface Sreg = S \ Ssing

is a complex submanifold of C2. Actually, Sreg ⊆ C2 \ {η = 0}, for if (ξ, η) ∈ S and η = 0,
then either ξ = 0 or ξ = 1.

Lemma 1. Topologically Sreg is a compact Riemann surface S ⊆ CP2 of genus g = 1
2
(
n + 2−

(d0 + d1 + d∞)
)

less three points: [0 : 0 : 1], [1 : 0 : 1], and [0 : 1 : 0]. Here dj = gcd(nj, n) for
j = 0, 1, ∞.

Proof. Consider the (projective) Riemann surface S ⊆ CP2 specified by the condition
[ξ : η : ζ] ∈ S if and only if

G(ξ, η, ζ) = ζn−n0−n1 ηn − ξn−n0(ζ − ξ)n−n1 = 0. (5)

Thinking of G as a polynomial in η with coefficients which are polynomials in ξ and ζ,
we may view S as the branched covering

π : S ⊆ CP2 → CP : [ξ : η : ζ] 7→ [ξ : ζ]. (6)

When ζ = 1 we get the affine branched covering

π = π|S : S = S ∩ {ζ = 1} ⊆ C2 → C = CP∩ {ζ = 1} : (ξ, η) 7→ ξ. (7)

From (3) it follows that η = ωk(ξ
n−n0(1− ξ)n−n1)1/n, where ωk for k = 0, 1, . . . , n− 1

is an nth root of unity with and ( )1/n is the complex nth root used in the definition of the
mapping FT (1). Thus, the branched covering mapping π (6) has n “sheets” except at its
branch points. Since

η = ξ1− n0
n (1− ξ)1− n1

n = ξ1− n0
n
(
1− (1− n1

n )ξ + · · ·
)

(8a)

and

η = (1− ξ)1− n1
n
(
1− (1− ξ)

)1− n0
n
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= (1− ξ)1− n1
n
(
1− (1− n0

n )(1− ξ) + · · ·
)
, (8b)

it follows that ξ = 0 and ξ = 1 are branch points of the mapping π of degree n
d0

and n
d1

, since
dj = gcd(n, nj) = gcd(n− nj, nj) for j = 0, 1, see McKean and Moll ([5], p. 39). Because

η =
( 1

ξ

)−(1− n0
n )(1− 1

1
ξ

)1− n1
n = (−1)1− n1

n ξ2− n0+n1
n (1− 1

ξ )
1− n1

n

= (−1)1− n1
n ξ1+ n∞

n
(
1− (1− n1

n ) 1
ξ + · · ·

)
, (8c)

∞ is a branch point of the mapping π of degree n
d∞

, where d∞ = gcd(n, n∞). Hence
the ramification index of 0, 1, ∞ is d0(

n
d0
− 1) = n − d0, n − d1, and n − d∞, respec-

tively. Thus, the map π has d0 fewer sheets at 0, d1 fewer at 1, and d∞ fewer at ∞
than an n-fold covering of CP. Thus, the total ramification index r of the mapping π is
r = (n− d0) + (n− d1) + (n− d∞). By the Riemann–Hurwitz formula, the genus g of S is
r = 2n + 2g− 2. In other words,

g = 1
2
(
n + 2− (d0 + d1 + d∞)

)
. (9)

Consequently, the affine Riemann surface S is the compact connected surface S less the
point at ∞, namely, S = S \ {[0 : 1 : 0]}. So Sreg is the compact connected surface S less
three points: [0 : 0 : 1], [1 : 0 : 1], and [0 : 1 : 0].

Examples of S = Sn0,n1,n∞

1. n0 = 1, n0 = 1, n∞ = 4; n = 6. So d0 = 1, d1 = 1, d∞ = 2. Hence
2g = 8− 4 = 4. So g = 2.

2. n0 = 2, n1 = 2, n∞ = 3; n = 7. So d0 = d1 = d∞ = 1. Hence
2g = 9− 3 = 6. So g = 3.

Table 1 below lists all the partitions {n1, n0, n∞} of n, which give a low genus Riemann
surface S = Sn0,n1,n∞

Table 1. Based on the table in Aurell and Itzykson ([1], p. 193).

g n0, n1, n∞; n g n0, n1, n∞; n

1 1, 1, 1; 3 3 2, 2, 3; 7
1 1, 1, 2; 4 3 1, 3, 3; 7
1 1, 2, 3; 6 3 1, 1, 5; 7
2 1, 2, 2; 5 3 2, 3, 3; 8
2 1, 1, 3; 5 3 1, 2, 5; 8
2 1, 1, 4; 6 3 1, 1, 6; 8
2 1, 3, 4; 8 3 2, 3, 4; 9
2 2, 3, 5; 10 3 1, 3, 5; 9
2 1, 4, 5; 10 3 1, 2, 6; 9

3 3, 4, 5; 12
3 1, 5, 6; 12
3 1, 3, 8; 12
3 2, 5, 7; 14
3 1, 6, 7; 14

Corollary 1. If n is an odd prime number and {n1, n0, n∞} is a partition of n into three parts,
then the genus of S is 1

2 (n− 1).

Proof. Because n is prime, we get d0 = d1 = d∞ = 1. Using the formula g = 1
2
(
n + 2−

(d0 + d1 + d∞)
)

we obtain g = 1
2 (n− 1).
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Corollary 2. The singular points of the Riemann surface S are [0 : 0 : 1], [1 : 0 : 1], and if n∞ > 1
then also [0 : 1 : 0].

Proof. A point [ξ : η : ζ] ∈ Ssing if and only if [ξ : η : ζ] ∈ S , that is,

0 = G(ξ, η, ζ) = ζn−(n0+n1)ηn − ξn−n0(ζ − ξ)n−n1 (10a)

and

(0, 0, 0) = DG(ξ, η, ζ)

=
(
− ξn−n0−1(ζ − ξ)n−n1−1((n− n0)(ζ − ξ)− (n− n1)ξ

)
,

nηn−1ζn−(n0+n1), (n− (n0 + n1))η
nζn−n0−n1−1

− (n− n1)ξ
n−n0(ζ − ξ)n−n1−1) (10b)

We need only check the points [0 : 0 : 1], [1 : 0 : 1] and [0 : 1 : 0]. Since the first two
points are singular points of S = S \ {[0 : 1 : 0]}, they are singular points of S . Thus, we
need to see if [0 : 1 : 0] is a singular point of S . Substituting (0, 1, 0) into the right hand
side of (10b) we get

{
(0, 0, 1), if n∞ = n− (n0 + n1) = 1
(0, 0, 0), if n∞ > 1.

Thus, [0 : 1 : 0] is a singular point of S only if
n∞ > 1.

Lemma 2. The mapping

π̂ = π|Sreg : Sreg ⊆ C2 → C \ {0, 1} : (ξ, η) 7→ ξ (11)

is a surjective holomorphic local diffeomorphism.

Proof. Let (ξ, η) ∈ Sreg and let

X(ξ, η) = η
∂

∂ξ
+ n−n0

n

ξn−n0−1(1− ξ)n−n1−1(1− 2n−n0−n1
n−n0

ξ)

ηn−2
∂

∂η
. (12)

By hypothesis (ξ, η) ∈ Sreg implies that η 6= 0. The vector X(ξ, η) is defined and is
nonzero. From (X dg)(ξ, η) = 0 and T(ξ,η)Sreg = ker dg(ξ, η), it follows that X(ξ, η) ∈
T(ξ,η)Sreg. Using the definition of X(ξ, η) (12) and the definition of the mapping π (7), we
see that the tangent of the mapping π̂ (11) at (ξ, η) ∈ Sreg is given by

T(ξ,η)π̂ : T(ξ,η)Sreg → Tξ(C \ {0, 1}) = C : X(ξ, η) 7→ η
∂

∂ξ
. (13)

Since X(ξ, η) and η ∂
∂ξ are nonzero vectors, they form a complex basis for T(ξ,η)Sreg and

Tξ(C \ {0, 1}), respectively. Thus, the complex linear mapping T(ξ,η)π̂ is an isomorphism.
Hence π̂ is a local holomorphic diffeomorphism.

Corollary 3. π̂ (11) is a surjective holomorphic n to 1 covering map.

Proof. We only need to show that π̂ is a covering map. First we note that every fiber of π̂ is
a finite set with n elements, since for each fixed ξ ∈ C \ {0, 1} we have π̂−1(ξ) = {(ξ, η) ∈
Sreg η = ωk(ξ

n−n0(1− ξ)n−n1)1/n}. Here ωk for k = 0, 1, . . . , n− 1, is an nth root of 1 and
( )1/n is the complex nth root used in the definition of the Schwarz–Christoffel map FQ (2).
Hence the map π̂ is a proper surjective holomorphic submersion, because each fiber is
compact. Thus, the mapping π̂ is a presentation of a locally trivial fiber bundle with fiber
consisting of n distinct points. In other words, the map π̂ is a n to 1 covering mapping.
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Consider the group Ĝ of linear transformations of C2 generated by

R : C2 → C2 : (ξ, η) 7→ (ξ, e2πi/nη).

ClearlyRn = idC2 = e, the identity element of Ĝ and Ĝ = {e,R, . . . ,Rn−1}. For each
(ξ, η) ∈ S we have

(e2πi/nη)n − ξn−n0(1− ξ)n−n1 = ηn − ξn−n0(1− ξ)n−n1 = 0.

SoR(ξ, η) ∈ S . Thus, we have an action of Ĝ on the affine Riemann surface S given by

Φ : Ĝ × S → S :
(

g, (ξ, η)
)
7→ g(ξ, η). (14)

Since Ĝ is finite, and hence is compact, the action Φ is proper. For every g ∈ Ĝ we
have Φg(0, 0) = (0, 0) and Φg(1, 0) = (1, 0). So Φg maps Sreg into itself. At (ξ, η) ∈ Sreg

the isotropy group Ĝ(ξ,η) is {e}, that is, the Ĝ-action Φ on Sreg is free. Thus, the orbit space
Sreg/Ĝ is a complex manifold.

Corollary 4. Consider the holomorphic mapping

ρ : Sreg ⊆ C2 → Sreg/Ĝ ⊆ C2 : (ξ, η) 7→ [(ξ, η)],

where [(ξ, η)] is the Ĝ-orbit {Φg(ξ, η) ∈ Sreg g ∈ Ĝ} of (ξ, η) in Sreg. The Ĝ principal bundle
presented by the mapping ρ is isomorphic to the bundle presented by the mapping π̂ (11).

Proof. We use invariant theory to determine the orbit space S/Ĝ. The algebra of polynomi-
als on C2, which are invariant under the Ĝ-action Φ, is generated by π1 = ξ and π2 = ηn.
Since (ξ, η) ∈ S , these polynomials are subject to the relation

π2 − πn−n0
1 (1− π1)

n−n1 = ηn − ξn−n0(1− ξ)n−n1 = 0. (15)

Equation (15) defines the orbit space S/Ĝ as a complex subvariety of C2. This subvari-
ety is homeomorphic to C, because it is the graph of the function π1 7→ πn−n0

1 (1− π1)
n−n1 .

Consequently, the orbit space Sreg/Ĝ is holomorphically diffeomorphic to C \ {0, 1}.
It remains to show that Ĝ is the group of covering transformations of the bundle

presented by the mapping π̂ (11). For each ξ ∈ C \ {0, 1} look at the fiber π̂−1(ξ). If (ξ, η) ∈
π̂−1(ξ), then R±1(ξ, η) = (ξ, e±2πi/nη) ∈ Sreg, since (ξ, e±2πi/nη) 6= (0, 0) or (1, 0) and
(ξ, e±2πi/nη) ∈ S . Thus, ΦR±1

(
π̂−1(ξ)

)
⊆ π̂−1(ξ). So π̂−1(ξ) ⊆ ΦR

(
π̂−1(ξ)

)
⊆ π̂−1(ξ).

Hence ΦR
(
π̂−1(ξ)

)
= π̂−1(ξ). Thus, ΦR is a covering transformation for the bundle

presented by the mapping π̂. So Ĝ is a subgroup of the group of covering transformations.
These groups are equal because Ĝ acts transitively on each fiber of the mapping π̂.

4. Another Model for Sreg

We construct another model S̃reg for the smooth part Sreg of the affine Riemann surface
S (3) as follows. Let D ⊆ Sreg be a fundamental domain for the Ĝ action Φ (14) on Sreg. So
(ξ, η) ∈ D if and only if for ξ ∈ C \ {0, 1}we have η =

(
ξn−n0(1− ξ)n−n1

)1/n. Here ( )1/n

is the nth root used in the definition of the mapping FQ (2). The domain D is a connected
subset of Sreg with nonempty interior. Its image under the map π̂ (11) is C \ {0, 1}. Thus,
D is one “sheet” of the covering map π̂. So π̂|D is one to one.

Using the extended Schwarz–Christoffel mapping FQ (2), we give a more geometric
description of the fundamental domain D. Consider the mapping

δ : D ⊆ Sreg → Q ⊆ C : (ξ, η) 7→ FQ
(
π̂(ξ, η)

)
, (16)
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where the map π̂ is given by Equation (11). The map δ is a holomorphic diffeomorphism
of intD onto int Q, which sends ∂D homeomorphically onto ∂Q. Look at cl(Q), which is a
closed quadrilateral with vertices O, D, C, and D. The set δ(D) contains the open edges
OD, DC, and CD but not the open edge OD of cl(Q), see Figure 3 above.

Figure 3. The image Q of the fundamental domain D under the mapping δ. The open edges OD, CD,
and CD of the quadrilateral are included; while the open edge OD is excluded.

Let K∗ = K∗n0,n1,n∞ = q0≤j≤n−1Rj(δ(D)
)

be the region in C formed by repeatedly
rotating Q = δ(D) through an angle 2π/n. Here R is the rotation C → C : z 7→ e2πi/nz.
We say that the quadrilateral Q = Q2n0,n∞ ,2n1,n∞ forms K∗, see Figure 4 above.

Figure 4. The regular duodecagon K and the stellated regular duodecagon K∗ = K∗4,4,4 formed by
rotating the quadrilateral Q4,4,4 through an angle 2π/12 around the origin.

Theorem 1. The connected set K∗ is a regular stellated n-gon with its 2n vertices omitted, which
is formed from the quadrilateral Q′ = OD′CD′, see Figure 5.

Figure 5. The dart in the figure is the quadrilateral Q′ = OD′CD′, which is the union of the triangles
T = ∆OD′C and the triangle T′.

Proof. By construction the quadrilateral Q′ = OD′CD′ is contained in the quadrilateral

Q = ODCD. Note that Q ⊆ ⋃[
n1+1

2 ]

j=[− n1+1
2 ]

Rj(Q′). Thus,

K∗ =
n⋃

j=0

Rj(Q) ⊆
n⋃

j=0

Rj(Q′) ⊆
n⋃

j=0

Rj(Q) = K∗.
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So K∗ =
⋃n

j=0 Rj(Q′). Thus, K∗ is the regular stellated n-gon less its vertices, one of

whose open sides is the diagonal D′D′ of Q′.

We would like to extend the mapping δ (16) to a mapping of Sreg onto K∗. Let

δΦRj (D) : ΦRj(D) ⊆ Sreg → Rj(δ(D)
)
⊆ K∗ : (ξ, η) 7→ Rjδ

(
ΦR−j(ξ, η)

)
,

where Φ is the Ĝ action defined in Equation (14). So we have a mapping

δK∗ : Sreg ⊆ C2 → K∗ ⊆ C (17)

defined by (δK∗)|ΦRj (D) = δ|ΦRj (D). The mapping δK∗ is defined on Sreg, because Sreg =

q0≤j≤n−1ΦRj(D), sinceD is a fundamental domain for the Ĝ-action Φ (14) on Sreg. Because
K∗ = q0≤j≤n−1Rj(δ(D)

)
, the mapping δK∗ is surjective. Hence δK∗ is holomorphic, since

it is continuous on Sreg and is holomorphic on the dense open subset q0≤j≤n−1Rj(intD)
of Sreg. Let U : C → C : z 7→ z and let G be the group generated by the rotation R and
the reflection U subject to the relations Rn = U2 = e and RU = UR−1. Shorthand G =
〈U, R U2 = e = Rn & RU = UR−1〉. Then G = {e; RpU`, ` = 0, 1 & p = 0, 1, . . . , n− 1}.
The group G is the dihedral group D2n. The closure cl(K∗) of K∗ = q0≤j≤n−1Rj(Q) in C is
invariant under Ĝ, the subgroup of G generated by the rotation R. Because the quadrilateral
Q is invariant under the reflection U : z 7→ z, and URj = R−jU, it follows that cl(K∗) is
invariant under the reflection U. So cl(K∗) is invariant under the group G.

We now look at some group theoretic properties of K∗.

Lemma 3. If F is a closed edge of the polygon cl(K∗) and g|F = id|F for some g ∈ G, then g = e.

Proof. Suppose that g 6= e. Then g = RpU` for some ` ∈ {0, 1} and some p ∈ {0, 1, . . .,
n− 1}. Let g = RpU and suppose that F is an edge of cl(K∗) such that int(F) ∩R 6= ∅,
where R = {Re z z ∈ C}. Then U(F) = F, but U|F 6= idF. So g|F = RpU|F 6= idF. Now
suppose that int(F) ∩R = ∅. Then U(F) 6= F. So U|F 6= idF. Hence g|F 6= idF. Finally,
suppose that g = Rp with p 6= 0. Then g(F) 6= F. So g|F 6= id|F.

Lemma 4. For j = 0, 1, ∞ put S(j) = Rnj U. Then S(j) is a reflection in the closed ray `j =

{tei πnj/n ∈ C t ∈ OD}. The ray `0 is the closure of the side OD of the quadrilateral Q = ODCD
in Figure 5.

Proof. S(j) fixes every point on the closed ray `j, because

S(j)({tei πnj/n t ∈ OD}) = Rnj({te−i πnj/n t ∈ OD}) = {tei πnj/n t ∈ OD}.

Since (S(j))2 = (Rnj U)(Rnj U) = Rnj(UU)R−nj = e, it follows that S(j) is a reflection
in the closed ray `j.

Corollary 5. For every j = 0, 1, ∞ and every k ∈ {0, 1, . . . , n− 1} let S(j)
k = RkS(j)R−k. Here

S(j)
n = S(j)

0 = S(j), because Rn = e. Then S(j)
k is a reflection in the closed ray Rk`j.

Proof. This follows because (S(j)
k )2 = Rk(S(j))2R−k = e and S(j)

k fixes every point on the
closed ray Rk`j, for

S(j)
k
(

Rk({tei πnj/n t ∈ OD})
)
= RkS(j)({tei πnj/n t ∈ OD})

)

= Rk({tei πnj/n t ∈ OD}).
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Corollary 6. For every j = 0, 1, ∞, every S(j)
k with k = 0, 1, . . . , n− 1, and every g ∈ G, we have

gS(j)
k g−1 = S(j)

r for a unique r ∈ {0, 1, . . . , n− 1}.

Proof. We compute. For every k = 0, 1, . . . , n− 1 we have

RS(j)
k R−1 = R(RkS(j)R−k)R−1 = R(k+1)S(j)R−(k+1) = S(j)

k+1 (18)

and

US(j)
k U−1 = U(R(k+nj)UR−(k+nj))U = R−(k+nj)UR(k+nj)

= S(j)
−(k+2nj)

= S(j)
t , (19)

where t = −(k + 2nj) mod n. Since R and U generate the group G, the corollary fol-
lows.

Corollary 7. For j = 0, 1, ∞ let Gj be the group generated by the reflections S(j)
k for k =

0, 1, . . . , n− 1. Then Gj is a normal subgroup of G.

Proof. Clearly Gj is a subgroup of G. From Equations (18) and (19) it follows that
gS(j)

k g−1 ∈ Gj for every g ∈ G and every k = 0, 1 . . . , n− 1, since G is generated by R and

U. However, Gj is generated by the reflections S(j)
k for k = 0, 1, . . . , n− 1, that is, every

g′ ∈ Gj may be written as S(j)
i1
· · · S(j)

ip
, where for ` ∈ {1, . . . p}we have i` ∈ {0, 1, . . . , n− 1}.

So gg′g−1 = g(S(j)
i1
· · · S(j)

ip
)g−1 = (gS(j)

i1
g−1) · · · (gS(j)

ip
g−1) ∈ Gj for every g ∈ G, that is,

Gj is a normal subgroup of G.

As a first step in constructing the model S̃reg of Sreg from the regular stellated n-gon
K∗ we look at certain pairs of edges of cl(K∗). For each j = 0, 1, ∞ we say two distinct
closed edges E and E′ of cl(K∗) are adjacent if and only if they intersect at a vertex of
cl(K∗). For j = 0, 1, ∞ let E j be the set of unordered pairs of equivalent closed edges E
and E′ of cl(K∗), that is, the edges E and E′ are not adjacent and E′ = S(j)

m (E) for some
generator S(j)

m of Gj. Recall that for x and y in some set, the unordered pair [x, y] is precisely
one of the ordered pairs (x, y) or (y, x). Note that

⋃
j=0,1,∞E j is the set of all unordered

pairs of nonadjacent edges of cl(K∗). Geometrically, two nonadjacent closed edges E′ and
E of cl(K∗) are equivalent if and only if E′ is obtained from E by reflection in the line
Rm`j for some m ∈ {0, 1, . . . , n− 1} and some j = 0, 1, ∞. In Figure 6, where K∗,= K∗1,1,4,
parallel edges of K∗, which are labeled with the same letter, are G0-equivalent. This is no
coincidence.

Figure 6. The triangulation Tcl(K∗) of the regular stellated hexagon K∗. The vertices of cl(K∗) are
labeled Xj = RjX for X = A, B, C and equivalent edges by a, b, c, d, e, f .
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Lemma 5. Let K∗ be formed from the quadrilateral Q = T ∪ T, where T is the isosceles rational
triangle Tn0n0n∞ less its vertices. Then nonadjacent edges of ∂ cl(K∗) are G0-equivalent if and only
if they are parallel, see Figure 7.

Proof. In Figure 7, let OAB be the triangle T with∠AOB = α,∠OAB = β, and∠ABO = γ.
Let OABA′′ be the quadrilateral formed by reflecting the triangle OAB in its edge OB. The
quadrilateral OABA′′ reflected it its edge OA is the quadrilateral OAB′A′. Let AC′ be
perpendicular to A′B′ and AC be perpendicular to A′′B, see Figure 7. Then CAC′ is a
straight line if and only if ∠C′AB′ + ∠B′AB + ∠BAC = π. By construction ∠C′AB′ =
∠BAC = π/2− 2γ and ∠B′AB = 2π − 2β. So

π = 2(π
2 − 2γ) + 2(π − β) = 3π − 2(β + γ)− 2γ

= 3π − 2(α + β + γ) + 2(α− γ) = π + 2(α− γ),

if and only if α = γ. Hence the edges A′′B and A′B′ are parallel if and only if the triangle
OAB is isosceles.

Figure 7. The geometric configuration.

Theorem 2. Let K∗ be the regular stellated n-gon formed from the rational quadrilateral Qn0n1n∞

with dj = gcd(nj, n) for j = 0, 1, ∞. The G orbit space formed by first identifiying equivalent
edges of the regular stellated n-gon K∗ formed from Q less O and then acting on the identification
space by the group G is S̃reg, which is a smooth 2-sphere with g handles, where g = 1

2
(
n + 2−

(d0 + d1 + d∞)
)
, less some points corresponding to the image of the vertices of cl(K∗).

Example 1. Before we begin proving Theorem 2 we consider the following special case. Let
K∗ = K∗1,1,4 be a regular stellated hexagon formed by repeatedly rotating the quadrilateral Q′ =
OD′CD′ by R through an angle 2π/6, see Figure 6.

Let G0 be the group generated by the reflections S(0)
k = RkS(0)R−k = R2k+1U for

k = 0, 1, . . . , 5. Here S(0) = RU is the reflection which leaves the closed ray `0 = {teiρ/6 t ∈
OD′} fixed. Define an equivalence relation on cl(K∗) by saying that two points x and y in
cl(K∗) are equivalent, x ∼ y, if and only if 1) x and y lie on ∂ cl(K∗) with x on the closed
edge E and y = S(0)

m (x) ∈ S(0)
m (E) for some reflection S(0)

m ∈ G0 or 2) if x and y lie in the
interior of cl(K∗) and x = y. Let cl(K∗)∼ be the space of equivalence classes and let

ρ : cl(K∗)→ cl(K∗)∼ : p 7→ [p] (20)

be the identification map which sends a point p ∈ cl(K∗) to the equivalence class [p], which
contains p. Give cl(K∗) the topology induced from C. Placing the quotient topology on
cl(K∗)∼ turns it into a connected topological manifold without boundary, whose closure is
compact. Let K∗ be cl(K∗) less its vertices. The identification space (K∗ \O)∼ = ρ(K∗ \O)
is a connected 2-dimensional smooth manifold without boundary.
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Let G = 〈R, U R6 = e = U2 & RU = UR−1〉. The usual G-action

G× cl(K∗) ⊆ G×C→ cl(K∗) ⊆ C : (g, z) 7→ g(z)

preserves equivalent edges of cl(K∗) and is free on K∗ \O. Hence it induces a G action on
(K∗ \O)∼, which is free and proper. Thus, its orbit map

σ : (K∗ \O)∼ → (K∗ \O)∼/G = S̃reg : z 7→ zG

is surjective, smooth, and open. The orbit space S̃reg = σ((K∗ \ O)∼) is a connected
2-dimensional smooth manifold. The identification space (K∗ \O)∼ has the orientation
induced from an orientation of K∗ \ O, which comes from C. So S̃reg has a complex
structure, since each element of G is a conformal mapping of C into itself.

Our aim is to specify the topology of S̃reg. The regular stellated hexagon K∗ \ O
less the origin has a triangulation TK∗\O made up of 12 open triangles Rj(4OCD′) and

Rj(4OCD′) for j = 0, 1, . . . , 5; 24 open edges Rj(OC), Rj(OD′), Rj(CD′), and Rj(CD′) for
j = 0, 1, . . . , 5; and 12 vertices Rj(D′) and Rj(C) for j = 0, 1, . . . , 5, see Figure 6.

Consider the set E0 of unordered pairs of equivalent closed edges of cl(K∗), that is,
E0 is the set [E, S(0)

k (E)] for k = 0, 1, . . . , 5, where E is a closed edge of cl(K∗). Table 2

lists the elements of E0. G acts on E0, namely, g · [E, S(0)
k (E)] = [g(E), gS(0)

k g−1(g(E)
)
], for

g ∈ G. Since G0 is the group generated by the reflections S(0)
k , k = 0, 1, . . . , 5, it is a normal

subgroup of G. Hence the action of G on E0 restricts to an action of G0 on E0 and the G
action permutes G0-orbits in E0. Thus, the set of G0-orbits in E0 is G-invariant.

Table 2. The set E0. Here D′k = Rk(D′) and D′k = Rk(D′) for k = 0, 2, 4 and Ck = Rk(C) for
k = {0, 1, . . . , 5}, see Figure 6.

a =
[
D′C, S(0)

0 (D′C) = D′2C1
]

b =
[
D′C1, S(0)

1 (D′C1) = D′2C2
]

d =
[
D′2C2, S(0)

2 (D′2C2) = D′4C3
]

c =
[
D′2C3, S(0)

3 (D′2C3) = D′4C4
]

e =
[
D′4C4, S(0)

4 (D′4C4) = D′C5
]

f =
[
D′4C5, S(0)

5 (D′4C5) = D′C
]

We now look at the G0-orbits on E0. We compute the G0-orbit of d ∈ E0 as follows.
We have

(UR) · d =
[
UR(D′2C2), UR(S(0)

2 (D′2C2))
]
=
[
UR(D′2C2), UR(D′4C3))

]

=
[
U(D′2C3), U(D′4C4)

]
=
[
D′4C5, D′2C2

]
= d.

Since

R2 · d = R2 ·
[
D′2C2, S(0)

2 (D′2C2)
]
=
[
R2(D′2C2), R2S(0)

2 R−2(R2(D′2C2))
]

=
[
D′4C4, S(0)

4 (D′4C4)
]
=
[
D′4C4, D′C5

]
= e

and

R4 · d =
[
R4(D′4C2), R4S(0)

2 R−4(R4(D′2C2))
]

=
[
D′C, S(0)

6 (D′C)
]
=
[
D′C, S(0)

0 (D′C)
]
=
[
D′C, D′2C1

]
= a,

the G0 orbit G0 · d of d ∈ E0 is (G0/〈UR| (UR)2 = e〉) · d = H0 · d = {a, d, e}. Here H0 =
〈V = R2 V3 = e〉, since G0 = 〈V = R2, UR V3 = e = (UR)2 & V(UR) = (UR)V−1〉.
Similarly, the G0-orbit G0 · f of f ∈ E0 is H0 · f = {b, c, f }. Since G0 · d ∪ G0 · f = E0,
we have found all G0-orbits on E0. The G-orbit of OC is Rj(OC) for j = 0, 1, . . . , 5, since
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U(OC) = OC; while the G-orbit of OD′ is Rj(OD′), Rj(OD′) for j = 0, 1, . . . , 5, since
U(OD′) = OD′.

Suppose that B is an end point of the closed edge E of cl(K∗). Then E lies in a unique
[E, S(0)

m (E)] of E0. Let G0 · [E, S(0)
m (E)] be the G0-orbit of [E, S(0)

m (E)]. Then g′ · B is an end
point of the closed edge g′(E) of g′ · [E, S(0)

m (E)] ∈ E0 for every g′ ∈ G0. So O(B) = {g′ ·
B g′ ∈ G0} the G0-orbit of the vertex B. It follows from the classification of G0-orbits on
E0 that O(D′) = {D′, D′2, D′4} and O(D′) = {D′, D′2, D′4} are G0-orbits of the vertices of
cl(K∗), which are permuted by the action of G on E0. Furthermore,O(C) = {C, C1, . . . , C5}
and O(D′&D′) = {D′, D′, D′2, D′2, D′4, D′4} are G-orbits of vertices of cl(K∗), which are
end points of the G-orbit of the rays OC and OD′, respectively.

To determine the topology of the G orbit space S̃reg we find a triangulation of S̃reg.
Note that the triangulation TK∗\O of K∗ \ O, illustrated in Figure 6, is G-invariant. Its
image under the identification map ρ is a G-invariant triangulation T(K∗\O)∼ of (K∗ \O)∼.
After identification of equivalent edges, each vertex ρ(v), each open edge ρ(E), having
ρ(O) as an end point, or each open edge ρ([F, F′]), where [F, F′] is a pair of equivalent
edges of cl(K∗), and each open triangle ρ(T) in T(K∗\O)∼ lies in a unique G orbit. It follows
that σ(ρ(v)), σ(ρ(E)) or σ(ρ([F, F′])), and σ(ρ(T)) is a vertex, an open edge, and an open
triangle, respectively, of a triangulation TS̃reg

= σ(T(K∗\O)∼) of S̃reg. The triangulation

TS̃reg
has 4 vertices, corresponding to the G orbits σ(ρ(O(D′))), σ(ρ(O(D′))), σ(ρ(O(C))),

and σ(ρ(O(D′&D′))); 18 open edges corresponding to σ(ρ(Rj(OC))), σ(ρ(Rj(OD′))), and
σ(ρ(Rj(CD′))) for j = 0, 1, . . . , 5; and 12 open triangles σ(ρ(Rj(4OCD′))) and
σ(ρ(Rj(4OCD′))) for j = 0, 1, . . . , 5. Thus, the Euler characteristic χ(S̃reg) of S̃reg is
4− 18 + 12 = −2. Since S̃reg is a 2-dimensional smooth real manifold, χ(S̃reg) = 2− 2g,
where g is the genus of S̃reg. Hence g = 2. So S̃reg is a smooth 2-sphere with 2 handles, less
a finite number of points, which lies in a compact topological space S̃ = cl(K∗)∼/G, that is
its closure, see Figure 8. This completes the example.

Figure 8. The G-orbit space S̃reg is 2-sphere with two handles.

Proof of Theorem 2. We now begin the construction of S̃reg by identifying equivalent

edges of cl(K∗). For each j = 0, 1, ∞ let [E, S(j)
m (E)] be an unordered pair of equivalent

closed edges of cl(K∗). We say that x and y in cl(K∗) are equivalent, x ∼ y, if 1) x and y lie
in ∂ cl(K∗) with x ∈ E and y = S(j)

m (x) ∈ S(0)
m (E) for some m ∈ {0, 1, . . . , n− 1} and some

j = 0, 1, ∞ or 2) x and y lie in int cl(K∗) and x = y. The relation ∼ is an equivalence relation
on cl(K∗). Let cl(K∗)∼ be the set of equivalence classes and let

ρ : cl(K∗)→ cl(K∗)∼ : p 7→ [p] (21)

be the map which sends p to the equivalence class [p], that contains p. Compare this
argument with that of Richens and Berry [2]. Give cl(K∗) the topology induced from C and
put the quotient topology on cl(K∗)∼. �

Theorem 3. Let K∗ be cl(K∗) less its vertices. Then (K∗ \O)∼ = ρ(K∗ \O) is a smooth manifold.
Furthermore, cl(K∗)∼ is a topological manifold.

Proof. To show that (K∗ \O)∼ is a smooth manifold, let E+ be an open edge of K∗. For
p+ ∈ E+ let Dp+ be a disk in C with center at p+, which does not contain a vertex of
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cl(K∗). Set D+
p+ = K∗ ∩ Dp+ . For each j = 0, 1, ∞ let E− be an open edge of K∗, which is

equivalent to E+ via the reflection S(j)
m , that is, [cl(E+), cl(E−) = S(j)

m (cl(E+))] ∈ E j is an
unordered pair of S(j)

m equivalent edges. Let p− = S(j)
m (p+) and set D−p− = S(j)

m (D+
p+). Then

V[p] = ρ(D+
p+ ∪ D−p−) is an open neighborhood of [p] = [p+] = [p−] in (K∗ \O)∼, which is

a smooth 2-disk, since the identification mapping ρ is the identity on int K∗. It follows that
(K∗ \O)∼ is a smooth 2-dimensional manifold without boundary.

We now handle the vertices of cl(K∗). Let v+ be a vertex of cl(K∗) and set Dv+ =

D̃ ∩ cl(K∗), where D̃ is a disk in C with center at the vertex v+ = r0eiπθ0 . The map

Wv+ : D+ ⊆ C→ Dv+ ⊆ C : reiπθ 7→ |r− r0|eiπs(θ−θ0)

with r ≥ 0 and 0 ≤ θ ≤ 1 is a homeomorphism, which sends the wedge with angle π
to the wedge with angle πs. The latter wedge is formed by the closed edges E′+ and E+

of cl(K∗), which are adjacent at the vertex v+ such that eiπsE′+ = E+ with the edge E′+
being swept out through int cl(K∗) during its rotation to the edge E+. Because cl(K∗) is
a rational regular stellated n-gon, the value of s is a rational number for each vertex of
cl(K∗). For each j = 0, 1, ∞ let E− = S(j)

m (E+) be an edge of cl(K∗), which is equivalent to
E+ and set v− = S(j)

m (v+). Then v− is a vertex of cl(K∗), which is the center of the disk
Dv− = S(j)

m (Dv+). Set D− = D+. Then D = D+ ∪ D− is a disk in C. The map W : D →
ρ(Dv+ ∪ Dv−), where W|D+ = ρ◦Wv+ and W|D− = ρ◦S(0)

m ◦Wv+◦ , is a homeomorphism
of D into a neighborhood ρ(Dv+ ∪Dv−) of [v] = [v+] = [v−] in cl(K∗)∼. Consequently, the
identification space cl(K∗)∼ is a topological manifold.

We now describe a triangulation of K∗ \O. Let T′ = T1,n1,n−(1+n1)
be the open rational

triangle4OCD′ with vertex at the origin O, longest side OC on the real axis, and interior
angles 1

n π, n1
n π, and n−1−n1

n π. Let Q′ be the quadrilateral T′ ∪ T′. Then Q′ is a subset
of the quadrilateral Q = ODCD, see Figure 5. Moreover K∗ =

⋃n−1
`=0 R`(Q′). The 2n

triangles cl(Rj(T′)) \ {O} and cl(Rk(T′)) \O with k = 0, 1, . . . , n− 1 form a triangulation
TK∗\O of K∗ \O with 2n vertices Rk(C) and Rk(D′) for k = 0, 1, . . . , n− 1; 4n open edges
Rk(OC), Rk(OD′), Rk(CD′), and Rk(CD′) for k = 0, 1, . . . , n − 1; and 2n open triangles
Rk(T′), Rk(T′) with k = 0, 1, . . . , n− 1. The image of the triangulation TK∗\O under the
identification map ρ (21) is a triangulation T(K∗\O)∼ of the identification space (K∗ \O)∼.

The action of G on cl(K∗) preserves the set of unordered pairs of S(j)
m equivalent edges

of cl(K∗) for each j = 0, 1, ∞. Hence G induces an action on cl(K∗)∼, which is proper,
since G is finite. The G action is free on K∗ \O and thus on (K∗ \O)∼ by Lemma A2. We
have proved

Lemma 6. The G-orbit space S̃ = cl(K∗)∼/G is a compact connected topological manifold with
S̃reg = (K∗ \O)∼/G being a smooth manifold. Let

σ : cl(K∗)∼ → S̃ = cl(K∗)∼/G : z 7→ zG.

Then σ is the G orbit map, which is surjective, continuous, and open. The restriction of σ to K∗ \O
has image S̃reg and is a smooth open mapping.

We now determine the topology of the orbit space S̃reg. For each j = 0, 1, ∞ and

`j = 0, 1, . . . , dj − 1 let Aj
`j

be an end point of a closed edge E of cl(K∗), which lies on

the unordered pair [E, S(j)
`j
(E)] ∈ E j. Then H j · A(j)

`j
is an end point of the edge H j · E of

the unordered pair H j · [E, S(j)
`j
(E)] of E j. See Appendix A for the definition of the group

Hj. The sets O(A(j)
` ) = {H j · A(j)

`j
} with `j = 0, 1, . . . , dj − 1 are permuted by G. The

action of G on K∗ \O preserves the set of open edges of the triangulation TK∗\O. There are
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3n-orbits: Rk(OC); Rk(OD′), since OD′ = R(OD′); and Rk(CD), since CD′ = U(CD) for
k = 0, 1, . . . , n− 1. So the image of the triangulation TK∗\O under the continuous open map

µ = σ◦π|K∗\O : K∗ \O→ S̃reg (22)

is a triangulation TS̃reg
of the G-orbit space S̃reg with d0 + d1 + d∞ vertices µ(O(A(j)

`j
)),

where j = 0, 1, ∞ and `j = 0, 1, . . . , dj − 1; 3n open edges µ(Rk(OC)), µ(Rj(OD′)), and
µ(Rk(CD)) for k = 0, 1, . . . , n − 1; and 2n open triangles µ(Rk(T′)) and µ(Rk(T′)) for
k = 0, 1, . . . n− 1. Thus, the Euler characteristic χ(S̃reg) of S̃reg is d0 + d1 + d∞ − 3n + 2n =

d0 + d1 + d∞ − n. However, S̃reg is a smooth manifold. So χ(S̃reg) = 2− 2g, where g is the
genus of S̃reg. Hence g = 1

2
(
n + 2− (d0 + d1 + d∞)

)
. Compare this argument with that of

Weyl ([4], p. 174). This proves Theorem 2.
Since the quadrilateral Q is a fundamental domain for the action of G on K∗, the G

orbit map µ = σ◦π : K∗ ⊆ C→ S̃ restricted to Q is a bijective continuous open mapping.
However, δQ : D ⊆ S → Q ⊆ C is a bijective continous open mapping of the fundamental
domain D of the G action on S . Consequently, the G orbit space is homeomorphic to the
G orbit space S̃ . The mapping µ is holomorphic except possibly at 0 and the vertices of
cl(K∗). So the mapping µ◦ δK∗ : Sreg → S̃reg is a holomorphic diffeomorphism.

5. An Affine Model of Sreg

We construct an affine model of the affine Riemann surface Sreg as follows. Return
to the regular stellated n-gon K∗ = K∗n0n1n∞ , which is formed from the quadrilateral Q =
Qn0n1n∞ less its vertices. Repeatedly reflecting in the edges of K∗ and then in the edges of the
resulting reflections of K∗ et cetera, we obtain a covering of C \V+ by certain translations
of K∗. Here V+ is the union of the translates of the vertices of cl(K∗) and its center O. Let
T be the group generated by these translations. The semidirect product G = G n T acts
freely, properly and transitively on C \V+. It preserves equivalent edges of C \V+ and it
acts freely and properly on (C \V+)∼, the space formed by identifying equivalent edges
in C \V+. The orbit space (C \V+)∼/G is holomorphically diffeomorphic to S̃reg and is
the desired affine model of Sreg. We now justify these assertions.

First we determine the group T of translations.

Lemma 7. Each of the 2n sides of the regular stellated n-gon K∗ is perpendicular to exactly one of
the directions

e[
1
2−

n1
n +2k 1

n ]πi or e[−
1
2−

1
n +

n1
n +(2k+1) 1

n ]πi, (23)

for k = 0, 1, . . . , n− 1.

Proof. From Figure 9 we have ∠D′CO = n1
n π. So ∠COH = 1

2 π − n1
n π. Hence the line `0,

containing the edge CD′ of K∗, is perpendicular to the direction e[
1
2−

n1
n ]π . Since4COD′

is the reflection of4COD′ in the line segment OC, the line `1, containing the edge CD′ of
K∗, is perpendicular to the direction e[−

1
2+

n1
n ]π . Because the regular stellated n-gon K∗ is

formed by repeatedly rotating the quadrilateral Q′ = OD′CD′ through an angle 2π
n , we

find that Equation (23) holds.
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Figure 9. The regular stellated n-gon K∗ two of whose sides are CD′ and CD′.

Since ∠COH = 1
2 π − n1

n π, it follows that |H| = |C| sin π n1
n is the distance from

the center O of K∗ to the line `0 containing the side CD′, or to the line `1 containing
the side CD′. So u0 = (|C| sin π n1

n )e[
1
2−

n1
n ]πi is the closest point H on `0 to O and u1 =

(|C| sin π n1
n )e[−

1
2+

n1
n ]πi is the closest point H on `1 to O. Since the regular stellated n-gon

K∗ is formed by repeatedly rotating the quadrilateral Q′ = OD′CD′ through an angle 2π
n ,

the point

u2k = Rku0 = (|C| sin π
n1

n
)e[

1
2−

n1
n +2k 1

n ]πi (24)

lies on the line `2k = Rk`0, which contains the edge Rk(CD′) of K∗; while

u2k+1 = Rku1 = (|C| sin π
n1

n
)e[−

1
2+

n1
n −

1
n +(2k+1) 1

n ]πi (25)

lies on the line `2k+1 = Rk`1, which contains the edge Rk(CD′) of K∗ for every k ∈
{0, 1, . . . , n− 1}. Furthermore, the line segments Ou2k and Ou2k+1 are perpendicular to the
line `2k and `2k+1, respectively, for k ∈ {0, 1, . . . , n− 1}.

Corollary 8. For k = 0, 1, . . . , n− 1 we have

u2k = u2(n−k)+1 and u2k+1 = u2(n−k). (26)

Proof. We compute. From (24) it follows that

u2k = U(u2k) = URk(u0) = R−k(U(u0))

= R−k(u1) = Rn−k(u1) = u2(n−k)+1, using (25);

while from (25) we get

u2k+1 = U(u2k+1) = URk(u1) = R−k(U(u1)) = Rn−k(u0) = u2(n−k).

Corollary 9. For k, ` ∈ {0, 1, . . . , 2n− 1} we have

u(k+2`) mod 2n = R`uk. (27)

Proof. If k = 2i, then uk = Riu0, by definition. So

R`uk = R`+iu0 = u(2i+2`) mod 2n = u(k+2`) mod 2n.

If k = 2i + 1, then u` = Riu1, by definition. So

R`uk = R`+iu1 = u(2(i+`)+1) mod 2n = u(k+2`) mod 2n.
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For k = 0, 1, . . . , 2n− 1 let τk be the translation

τk : C→ C : z 7→ z + 2uk. (28)

Corollary 10. For k, ` ∈ {0, 1, . . . , 2n− 1} we have

τ(k+2`) mod 2n◦R` = R`◦τk. (29)

Proof. For every z ∈ C, we have

τ(k+2`) mod 2n(z) = z + 2u(k+2`) mod 2n, using (28)

= z + 2R`uk by (27)

= R`(R−`z + 2uk) = R`◦τk(R−`z).

Reflecting the regular stellated n-gon K∗ in its edge CD′ contained in `0 gives a
congruent regular stellated n-gon K∗0 with the center O of K∗ becoming the center 2u0
of K∗0 .

Lemma 8. The collection of all the centers of the regular stellated n-gons, formed by reflecting K∗

in its edges and then reflecting in the edges of the reflected regular stellated n-gons et cetera, is

{τ`0
0 ◦ · · · ◦τ

`2n−1
2n−1 (0) ∈ C (`0, . . . , `2n−1) ∈ (Z≥0)

2n} =

=
{

2
∞

∑
`0,...,`2n−1=0

(
`0u0 + · · · `2n−1u2n−1

)}
,

where for k = 0, 1, . . . , 2n− 1 we have

τ
`k
k =

`k︷ ︸︸ ︷
τk◦ · · · ◦τk : C→ C : z 7→ z + 2`juk.

Proof. For each k0 = 0, 1, . . . , 2n − 1 the center of the 2n regular stellated congruent n-
gon K∗k0

formed by reflecting in an edge of K∗ contained in the line `k0 is τk0(0) = 2uk0 .
Repeating the reflecting process in each edge of K∗k0

gives 2n congruent regular stellated n-
gons K∗k0k1

with center at τk1

(
τk0(0)

)
= 2(uk1 + uk0), where k1 = 0, 1, . . . 2n− 1. Repeating

this construction proves the lemma.

The set V of vertices of the regular stellated n-gon K∗ is

{V2k = Ce2k( 1
n π i), V2k+1 = D′e(2k+1)( 1

n π i) for 0 ≤ k ≤ n− 1},

see Figure 5. Clearly the set V is G invariant.

Corollary 11. The set

V+ = {v`0···`2n−1 = τ`0
0 ◦ · · · ◦τ

`2n−1
2n−1 (V)

V ∈ V∪ {O} & (`0, . . . , `2n−1) ∈ (Z≥0)
2n} (30)

is the collection of vertices and centers of the congruent regular stellated n-gons K∗, K∗k1
, K∗k0k1

, . . ..

Proof. This follows immediately from Lemma 8.
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Corollary 12. The union of K∗, K∗k0
, K∗k0k1

, . . . K∗k0k1···k` , . . ., where ` ≥ 0, 0 ≤ j ≤ `, and
0 ≤ k j ≤ 2n− 1, covers C \V+, that is,

K∗ ∪
⋃

`≥0

⋃

0≤j≤`

⋃

0≤kj≤2n−1

K∗k0k1···k` = C \V+.

Proof. This follows immediately from K∗k0k1···k` = τk`◦ · · · ◦τk0(K
∗).

Let T be the abelian subgroup of the 2-dimensional Euclidean group E(2) generated
by the translations τk (28) for k = 0, 1, . . . 2n − 1. It follows from Corollary 12 that the
regular stellated n-gon K∗ with its vertices and center removed is the fundamental domain
for the action of the abelian group T on C \V+. The group T is isomorphic to the abelian
subgroup T of (C,+) generated by {2uk}2n−1

k=0 .
Next we define the group G and show that it acts freely, properly, and transitively on

C \V+. Consider the group G = G nT ⊆ G× T, which is the semidirect product of the
dihedral group G, generated by the rotation R through 2π/n and the reflection U subject
to the relations Rn = e = U2 and RU = UR−1, and the abelian group T. An element
(RjU`, 2uk) of G is the affine linear map

(RjU`, 2uk) : C→ C : z 7→ RjU`z + 2uk.

Multiplication in G is defined by

(RjU`, 2uk) · (Rj′U`′ , 2uk′) =
(

Rj+j′U`+`′ , (RjU`)(2uk′) + 2uk
)
, (31)

which is the composition of the affine linear map (Rj′U`′ , 2uk′) followed by (RjU`, 2uk).
The mappings G → G : Rj 7→ (RjU`, 0) and T → G : 2uk 7→ (e, 2uk) are injective, which
allows us to identify the groups G and T with their image in G. Using (31) we may write
an element (RjU`, 2uk) of G as (e, 2uk) · (RjU`, 0). So

(e, 2u(j+2k) mod 2n) · (RkU`, 0) = (RkU`, 2u(j+2k) mod 2n),

For every z ∈ C we have

RkU`z + 2u(j+2k) mod 2n = RkU`z + RkU`(2uj), using (27),

that is,
(RkU`, 2u(j+2k) mod 2n) = (RkU`, RkU`(2uj)) = (RkU`, 0) · (e, 2uj).

Hence
(e, 2u(j+2k) mod 2n) · (RkU`, 0) = (RkU`, 0) · (e, 2uj), (32)

which is just Equation (29). The group G acts on C as E(2) does, namely, by affine linear
orthogonal mappings. Denote this action by

ψ : G×C→ C : ((g, τ), z) 7→ τ(g(z)).

Lemma 9. The set V+ (30) is invariant under the G action.

Proof. Let v ∈ V+. Then for some (`′0, . . . , `′2n−1) ∈ Z2n
≥0 and some w ∈ V∪ {O}

v = τ
`′0
0 ◦ · · · ◦τ

`′2n−1
2n−1 (w) = ψ(e,2u′)(w),

where u′ = ∑2n−1
k=0 `′kuk. For (RjU`, 2u) ∈ G with j = 0, 1, . . . , n− 1 and ` = 0, 1 we have

ψ(RjU`,2u)v = ψ(RjU`,2u)◦ψ(e,2u′)(w) = ψ(RjU`,2u)·(e,2u′)(w)
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= ψ(RjU`,RjU`(2u′)+2u)(w) = ψ(e,2(RjU`u′+u))·(RjU`,0)(w)

= ψ(e,2(RjU`u′+u))
(
ψ(RjU`,0)(w)

)
= ψ(e,2(RjU`u′+u))(w

′), (33)

where w′ = ψ(RjU`,0)(w) = RjU`(w) ∈ V∪ {O}. If ` = 0, then

Rju′ = Rj(
2n−1

∑
k=0

`′kuk) =
2n−1

∑
k=0

`′kRj(uk) =
2n−1

∑
k=0

`′ku(k+2j) mod 2n;

while if ` = 1, then

RjU(u′) =
2n−1

∑
k=0

`′kRj(U(uk)) =
2n−1

∑
k=0

`′kRj(uk′(k)) =
2n−1

∑
k=0

`′ku(k′(k)+2j) mod 2n.

Here k′(k) =
{

2n− k + 1, if k is even
2n− k− 1, if k is odd,

see Corollary 8. So (e, 2(RjU`u′ + u)) ∈ T, which implies
ψ(e,2(RjU`u′+u))(w

′) ∈ V+, as desired.

Lemma 10. The action of G on C \V+ is free.

Proof. Suppose that for some v ∈ C \ V+ and some (RjU`, 2u) ∈ G we have v =
ψ(RjU`,2u)(v). Then v lies in some K∗k0k1···k` . So for some v′ ∈ K∗ we have

v = τ
`′0
0 ◦ · · · τ

`′2n−1
2n−1 (v

′) = ψ(e,2u′)(v
′),

where u′ = ∑2n−1
j=0 `′juj for some (`′0, . . . , `′2n−1) ∈ (Z≥0)

2n. Thus,

ψ(e,2u′)(v
′) = ψ(RjU`,2u)·(e,2u′)(v

′) = ψ(RjU`,2RjU`u′+2u)(v
′).

This implies RjU` = e, that is, j = ` = 0. So 2u′ = 2RjU`u′ + 2u = 2u′ + 2u, that is,
u = 0. Hence (RjU`, u) = (e, 0), which is the identity element of G.

Lemma 11. The action of T (and hence G) on C \V+ is transitive.

Proof. Let K∗k0···k` and K∗k′0···k′`′
lie in

C \V+ = K∗ ∪
⋃

`≥0

⋃

0≤j≤`

⋃

0≤kj≤2n−1

K∗k0k1···k` .

Since K∗k0···k` = τk`◦ · · · ◦τk0(K
∗) and K∗k′0···k′`′

= τk′
`′
◦ · · · ◦τk′0

(K∗), it follows that

(τk′
`′
◦ · · · ◦τk′0

)◦ (τk`◦ · · · ◦τk0)
−1(K∗k0···k`) = K∗k′0···k′`′

.

The action of G on C \ V+ is proper because G is a discrete subgroup of E(2) with no
accumulation points.

We now define an edge of C \V+ and what it means for an unordered pair of edges
to be equivalent. We show that the group G acts freely and properly on the identification
space of equivalent edges.

Let E be an open edge of K∗. Since Ek0···k` = τk0 · · · τk`(E) ∈ K∗k0···k` , it follows that
Ek0···k` is an open edge of K∗k0···k` . Let

E = {Ek0···k` ` ≥ 0, 0 ≤ j ≤ ` & 0 ≤ k j ≤ 2n− 1}.

Then E is the set of open edges of C \V+ by 12. Since τk`◦ · · · ◦τk0(0) is the center
of K∗k0···k` , the element (e, τk`◦ · · · ◦τk0) · (g, (τk`◦ · · · ◦τk0)

−1) of G is a rotation-reflection of
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K∗k0···k` , which sends an edge of K∗k0···k` to another edge of g ∗ K∗k0···k` . Thus, G sends E into

itself. For j = 0, 1, ∞ let Ej
k0···k`

be the set of unordered pairs [Ek0···k` , E′k0···k` ] of equivalent
open edges of K∗k0···k` , that is, Ek0···k` ∩ E′k0···k` = ∅, so the open edges Ek0···k` = τk0 · · · τk`(E)
and E′k0···k` = τk0 · · · τk`(E′) of cl(K∗k0···k`) are not adjacent, which implies that the open

edges E and E′ of K∗ are not adjacent, and for some generator S(j)
m of the group Gj of

reflections with j = 0, 1, ∞ we have

E′k0···k` = (τk0◦ · · · ◦τk0)
(
S(j)

m ((τk`◦ · · · ◦τk0)
−1(Ek0···k`))

)
.

Let Ej = ∪`≥0 ∪0≤j≤` ∪0≤kj≤2n−1E
j
k0···k`

. So
⋃

j=0,1,∞Ej is the set of unordered pairs of

equivalent edges of C \V+. Define an action ∗ of G on
⋃

j=0,1,∞E j by

(g, τ) ∗ [Ek0···k` , E′k0···k` ] =
(
[(τ′◦τ)(g(τ′)−1(Ek0···k`)), (τ

′◦τ)(g((τ′)−1(E′k0···k`))]
)

= [(g, τ) ∗ Ek0···k` , (g, τ) ∗ E′k0···k` ],

where τ′ = τk`◦ · · · τk0 .
Define a relation ∼ on C \V+ as follows. We say that x and y ∈ C \V+ are related,

x ∼ y, if 1) x ∈ F = τ(E) ∈ Ej and y ∈ F′ = τ(E′) ∈ Ej such that [F, F′] = [τ(E), τ(E′)] ∈
E0, where [E, E′] ∈ E j with E′ = S(j)

m (E) for some S(j)
m ∈ Gj and y = τ

(
S(j)

m (τ−1(x))
)

for
some j = 0, 1, ∞, or 2) x, y ∈

(
C \V+

)
\ E and x = y. Then ∼ is an equivalence relation on

C \V+. Let (C \V+)∼ be the set of equivalence classes and let Π be the map

Π : C \V+ → (C \V+)∼ : p 7→ [p], (34)

which assigns to every p ∈ C \V+ the equivalence class [p] containing p.

Lemma 12. Π|K∗ is the map ρ (20).

Proof. This follows immediately from the definition of the maps Π and ρ.

Lemma 13. The usual action of G on C, restricted to C \V+, is compatible with the equivalence
relation ∼, that is, if x, y ∈ C \V and x ∼ y, then (g, τ)(x) ∼ (g, τ)(y) for every (g, τ) ∈ G.

Proof. Suppose that x ∈ F = τ′(E), where τ′ ∈ T . Then y ∈ F′ = τ′(E′), since x ∼ y.
So for some S(j)

m ∈ G j with j = 0, 1, ∞, we have (τ′)−1(y) = S(j)
m (τ−1(x)). Let (g, τ) ∈ G.

Then
(g, τ)

(
(τ′)−1(y)

)
= g((τ′)−1(y)) + uτ = g

(
S(j)

m (τ−1(x))
)
+ uτ .

So (g, τ)(y) ∈ (g, τ) ∗ F′. However, (g, τ)(x) ∈ (g, τ) ∗ F and [(g, τ) ∗ F, (g, τ) ∗ F′] =
(g, τ) ∗ [F, F′]. Hence (g, τ)(x) ∼ (g, τ)(y).

Because of Lemma 13, the usual G-action on C \V+ induces an action of G on (C \
V+)∼.

Lemma 14. The action of G on (C \V+)∼ is free and proper.

Proof. The following argument shows that it is free. Using Lemma A2 we see that an
element of G, which lies in the isotropy group G[F,F′ ] for [F, F′] ∈ E0, interchanges the
edge F with the equivalent edge F′ and thus fixes the equivalence class [p] for every p ∈ F.
Hence the G action on (C \V+)∼ is free. It is proper because G is a discrete subgroup of
the Euclidean group E(2) with no accumulation points.

Theorem 4. The G-orbit space (C \ V+)∼/G is holomorphically diffeomorphic to the G-orbit
space (K∗ \O)∼/G = S̃reg.
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Proof. The claim follows because the fundamental domain of the G-action on C \ V+

is K∗ \O is the fundamental domain of the G-action on K∗ \O. Thus, Π(C \ V+) is a
fundamental domain of the G-action on (C \V+)∼, which is equal to ρ(K∗ \O) = (K∗ \O)∼

by Lemma 12. Hence the G-orbit space (C \V+)∼/G is equal to the G-orbit space S̃reg. So
the identity map from Π(C \V+) to (K∗ \O)∼ induces a holomorphic diffeomorphism of
orbit spaces.

Because the group G is a discrete subgroup of the 2-dimensional Euclidean group
E(2), the Riemann surface (C \V+)∼/G is an affine model of the affine Riemann surface
Sreg.

6. The Developing Map and Geodesics

In this section, we show that the mapping

δ : D ⊆ Sreg → Q ⊆ C : (ξ, η)→ (FQ◦ π̂)(ξ, η)
)

(35)

straightens the holomorphic vector field X (12) on the fundamental domain D ⊆ Sreg,
see [6] and Flaschka [7]. We also verify that X is the geodesic vector field for a flat
Riemannian metric Γ on D.

First we rewrite Equation (13) as

T(ξ,η)π̂
(
X(ξ, η)

)
= η

∂

∂ξ
, for (ξ, η) ∈ D. (36)

From the definition of the mapping FQ (2) we get

dz = dFQ =
1(

ξn−n0(1− ξ)n−n1
)1/n dξ =

1
η

dξ,

where we use the same complex nth root as in the definition of FQ. This implies

∂

∂z
= Tξ FQ

(
η

∂

∂ξ

)
, for (ξ, η) ∈ D (37)

For each (ξ, η) ∈ D using (36) and (37) we get

T(ξ,η)δ
(
X(ξ, η)

)
=
(
Tξ FQ◦T(ξ,η)π̂

)(
X(ξ, η)

)
= Tξ FQ(η

∂

∂ξ
) =

∂

∂z z=δ(ξ,η)
.

So the holomorphic vector field X (12) on D and the holomorphic vector field ∂
∂z on Q

are δ-related. Hence δ sends an integral curve of the vector field X starting at (ξ, η) ∈ D
onto an integral curve of the vector field ∂

∂z starting at z = δ(ξ, η) ∈ Q. Since an integral
curve of ∂

∂z is a horizontal line segment in Q, we have proved

Theorem 5. The holomorphic mapping δ (35) straightens the holomorphic vector field X (12) on
the fundamental domain D ⊆ Sreg.

We can say more. Let u = Re z and v = Im z. Then

γ = du⊙ du + dv⊙ dv = dz⊙ dz (38)

is the flat Euclidean metric on C. Its restriction γ|C\V+ to C \V+ is invariant under the
group G, which is a subgroup of the Euclidean group E(2).

Consider the flat Riemannian metric γ|Q on Q, where γ is the metric (38) on C. Pulling
back γ|Q by the mapping FQ (2) gives a metric

γ̃ = F∗Q(γ|Q) = |ξn−n0(1− ξ)n−n1 |−2/n dξ
⊙ dξ
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on C \ {0, 1}. Pulling the metric γ̃ back by the projection mapping π̃ : C2 → C : (ξ, η) 7→ ξ
gives

Γ̃ = π̃∗γ̃ = |ξn−n0(1− ξ)n−n1 |−2/n dξ
⊙ dξ

on C2. Restricting Γ̃ to the affine Riemann surface Sreg gives Γ = 1
η dξ

⊙ 1
η dξ.

Lemma 15. Γ is a flat Riemannian metric on Sreg.

Proof. We compute. For every (ξ, η) ∈ Sreg we have

Γ(ξ, η)
(
X(ξ, η), X(ξ, η)

)
=

= 1
η dξ

(
η ∂

∂ξ + n−n0
n

ξ(1−ξ)(1− 2n−n0−n1
n ξ)

ηn−2
∂

∂η

)
· 1

η dξ
(
η ∂

∂ξ + n−n0
n

ξ(1−ξ)(1− 2n−n0−n1
n ξ)

ηn−2
∂

∂η

)

= 1
η dξ

(
η ∂

∂ξ

)
· 1

η dξ
(
η ∂

∂ξ

)
= 1.

Thus, Γ is a Riemannian metric on Sreg. It is flat by construction.

Because D has nonempty interior and the map δ (35) is holomorphic, it can be analyti-
cally continued to the map

δQ : Sreg ⊆ C2 → Q ⊆ C : (ξ, η) 7→ FQ
(
π̂(ξ, η)

)
, (39)

since δ = δQ|D . By construction δ∗Q(γ|Q) = Γ. So the mapping δQ is an isometry of (Sreg, Γ)
onto (Q, γ|Q). In particular, the map δ is an isometry of (D, Γ|D) onto (Q, γ|Q). Moreover,
δ is a local holomorphic diffeomorphism, because for every (ξ, η) ∈ D, the complex linear
mapping T(ξ,η)δ is an isomorphism, since it sends X(ξ, η) to ∂

∂z z=δ(ξ,η)
. Thus, δ is a developing

map in the sense of differential geometry, see Spivak ([8], p. 97) note on §12 of Gauss [9].
The map δ is local because the integral curves of ∂

∂z on Q are only defined for a finite time,
since they are horizontal line segments in Q. Thus, the integral curves of X (12) on D are
defined for a finite time. Since the integral curves of ∂

∂z are geodesics on (Q, γ|Q), the image
of a local integral curve of ∂

∂z under the local inverse of the mapping δ is a local integral
curve of X. This latter local integral curve is a geodesic on (D, Γ|D), since δ is an isometry.
Thus, we have proved

Theorem 6. The holomorphic vector field X (12) on the fundamental domain D is the geodesic
vector field for the flat Riemannian metric Γ|D on D.

Corollary 13. The holomorphic vector field X on the affine Riemann surface Sreg is the geodesic
vector field for the flat Riemannian metric Γ on Sreg.

Proof. The corollary follows by analytic continuation from the conclusion of Theorem 6,
since intD is a nonempty open subset of Sreg and both the vector field X and the Rieman-
nian metric Γ are holomorphic on Sreg.

7. Discrete Symmetries and Billiard Motions

Let G be the group of homeomorphisms of the affine Riemann surface S (3) generated
by the mappings

R : S → S : (ξ, η) 7→ (ξ, e2πi/nη) and U : S → S : (ξ, η) 7→ (ξ, η).

Clearly, the relationsRn = U 2 = e hold. For every (ξ, η) ∈ S we have

UR−1(ξ, η) = U (ξ, e−2πi/nη) = (ξ, e2πi/nη) = R(ξ, η) = RU (ξ, η).

So the additional relation UR−1 = RU holds. Thus, G is isomorphic to the dihe-
dral group.
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Lemma 16. G is a group of isometries of (Sreg, Γ).

Proof. For every (ξ, η) ∈ Sreg we get

R∗Γ(ξ, η)
(
X(ξ, η), X(ξ, η)

)
= Γ

(
R(ξ, η)

)(
T(ξ,η)R

(
X(ξ, η)

)
, T(ξ,η)R

(
X(ξ, η)

))

= Γ(ξ, e2πi/nη)
(
e2πi/nη

∂

∂ξ
+ n−n0

n

ξ(1− ξ)(1− 2n−n0−n1
n−n0

ξ)

ηn−2 e2πi/n ∂

∂η
,

e2πi/nη
∂

∂ξ
+

n− n0

n
ξ(1−ξ)(1− 2n−n0−n1

n−n0
ξ)

ηn−2 e2πi/n ∂

∂η

)

=
1

|e2πi/nη|2
dξ
(
e2πi/nη

∂

∂ξ

)
· dξ

(
e2πi/nη

∂

∂ξ

)
= 1

=
1
|η|2 dξ(η

∂

∂ξ

)
· dξ(η

∂

∂ξ
) = Γ(ξ, η)

(
X(ξ, η), X(ξ, η)

)

and

U ∗Γ(ξ, η)
(
X(ξ, η), X(ξ, η)

)
= Γ

(
U (ξ, η)

)(
T(ξ,η)U

(
X(ξ, η)

)
, T(ξ,η)U

(
X(ξ, η)

))

=
1
|η|2 dξ(η

∂

∂ξ
) · dξ(η

∂

∂ξ
) = Γ(ξ, η)

(
X(ξ, η), X(ξ, η)

)
.

Recall that the group G, generated by the linear mappings

R : C→ C : z 7→ e2πi/nz and U : C→ C : z 7→ z,

is isomorphic to the dihedral group.

Lemma 17. G is a group of isometries of (C, γ).

Proof. This follows because R and U are Euclidean motions.

We would like the developing map δQ (39) to intertwine the actions of G and G and
the geodesic flows on (Sreg, Γ) and (Q, γ|Q). There are several difficulties. The first is: the
group G does not preserve the quadrilateral Q. To overcome this difficulty we extend the
mapping δQ (39) to the mapping δK∗ (17) of the affine Riemann surface Sreg onto the regular
stellated n-gon K∗.

Lemma 18. The mapping δK∗ (17) intertwines the action Φ (14) of G on Sreg with the action

Ψ : G× K∗ → K∗ : (g, z) 7→ g(z) (40)

of G on the regular stellated n-gon K∗.

Proof. From the definition of the mapping δK∗ we see that for each (ξ, η) ∈ D we have
δK∗
(
Rj(ξ, η)

)
= RjδK∗(ξ, η) for every j ∈ Z. By analytic continuation we see that the

preceding equation holds for every (ξ, η) ∈ Sreg. Since FQ(ξ) = FQ(ξ) by construction
and π̂(ξ, η) = ξ (11), from the definition of the mapping δ (35) we get δ(ξ, η) = δ(ξ, η)
for every (ξ, η) ∈ D. In other words, δK∗

(
U (ξ, η)

)
= UδK∗(ξ, η) for every (ξ, η) ∈ D. By

analytic continuation we see that the preceding equation holds for all (ξ, η) ∈ Sreg. Hence
on Sreg we have

δK∗◦Φg = Ψϕ(g)◦ δK∗ for every g ∈ G. (41)

The mapping ϕ : G → G sends the generatorsR and U of the group G to the generators
R and U of the group G, respectively. So it is an isomorphism.
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There is a second more serious difficulty: the integral curves of ∂
∂z run off the quadri-

lateral Q in finite time. We fix this by requiring that when an integral curve reaches a point
P on the boundary ∂Q of Q, which is not a vertex, it undergoes a specular reflection at P.
(If the integral curve reaches a vertex of Q in forward or backward time, then the motion
ends). This motion can be continued as a straight line motion, which extends the motion
on the original segment in Q.

To make this precise, we give Q the orientation induced from C and suppose that
the incoming (and hence outgoing) straight line motion has the same orientation as ∂Q.
If the incoming motion makes an angle α with respect to the inward pointing normal N
to ∂Q at P, then the outgoing motion makes an angle α with the normal N, see Richens
and Berry [2]. Specifically, if the incoming motion to P is an integral curve of ∂

∂z , then the
outgoing motion, after reflection at P, is an integral curve of R−1 ∂

∂z = e−2πi/n ∂
∂z . Thus,

the outward motion makes a turn of −2π/n at P towards the interior of Q, see Figure 10
(left). In Figure 10 (right) the incoming motion has the opposite orientation from ∂Q. This
extended motion on Q is called a billiard motion. A billiard motion starting in the interior
of cl(Q) \ (cl(Q) ∩R) is defined for all time and remains in cl(Q) less its vertices, since
each of the segments of the billiard motion is a straight line parallel to an edge of cl(Q) and
does not hit a vertex of cl(Q), see Figure 11.

Figure 10. Reflection at a point P on ∂Q.

Figure 11. A periodic billiard motion in the equilateral triangle T = T1,1,1 starting at P. First, extended
by the reflection U to a periodic billiard motion in the quadrilateral Q = T ∪U(T). Second, extended
by the relection S to a periodic billiard motion in Q ∪ S(Q). Third, extended by the reflection SR to a
periodic billiard motion in the stellated equilateral triangle H = K∗1,1,1 = Q ∪ S(Q)SR(S(Q)).

We can do more. If we apply a reflection S in the edge of Q in its boundary ∂Q, which
contains the reflection point P, to the initial reflected motion at P, see Figure 12.

Figure 12. Continuation of a billiard motion in the quadrilateral Q to a billiard motion in the
quarilateral S(Q) obtained by the reflection S in an edge of Q.

The motion in S(Q) when it reaches ∂S(Q), et cetera, the extended motion becomes a
billiard motion in the regular stellated n-gon K∗ = Q ∪q0≤k≤n−1SRk(Q)

)
, see Figure 11.

So we have verified
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Theorem 7. A billiard motion in the regular stellated n-gon K∗, which starts at a point in the
interior of K∗ \O and does not hit a vertex of cl(K∗), is invariant under the action of the isometry
subgroup Ĝ of the isometry group G of (K∗, γ|K∗) generated by the rotation R.

Let Ĝ be the subgroup of G generated by the rotationR. We now show

Lemma 19. The holomorphic vector field X (12) on Sreg is Ĝ-invariant.

Proof. We compute. For every (ξ, η) ∈ Sreg and forR ∈ Ĝ we have

T(ξ,η)ΦR
(
X(ξ, η)

)
= e2πi/n[η ∂

∂ξ
+ n−n0

n
ξ(1− ξ)(1− 2n−n0−n1

n ξ)

ηn−2
∂

∂η

]

= (e2πi/nη)
∂

∂ξ
+ n−n0

n
ξ(1− ξ)(1− 2n−n0−n1

n ξ)

(e2πi/nη)n−2
∂

∂(e2πi/nη)

= X(ξ, e2πi/nη) = X◦ΦR(ξ, η).

Hence for every j ∈ Z we get

T(ξ,η)ΦRj
(
X(ξ, η)

)
= X◦ΦRj(ξ, η) (42)

for every (ξ, η) ∈ Sreg. In other words, the vector field X is invariant under the action of Ĝ
on Sreg.

Corollary 14. For every (ξ, η) ∈ D we have

X|ΦRj (D) = TΦRj◦X|D . (43)

Proof. Equation (43) is a rewrite of Equation (42).

Corollary 15. Every geodesic on (Sreg, Γ) is Ĝ-invariant.

Proof. This follows immediately from the lemma.

Lemma 20. For every (ξ, η) ∈ Sreg and every j ∈ Z we have

TΦRj (ξ,η)δK∗
(
X(ξ, η)

)
=

∂

∂z δK∗ (ΦRj (ξ,η))=Rjz.
(44)

Proof. From Equation (41) we get δK∗◦ΦR = ΨR◦ δK∗ on Sreg. Differentiating the preceding
equation and then evaluating the result at X(ξ, η) ∈ T(ξ,η)Sreg gives

(
TΦR(ξ,η)δK∗◦T(ξ,η)ΦR

)
X(ξ, η) =

(
TδK∗ (ξ,η)ΨR◦T(ξ,η)δK∗

)
X(ξ, η)

for all (ξ, η) ∈ Sreg. When (ξ, η) ∈ D, by definition δK∗(ξ, η) = δ(ξ, η). So for every
(ξ, η) ∈ Sreg

T(ξ,η)δK∗
(
X(ξ, η)

)
= T(ξ,η)δ

(
X(ξ, η)

)
=

∂

∂z z=δ(ξ,η)
=

∂

∂z z=δK∗ (ξ,η)
.

Thus,

TΦR(ξ,η)δK∗
(
T(ξ,η)ΦRX(ξ, η)

)
= TδK∗ (ξ,η)ΨR

( ∂

∂z z=δK∗ (ξ,η)

)
, (45)

for every (ξ, η) ∈ D. By analytic continuation (45) holds for every (ξ, η) ∈ Sreg. Now
T(ξ,η)ΦR sends T(ξ,η)Sreg to TΦR(ξ,η)Sreg. Since T(ξ,η)ΦRX(ξ, η) = e2πi/nX(ξ, η) for every
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(ξ, η) ∈ Sreg, it follows that e2πi/nX(ξ, η) is in TΦR(ξ,η)Sreg. Furthermore, since TδK∗ (ξ,η)ΨR
sends TδK∗ (ξ,η)K∗ to TΨR(δK∗ (ξ,η)K∗, we get

TδK∗ (ξ,η)ΨR
( ∂

∂z z=δK∗(ξ,η)

)
= R

∂

∂z Rz=ΨR(δK∗ (ξ,η))
.

For every (ξ, η) ∈ Sreg we obtain

TΦR(ξ,η)δK∗
(
X(ξ, η)

)
=

∂

∂z Rz=ΨR(δK∗ (ξ,η))
, (46)

that is, Equation (44) holds with j = 0. A similar calculation shows that Equation (46) holds
withR replaces byRj. This verifies Equation (44).

We now show

Theorem 8. The image of a Ĝ invariant geodesic on (Sreg, Γ) under the developing map δK∗ (17)
is a billiard motion in K∗, see Figure 13.

b′b a′a

Figure 13. (left) A billiard motion in K∗ = K∗1,1,1. (center) The points c, c′ and d, d′ in K∗ are identified,
which results in motion on a cylinder. (right) After identifying the points a, a′ and b, b′ on the cylinder
the motion becomes a periodic geodesic on S̃reg = (K∗ \ {O})∼/G on a smooth 2-torus less three
points.

Proof. Because ΦRj and ΨRj are isometries of (Sreg, Γ) and (K∗, γ|K∗), respectively, it
follows from equation (41) that the surjective map δK∗ : (Sreg, Γ) → (K∗, γ|K∗) (17) is
an isometry. Hence δK∗ is a local developing map. Using the local inverse of δK∗ and
Equation (44), it follows that a billiard motion in int(K∗ \O) is mapped onto a geodesic in
(Sreg, Γ), which is possibly broken at the points (ξi, ηi) = δ−1

K∗ (pi). Here pi ∈ ∂K∗ are the
points where the billiard motion undergoes a reflection. However, the geodesic on Sreg is
smooth at (ξi, ηi) since the geodesic vector field X is holomorphic on Sreg. Thus, the image
of the geodesic under the developing map δK∗ is a billiard motion.

Theorem 9. Under the restriction of the mapping

ν = σ◦Π : C \V+ → (C \V+)∼/G = S̃reg (47)

to K∗ \O the image of a billiard motion λz is a smooth geodesic λ̂ν(z) on (S̃reg, γ̂), where ν∗(γ̂) =
γ|C\V+ .

Proof. Since the Riemannian metric γ on C is invariant under the group of Euclidean
motions, the Riemannian metric γ|K∗\O on K∗ \O is Ĝ-invariant. Hence γK∗\O is invariant
under the reflection Sm for m ∈ {0, 1, . . . , n − 1}. So γ|K∗\O pieces together to give a
Riemannian metric γ∼ on the identification space (K∗ \O)∼. In other words, the pull back
of γ∼ under the map Π|K∗\O : K∗ \O→ (K∗ \O)∼, which identifies equivalent edges of K∗,
is the metric γ|K∗\O. Since Π|K∗\O intertwines the G-action on K∗ \O with the G-action on
(K∗ \O)∼, the metric γ∼ is Ĝ-invariant. It is flat because the metric γ is flat. So γ∼ induces
a flat Riemannian metric γ̂ on the orbit space (K∗ \O)∼/G = S̃reg. Since the billiard motion
λz is a Ĝ-invariant broken geodesic on (K∗ \O, γK∗\O), it gives rise to a continuous broken
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geodesic λ∼Π(z) on ((K∗ \O)∼, γ∼), which is Ĝ-invariant. Thus, λ̂ν(z) = ν(λz) is a piecewise

smooth geodesic on the smooth G-orbit space ((K∗ \O)∼/G = S̃reg, γ̂).
We need only show that λ̂ν(z) is smooth. To see this we argue as follows. Let s ⊆ K∗ be

a closed segment of a billiard motion γz, that does not meet a vertex of cl(K∗). Then s is a
horizontal straight line motion in cl(K∗). Suppose that Ek0 is the edge of K∗, perpendicular
to the direction uk0 , which is first met by s and let Pk0 be the meeting point. Let Sk0 be the
reflection in Ek0 . The continuation of the motion s at Pk0 is the horizontal line RSk0(s) in
K∗k0

. Recall that K∗k0
is the translation of K∗ by τk0 . Using a suitable sequence of reflections

in the edges of a suitable K∗k0···k` each followed by a rotation R and then a translation in
T corresponding to their origins, we extend s to a smooth straight line λ in C \V+, see
Figure 14. The line λ is a geodesic in (C \V+, γ|C\V+), which in K∗ has image λ̂ν(z) under
the G-orbit map ν (47) that is a smooth geodesic on (S̃reg, γ̂). The geodesic ν(λ) starts at
ν(z). Thus, the smooth geodesic ν(λ) and the geodesic λ̂ν(z) are equal. In other words,
λ̂ν(z) is a smooth geodesic.

s

O

O0

O02

RS0(s) RS2
(
RS0(s)

)
3

4

02

5 1

5 1

2 0

4

3

2 0

3

5 1

4

Figure 14. The billiard motion γz in the stellated regular 3-gon K∗1,1,1 meets the edge 0, isreflected in
this edge by S0, and then is rotated by R. This gives an extended motion RS0γz, which is a straight
line that is the same as reflecting γz by U and then translating by τ0.

Thus, the affine orbit space S̃reg = (C \V+)∼/G with flat Riemannian metric γ̂ is the
affine analogue of the Poincaré model of the affine Riemann surface Sreg as an orbit space
of a discrete subgroup of PGl(2,C) acting on the unit disk in C with the Poincaré metric.
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Appendix A. Group Theoretic Properties

In this appendix we discuss some group theoretic properties of the set of equivalent
edges of cl(K∗), which we use to determine the topology of S̃reg.

Let E be the set of unordered pairs [E, E′] of nonadjacent edges of cl(K∗). Define an
action • of G on E by

g•[E, E′] = [g(E), g(E′)]

for every unordered pair [E, E′] of nonadjacent edges of cl(K∗). For every g ∈ G the edges
g(E) and g(E′) are nonadjacent. This follows because the edges E and E′ are nonadjacent
and the elements of G are invertible mappings of C into itself. So ∅ = g(E ∩ E′) =
g(E) ∩ g(E′). Thus, the mapping• is well defined. It is an action because for every g and
h ∈ G we have

g•(h•[E, E′]) = g•[h(E), h(E′)] = [g(h(E), g(h(E′)]

= [(gh)(E), (gh)(E′)] = (gh)•[E, E′].
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Since E =
⋃

j=0,1,∞E j, the action • of G on E induces an action · of the group Gj of reflections
on the set E j of equivalent edges of cl(K∗), which is defined by

gj · [E, S(j)
k (E)] = [gj(E), gj(S

(j)
k (E))] = [gj(E), (gjS

(j)
k g−1

j )(gj(E))],

for every gj ∈ Gj, every edge E of cl(K∗), and every generator S(j)
k of Gj, where k = 0, 1, . . . ,

n− 1. Since gjS
(j)
k g−1

j = S(j)
r by Corollary 6, the mapping · is well defined.

Lemma A1. The group G action • sends a Gj-orbit on E j to another Gj-orbit on E j.

Proof. Consider the Gj-orbit of [E, S(j)
m (E)] ∈ E j. For every g ∈ G we have

g •
(
Gj · [E, S(j)

m (E)]
)
= (gGjg−1) •

(
g • [E, S(j)

m (E)]
)
= Gj ·

(
g • [E, S(j)

m (E)]
)
,

because Gj is a normal subgroup of G by Corollary 7. Since

g • [E, S(j)
m (E)] = [g(E), g(S(j)

m (E))] = [g(E), gS(j)
m g−1(g(E))]

and gS(j)
m g−1 = S(j)

r by Corollary 6, it follows that g • [E, S(j)
m (E)] ∈ E j.

Lemma A2. For every j = 0, 1, ∞ and every k = 0, 1, . . . , n− 1 the isotropy group Gj

ej
k

of the Gj

action on E j at ej
k = [E, S(j)

k (E)] is 〈S(j)
k (S(j)

k )2 = e〉.

Proof. Every g ∈ Gj

ej
k

satisfies

ej
k = [E, S(j)

k (E)] = g · ej
k = g · [E, S(j)

k (E)]

if and only if

[E, S(j)
k (E)] = [g(E), gS(j)

k g−1(g(E))] = [g(E), S(j)
r (g(E))]

if and only if one of the statements 1) g(E) = E & S(j)
k (E) = S(j)

r (g(E)) or 2) E = g(S(j)
r (E))

& g(E) = S(j)
k (E) holds. From g(E) = E in 1) we get g = e using Lemma 3. To see

this we argue as follows. If g 6= e, then g = Rp(S(j))` for some ` = 0, 1 and some
p ∈ {0, 1, . . . , n− 1}, see Equation (A1). Suppose that g = Rp with p 6= 0. Then g(E) 6= E,
which contradicts our hypothesis. Now suppose that g = RpS(j). Then E = g(E) =
RpS(j)(E), which gives R−p(E) = S(j)(E). Let A and B be end points of the edge E. Then
the reflection S(j) sends A to B and B to A, while the rotation R−p sends A to A and B to
B. Thus, R−p(E) 6= S(j)(E), which is a contradiction. Hence g = e. If g(E) = S(j)

k (E) in 2),

then (S(j)
k g)(E) = E. So S(j)

k g = e by Lemma 3, that is, g = S(j)
k .

For every j = 0, 1, ∞ and every mj = 0, 1, . . . , n
dj
− 1 let Gj

ej
mjdj

= {gj ∈ Gj gj ·

ej
mjdj

= ej
mjdj
} be the isotropy group of the Gj action on E j at ej

mjdj
= [E, S(j)

mjdj
(E)]. Since

Gj

ej
mjdj

= 〈S(j)
mjdj

(S(j)
mjdj

)2 = e〉 is an abelian subgroup of Gj, it is a normal subgroup. Thus,

H j = Gj/Gj

ej
mjdj

is a subgroup of Gj of order (2n/dj)/2 = n/dj. This proves
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Lemma A3. For every j = 0, 1, ∞ and each mj = 0, 1, . . . , n
dj
− 1 the Gj-orbit of ej

mjdj
in E j is

equal to the H j-orbit of ej
mjdj

in E j.

Lemma A4. For j = 0, 1, ∞ we have H j = 〈V = Rdj Vn/dj = e〉.

Proof. Since

S(j)
k = RkS(j)R−k = Rk(Rnj U)R−k = R2k+nj U = R2kS(j), (A1)

we get S(j)
mjdj

= R
(2mj+

nj
dj
)dj U = (Rdj)mj S(j). Because the group Gj is generated by the

reflections S(j)
k for k = 0, 1, . . . , n− 1, it follows that

Gj ⊆ 〈V = Rdj , S(j)
mjdj

Vn/dj = e = (S(j)
mjdj

)2 & VS(j)
mjdj

= S(j)
mjdj

V−1〉 = Kj.

Kj is a subgroup of G of order 2n/dj. Clearly the isotropy group Gj

ej
mjdj

= 〈S(j)
mjdj

(S(j)
mjdj

)2 =

e〉 is an abelian subgroup of K j. Hence H j = Gj/Gj

ej
mjdj

⊆ K j/Gj

ej
mjdj

= Lj, where Lj is a

subgroup of K j of order (2n/dj)/2 = n/dj. Thus, the group Lj has the same order as its
subgroup H j. So H j = Lj. However, Lj = 〈V = Rdj Vn/dj = e〉.

Let f j
` = R` · ej

0. Then

f j
` = R` · ej

0 = R` · [E, S(j)(E)]

= [R`(E), R`S(j)R−`(R`(E))] = [R`(E), S(j)
` (R`(E))].

So

Vm · f j
` = Vm · [R`(E), R`S(j)R−`(R`(E))]

= [Vm(R`(E)), VmS(j)
` V−m(Vm(R`(E))]

= [Rmdj+`(E), S(j)
mdj+`(E)] = ej

mdj+`.

This proves
dj−1⋃

`j=0

H j · f j
`j
=

dj−1⋃

`j=0

n
dj
−1
⋃

mj=0
Vmj · f j

`j
=

n−1⋃

k=0

ej
k, (A2)

since every k ∈ {0, 1, . . . , n − 1} may be written uniquely as mjdj + `j for some mj ∈
{0, 1, . . . , n

dj
− 1} and some `j ∈ {0, 1, . . . , dj − 1}.
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