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Abstract: We have obtained a new class of ordered pairs of multivalued maps that have pairs of
coupled fixed points. We illustrate the main result with two examples that cover a wide range of
models. We apply the main result in models in duopoly markets to get a market equilibrium and in
aquatic ecosystems, also to get an equilibrium.
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1. Introduction

Fixed point theory has been extensively researched and widely applied in a multitude
of directions for many years. The “Banach Contraction Principle” states that under certain
conditions a self map T on a set X admits one or more fixed points x = Tx. The “Banach
Contraction Principle” and its numerous generalizations are widely used in many branches
of mathematics because it requires only the structure of a complete metric space with
conditions on the map which are easily tested.

We will mention just a few directions of the generalizations (fixed points for set-valued
maps, coupled fixed points, fixed points for cyclic maps) of “Banach Contraction Principle”
that initiate the present investigation.

Following the “Banach Contraction Principle”, Nadler introduced the concept of
set-valued contractions in [1]. He also proved that a set-valued contraction possesses a
fixed point in a complete metric space. In the late twentieth century Dontchev and Hager
successfully presented an extension of Nadler’s result in [2]. They determined the location
of a fixed point with respect to an initial value of the set-valued mapping. Their conclusion
was obtained under two modified conditions and it has since been playing an important
role in the development of the metric fixed point theory. We would like just to mention a
few recent results about fixed points for set-valued maps and their applications [3–6].

A different direction is the notion of coupled fixed points introduced in [7]. There are
a lot of recent results about coupled fixed points [8–11].
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Another kind of generalization of the Banach contraction principle is the notation of
cyclic maps [12] and later its generalization to the best proximity point, introduced in [13].
The definition presented in [13] is more general than the one in [12], in the sense that if the
sets intersect, then every best proximity point is a fixed point. Some very recent results in
this field are presented in [14–17].

It seems that recently all mentioned directions of research in fixed point theory are
of interest.

By combining the notions of coupled fixed (or best proximity) points for cyclic maps,
a model of duopoly market was built in [18,19].

We will try to enrich the notions of set-valued maps, coupled fixed points, cyclic maps
and to get results that we will apply in economics and ecology.

2. Preliminaries

We will recall basic notions and facts that we will need for investigation of coupled
fixed points for multi-valued maps. Let (X, ρ) and (Y, σ) be two metric spaces. We will
denote by BX,r(x) the open ball and by BX,r[x] the closed ball with a radius r and a center
x in the metric space X. If no confusion arises, we will denote them with Br(x) and
Br[x], respectively. Let x ∈ X and C ⊂ X. We will denote the distance from x to C by
d(x, C) = inf{ρ(x, z) : z ∈ C}. If C = ∅ then we put d(x, ∅) = ∞.

Let A, B ⊂ X be two subsets. An excess of A beyond B is called e(A, B) = sup{d(x, B) :
x ∈ A}, where the convention is used that

e(∅, B) =
{

0, B 6= ∅
∞, B = ∅

.

Let (X, ρ) and (Y, σ) be two metric spaces. Let us denote by F : X ⇒ Y a set-valued
mapping defined on the metric space (X, ρ) with values in the metric space (Y, σ). Let
F be a set-valued map: Its graph is the set gph F = {(x, y) ∈ X × Y | y ∈ F(x)}, its
effective domain is the set dom F = {x ∈ X | F(x) 6= ∅} and its effective range is
rge F = {y ∈ Y | there exists x such that y ∈ F(x)}.

Definition 1. ([1]) A point x ∈ X is said to be a fixed point of the set-valued map F : X ⇒ X if
x ∈ F(x).

Definition 2. ([7]) A point (x, y) ∈ X × X is said to be a coupled fixed point of the map F :
X× X → X if x = F(x, y) and y = F(y, x).

Definition 3. ([20]) A point (x, y) ∈ X × X is said to be a coupled fixed point of the set-valued
map F : X× X ⇒ X if x ∈ F(x, y) and y ∈ F(y, x).

The model that will be constructed in the application section will be of two set-valued
maps F1 : X × Y ⇒ X and F2 : X × Y ⇒ Y and we will be interested in the existence of
ordered pairs (x, y), such that x ∈ F1(x, y) and y ∈ F2(x, y), which are called generalized
coupled fixed points for the ordered pair of set-valued maps (F1, F2).

3. Main Results

We will present a result, which extends the result from [2] and establishes a solution
of the generalized coupled fixed point problem for an ordered pair of set-valued maps.

Theorem 1. Let (X, ρ) and (Y, σ) be complete metric spaces, F1 : X×Y ⇒ X and F2 : X×Y ⇒
Y be multi-valued maps and x̄ ∈ X, ȳ ∈ Y. Let there exist a constant r > 0 and non-negative
constants α, β, γ, δ, satisfying max{α + γ, β + δ} < 1, such that the following assumptions hold:

(a) F1(x, y) and F2(x, y) are nonempty closed subsets of X and Y for all (x, y) ∈ Br(x̄)× Br(ȳ)
(b) the inequality d(x̄, F1(x̄, ȳ))+ d(ȳ, F2(x̄, ȳ)) < r(1−λ) holds, where λ = max{α + γ, β + δ}
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(c) the inequality

S1 = e(F1(x, y) ∩ Br(x̄), F1(u, v)) + e(F2(z, w) ∩ Br(ȳ), F2(t, s))
≤ αρ(x, u) + βσ(y, v) + γρ(z, t) + δσ(w, s)

(1)

holds for all (x, y), (u, v), (z, w), (t, s) ∈ Br(x̄)× Br(ȳ).

Then, the generalized coupled fixed point problem has at least one solution (x, y) ∈ Br(x̄)× Br(ȳ).

Proof. Let x̄ = x0 and ȳ = y0.
We will construct by induction a sequence {(xn, yn)}∞

n=1, which will satisfy the inclu-
sions xn+1 ∈ F1(xn, yn) ∩ Br(x0) and yn+1 ∈ F2(xn, yn) ∩ Br(y0) for n ≥ 0.

Step one of the induction: We will choose (x1, y1). By assumption (b), there exist
x1 ∈ F1(x0, y0) and y1 ∈ F2(x0, y0) such that ρ(x1, x0)+ σ(y1, y0) < r(1−λ) < r. Therefore,
x1 ∈ F1(x0, y0) ∩ Br(x0) and y1 ∈ F2(x0, y0) ∩ Br(y0).

We will proceed with the choice of (x2, y2). From (1) we have the chain of inequalities

S2 = d(x1, F1(x1, y1)) + d(y1, F2(x1, y1))

≤ e(F1(x0, y0) ∩ Br(x0), F1(x1, y1)) + e(F2(x0, y0) ∩ Br(y0), F2(x1, y1))

≤ αρ(x1, x0) + βσ(y1, y0) + γρ(x1, x0) + δσ(y1, y0)

= (α + γ)ρ(x1, x0) + (β + δ)σ(y1, y0)

≤ max{α + γ, β + δ}(ρ(x1, x0) + σ(y1, y0))
< r(1− λ)λ.

The above inequalities imply the existence of x2 ∈ F1(x1, y1) and y2 ∈ F2(x1, y1), such
that ρ(x2, x1) + σ(y2, y1) < r(1− λ)λ. Using the triangular inequality we get

ρ(x2, x0) + σ(y2, y0) ≤ ρ(x2, x1) + σ(y2, y1) + ρ(x1, x0) + σ(y1, y0)
≤ r(1− λ)λ + r(1− λ) < r.

Consequently x2 ∈ F1(x1, y1) ∩ Br(x0) and y2 ∈ F2(x1, y1) ∩ Br(y0).
Step two of the induction: Let us suppose that we have already chosen {(xk, yk)}n

k=1,
satisfying for each k = 1, 2, . . . , n

xk ∈ F1(xk−1, yk−1) ∩ Br(x0) , yk ∈ F2(xk−1, yk−1) ∩ Br(y0)

and
ρ(xk, xk−1) + σ(yk, yk−1) < r(1− λ)λk−1.

Step three of the induction: We will prove that we can choose (xn+1, yn+1), pro-
vided that we have already chosen {(xk, yk)}n

k=1. By assumption (1) we have the chain
of inequalities

S3 = d(xn, F1(xn, yn)) + d(yn, F2(xn, yn))

≤ e(F1(xn−1, yn−1) ∩ Br(x0), F1(xn, yn)) + e(F2(xn−1, yn−1) ∩ Br(y0), F2(xn, yn))

≤ αρ(xn, xn−1) + βσ(yn, yn−1) + γρ(xn, xn−1) + δσ(yn, yn−1)

= (α + γ)ρ(xn, xn−1) + (β + δ)σ(yn, yn−1)

≤ max{α + γ, β + δ}(ρ(xn, xn−1) + σ(yn, yn−1))
< λr(1− λ)λn−1 = r(1− λ)λn.

The above inequalities imply that there exist

xn+1 ∈ F1(xn, yn) and yn+1 ∈ F2(xn, yn),
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such that
ρ(xn, xn+1) + σ(yn, yn+1) < r(1− λ)λn. (2)

Using the triangular inequality we get

ρ(xn+1, x0) + σ(yn+1, y0) ≤
n

∑
k=0

ρ(xk+1, xk) + σ(yk+1, yk) < r(1− λ)
n

∑
k=0

λk < r.

Consequently, xn+1 ∈ F1(xn, yn) ∩ Br(x0) and yn+1 ∈ F2(xn, yn) ∩ Br(y0) and this
completes the induction.

It follows from (2) that max{ρ(xn, xn+1), σ(yn, yn+1)} < r(1 − λ)λn and thus
the inequality

ρ(xn, xm) ≤
n−1

∑
k=m

ρ(xk+1, xk) < r(1− λ)λm
n−1

∑
k=0

λk < rλm

holds for any n > m.
Therefore, {xn}∞

n=0 is a Cauchy sequence and from the assumption that X is a complete
metric space it follows that {xn}∞

n=0 converges to some x∗ ∈ Br(x0). By similar arguments
we get that the sequence {yn}∞

n=0 is a Cauchy sequence and converges to some y∗ ∈ Br(y0).
By using of assumption (1) we get the chain of inequalities

S4 = d(xn, F1(x∗, y∗)) + d(yn, F2(x∗, y∗))
≤ e(F1(xn−1, yn−1) ∩ Br(x0), F1(x∗, y∗)) + e(F2(xn−1, yn−1) ∩ Br(y0), F2(x∗, y∗))

≤ αρ(x∗, xn−1) + βσ(y∗, yn−1) + γρ(x∗, xn−1) + δσ(y∗, yn−1)
≤ (α + γ)ρ(x∗, xn−1) + (β + δ)σ(y∗, yn−1)
≤ λ(ρ(x∗, xn−1) + σ(y∗, yn−1)).

Applying the triangle inequality we obtain

S5 = d(x∗, F1(x∗, y∗)) + d(y∗, F2(x∗, y∗))
≤ ρ(x∗, xn) + d(xn, F1(x∗, y∗)) + σ(y∗, yn) + d(yn, F2(x∗, y∗))

≤ ρ(x∗, xn) + λ((ρ(x∗, xn−1) + σ(y∗, yn−1)) + σ(y∗, yn).
(3)

After taking a limit as n→ ∞ in (3) we get that d(x∗, F1(x∗, y∗))+ d(y∗, F2(x∗, y∗)) = 0.
From the assumption that F1(x∗, y∗) and F2(x∗, y∗) are closed it follows that x∗ ∈ F1(x∗, y∗)
and y∗ ∈ F2(x∗, y∗), i.e (x∗, y∗) is a generalized coupled fixed point.

Remark 1. If F1 and F2 are single-valued, then assumption (1) implies that (x∗, y∗) is the unique
coupled fixed point of (F1, F2) in Br(x0)× Br(y0).

4. Examples and Applications

We will illustrate Theorem 1 with two examples. We will use these two examples to
construct models in economics and ecology.

4.1. Examples

Example 1: Let us choose 0 ≤ α < β < γ < δ ≤ η < +∞, n, m ∈ (0, 1], so that

max
{

n(γ− β) + m(γ− β)

2((η + 1)n − (α + 1)n)
,

n(γ− β) + m(γ− β)

2(δ + 1)n

}
< 1.

Let us define the maps

f : [0, δ]→
[

β + γ

2
, γ

]
, g : [α, η]→

[
β,

β + γ

2

]
,
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ϕ : [0, δ]→
[

β + γ

2
, γ

]
, ψ : [α, η]→

[
β,

β + γ

2

]
.

by

f (x) =
γ− β

2(δ + 1)n (x + 1)n +
β + γ

2
,

g(x) =
γ− β

2((η + 1)n − (α + 1)n)
(x + 1)n + β− (α + 1)n γ− β

2((η + 1)n − (α + 1)n)
,

ϕ(x) =
γ− β

2(δ + 1)m (x + 1)m +
β + γ

2
,

ψ(x) =
γ− β

2((η + 1)m − (α + 1)m)
(x + 1)m + β− (α + 1)m γ− β

2((η + 1)m − (α + 1)m)
.

Let us denote x = y = β+γ
2 and θ = min{|δ− x|, |α− x|}. Let us endow R with the

absolute value metrics | · − · |. Let us consider the sets X = [0, δ], Y = [α, η]. Let us define
the multivalued maps F : X×Y ⇒ X and G : X×Y ⇒ Y by

F(x, y) = {ξ : g(y) ≤ ξ ≤ f (x)}

and
G(x, y) = {ξ : ψ(y) ≤ ξ ≤ ϕ(x)}.

We will check that F and G satisfy Theorem 1.
It is easy to see that for any (x, y) ∈ Br(x)× Br(y) the sets F(x, y) = [g(y), f (x)] and

G(x, y) = [ψ(y), ϕ(x)] are non empty and closed subsets of X or Y, respectively.
From g(x) ≤ x ≤ f (x) and ψ(x) ≤ x ≤ ϕ(x) we get that F(x, x) ⇒ [g(x), f (x)] and

G(x, x) ⇒ [ψ(x), ϕ(x)]. Then

d(x, F(x, x)) + d(x, G(x, x)) = 0 < r(1− λ)

for any r > 0 and any λ ∈ [0, 1).
From F(x, y) ⇒ [g(y), f (x)] ⊆ Br(x) and G(x, y) ⇒ [ψ(y), ϕ(x)] ⊆ Br(y) it follows

that F(x, y) ∩ Br(x) = F(x, y) = [g(y), f (x)] and G(x, y) ∩ Br(y) = G(x, y) = [ψ(y), ϕ(x)]
for r = θ.

Consequently,

e(F(x, y) ∩ Br(x), F(u, v)) = e([g(y), f (x)], [g(v), f (u)])
= supx∈[g(y), f (x)] d(x, [g(v), f (u)]).

There are four cases:
(I) x ≤ u and y ≤ v; (II) x ≤ u and y ≥ v; (III) x ≥ u and y ≤ v; (IV) x ≥ u and y ≥ v.
We will need the inequalities:

| f (x)− f (y)| = f ′(ζ)|x− y| ≤ n
γ− β

2((η + 1)n − (α + 1)n)
|x− y|,

and
|g(x)− g(y)| = g′(ζ)|x− y| ≤ n

γ− β

2(δ + 1)n |x− y|.

Case (I). We will illustrate this case with a figure for easier reading (Figure 1). The
other three cases are similar.
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Figure 1. Case (I) x ≤ u and y ≤ v.

S5 = supz∈[g(y), f (x)] d(z, [g(v), f (u)])

= supg(y)≤z≤g(v) |z− g(v)| = |g(y)− g(v)| = n γ−β
2(δ+1)n |y− v|.

Case (II). In this case F1(x, y) ⊆ F1(u, v) and we get

sup
z∈[g(y), f (x)]

d(z, [g(v), f (u)]) = 0.

Case (III). In this case F1(u, v) ⊆ F1(x, y) and we get

S6 = sup
z∈[g(y), f (x)]

d(z, [g(v), f (u)]) = max{|g(y)− g(v)|, | f (x)− f (u)|}

= max
{

n
γ− β

2(δ + 1)n |y− v|, n
γ− β

2((η + 1)n − (α + 1)n)
|x− u|

}
.

Case (IV). This case is very similar to case I) and we get

sup
z∈[g(y), f (x)]

d(z, [g(v), f (u)]) = | f (x)− f (u)| = n
γ− β

2((η + 1)n − (α + 1)n)
|x− u|.

Therefore by combining the four Cases (I) to (IV) we get

S7 = e(F(x, y) ∩ Br(x), F(u, v))

≤ max
{

n
γ− β

2(δ + 1)n |y− v|, n
γ− β

2((η + 1)n − (α + 1)n)
|x− u|

}
≤ n

γ− β

2(δ + 1)n |y− v|+ n
γ− β

2((η + 1)n − (α + 1)n)
|x− u|.

By similar calculations we can get that

S8 = e(G(z, w) ∩ Br(y), G(t, s))

≤ m
γ− β

2(δ + 1)m |w− s|+ m
γ− β

2((η + 1)m − (α + 1)m)
|z− t|.

Thus there holds the inequality

S9 = e(F(x, y) ∩ Br(x), F(u, v)) + e(G(z, w) ∩ Br(y), G(t, s))

≤ n
(γ− β)|x− u|

2((η + 1)n − (α + 1)n)
+ m

(γ− β)|z− t|
2((η + 1)m − (α + 1)m)

+n
γ− β

2(δ + 1)n |y− v|+ m
γ− β

2(δ + 1)m |w− s|.
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A particular case can be obtained if n = m = 1, α = 0, β = 2, γ = 4, δ = 6 and η = 8.
We get f (x) = ϕ(x) = x

7 + 22
7 , g(y) = ψ(y) = y

8 + 2, r = 3, x = y = 3 and

S10 = e(F(x, y) ∩ Br(x), F(u, v)) + e(G(z, w) ∩ Br(y), G(t, s))
≤ 1

8 |x− u|+ 1
7 |y− v|+ 1

8 |z− t|+ 1
7 |w− s|.

Example 2. Let us consider the space R2. Let us choose 0 < αi < βi < γi < δi < ηi <
+∞, ni, mi ∈ (0, 1] for i = 1, 2, so that

max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

}
+ max

i=1,2

{
mi(γi − βi)

2(δi + 1)mi

}
< 1

and

max
i=1,2

{
ni(γi − βi)

2((ηi + 1)ni − (αi + 1)ni )

}
+ max

i=1,2

{
mi(γi − βi)

2((ηi + 1)mi − (αi + 1)mi )

}
< 1.

Let us define the maps

fi : [0, δi]→
[

βi + γi
2

, γi

]
, gi : [αi, ηi]→

[
βi,

βi + γi
2

]
,

ϕi : [0, δi]→
[

βi + γi
2

, γi

]
, ψi : [αi, ηi]→

[
βi,

βi + γi
2

]
for i = 1, 2 by

fi(x) =
γi − βi

2(δi + 1)ni
(x + 1)ni +

βi + γi
2

,

gi(x) = C(x + 1)ni + βi − (αi + 1)ni C,

ϕi(x) =
γi − βi

2(δi + 1)mi
(x + 1)mi +

βi + γi
2

,

ψi(x) = D(x + 1)mi + βi − (αi + 1)mi D,

where C = γi−βi
2((ηi+1)ni−(αi+1)ni )

and D = γi−βi
2((ηi+1)mi−(αi+1)mi )

.

Let us denote xi =
βi+γi

2 and θi = min{|δi − xi|, |αi − xi|} for i = 1, 2. Let us endow

R2 with the metrics ρ((x, y), (u, v)) =
(∣∣∣ x−u

θ1

∣∣∣p + ∣∣∣ y−v
θ2

∣∣∣p)1/p
, p ∈ (1,+∞). Let us consider

the sets Xi = [0, δi], Yi = [αi, ηi] for i = 1, 2 and let X = X1×X2, Y = Y1×Y2. Let us define
the multivalued maps F : X×Y ⇒ X and G : X×Y ⇒ Y by

F((x1, x2), (y1, y2)) = {(ξ1, ξ2) : gi(yi) ≤ ξi ≤ fi(xi)}

and
G((x1, x2), (y1, y2)) = {(ξ1, ξ2) : ψi(yi) ≤ ξi ≤ ϕi(xi)}.

We will check that the pair (F, G) satisfies Theorem 1.
Let us choose r = 2 and x = y = (x1, x2). By definition

Br(x) ≡ Br(y) = {x = (x1, x2) : ρ(x, x) ≤ 2}.

It is easy to see that R2 ⊆ B2(x) ⊆ R1, where R1 be the rectangular with vertices
(α1, α2), (δ1, α2), (δ1, δ2), (α1, δ2) and R2 be the rectangular with vertices (β1, β2), (γ1, β2),
(γ1, γ2), (β1, γ2) and B2(x) (Figure 2) is an ellipse for p = 2.
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Figure 2. R2 ⊆ B2(x) ⊆ R1.

Indeed, let (x1, x2) ∈ R2. Then βi ≤ xi ≤ γi. Thereafter it holds for i = 1, 2∣∣∣∣ βi + γi
2

− xi

∣∣∣∣ = |xi − xi| ≤ min{|δi − xi|, |αi − xi|} = θi

and consequently we can write the inequalities

ρ((x1, x2), (x1, x2)) =

(∣∣∣∣ x1 − x1

θ1

∣∣∣∣p + ∣∣∣∣ x2 − x2

θ2

∣∣∣∣p)1/p

≤ 21/p < 2.

From gi(xi) ≤ xi ≤ fi(xi) it follows that x = (x1, x2) ∈ F(x1, x2) and from ψi(xi) ≤
xi ≤ ϕi(xi) it follows that x = (x1, x2) ∈ G(x1, x2) and therefore d(x, F(x, y)) = d(y, G(x, y))
= 0 ≤ r(1− λ) holds for any r ≥ 1 and λ ∈ [0, 1).

We observe that there hold F(x, y) ∩ Br(x) = F(x, y) and G(x, y) ∩ Br(y) = G(x, y).
Therefore we will need to calculate e(F(x, y), F(u, v)) and e(G(z, w), G(t, s)).

The set F(x, y) = F((x1, x2), (y1, y2)) is a rectangular with vertexes (g(y1), g(y2)),
( f (x1), g(y2)), ( f1(x1), f (x2)) and (g(y1), f (x2)). There are several possible cases: g(yi) ≤
g(vi), or g(vi) ≤ g(yi) and f (xi) ≤ f (ui) or f (ui) ≤ f (xi) with all the possible combina-
tions of i = 1, 2.

Let us first consider the case: g(y1) ≤ g(v1) ≤ f (u1) ≤ f (x1) and g(y2) ≤ g(v2) ≤
f (u2) ≤ f (x2). It is easy to observe that e(F(x, y), F(u, v)) = max{Ai : i = 1, 2, 3, 4}
(Figure 3), where

A1 = dist((g(y1), g(y2)), F(u, v)),
A2 = dist(( f (x1), g(y2)), F(u, v)),
A3 = dist(( f (x1), f (x2)), F(u, v)),
A4 = dist((g(y1), f (x2)), F(u, v)).
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Figure 3. e(F(x, y), F(u, v)) = max{Ai : i = 1, 2, 3, 4}.

We will need the inequalities:

| fi(x)− fi(y)| = f ′i (ζ)|x− y| ≤ ni
γi − βi

2(δi + 1)ni
|x− y|,

|gi(x)− gi(y)| = g′i(ζ)|x− y| ≤ ni
γi − βi

2((ηi + 1)ni − (αi + 1)ni )
|x− y|,

where ni ∈ (0, 1) and

f ′(ζ) ≤ ni
γi − βi

2(δi + 1)ni
max{(x + 1)ni−1 : x ∈ [0, δi]} = ni

γi − βi
2(δi + 1)ni

and
g′i(ζ) ≤ ni

γi−βi
2((ηi+1)ni−(αi+1)ni )

max{(x + 1)ni−1 : x ∈ [αi, ηi]}
= ni

γi−βi
2((ηi+1)ni−(αi+1)ni )

= niCi.

We calculate

A1 = p

√∣∣∣ g1(v1)−g1(y1)
θ1

∣∣∣p + ∣∣∣ g2(v2)−g2(y2)
θ2

∣∣∣p
= p

√
1
θ

p
1
|n1C1|p|v1 − y1|p + 1

θ
p
2
|n2C2|p|v2 − y2|p)

≤
(

max
i=1,2

{
ni(γi − βi)

2((ηi + 1)ni − (αi + 1)ni )

})
ρ((v1, v2), (y1, y2))

and

A3 = p

√∣∣∣ f1(u1)− f1(x1)
θ1

∣∣∣p + ∣∣∣ f2(u2)− f2(x2)
θ2

∣∣∣p
= p

√
1
θ

p
1

∣∣∣ n1(γ1−β1)
2(δ1+1)n1

∣∣∣p|u1 − x1|p + 1
θ

p
2

∣∣∣ n2(γ2−β2)
2(δ2+1)n2

∣∣∣p|u2 − x2|p)

≤
(

max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

})
ρ((x1, x2), (u1, u2)).
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For the estimation of A2 and A4 let us denote (Figure 3)

A = (g1(y1), g2(y2)), B = ( f1(x1), g2(y2)),
C = ( f1(x1), f2(x2)), P = (g1(v1), g2(v2)),
Q = ( f1(u1), g2(v2)), R = ( f1(u1), f2(u2)),
I = (g1(v1), g2(y2)), G = ( f1(u1), g2(y2)),
F = ( f1(x1), g2(v2)), E = ( f1(x1), f2(u2)).

There holds

A2 = ρ(B, Q) ≤ ρ(G, Q) + ρ(Q, F) = ρ(P, I) + ρ(R, E)
≤ ρ(A, P) + ρ(R, C)

≤
(

max
i=1,2
{niCi}

)
ρ(v, y) +

(
max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

})
ρ(x, u).

By similar observation we can prove that

A4 ≤
(

max
i=1,2
{niCi}

)
ρ(v, y) +

(
max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

})
ρ(x, u).

Consequently e(F(x, y), F(u, v) ≤ αρ(x, u) + βρ(y, v), where

α = max
i=1,2

{
ni(γi − βi)

2(δi + 1)ni

}
and β = max

i=1,2

{
ni(γi − βi)

2((ηi + 1)ni − (αi + 1)ni )

}
.

Let us denote the two rectangles F(x, y) and F(u, v) by ABCD and PQRS, respectively.
We have just investigated the case PQRS ⊆ ABCD. All the other cases are variants of
Figure 4 and we can get that

e(F(x, y), F(u, v)) ≤ max{ρ(A, P), ρ(B, Q), ρ(C, R), ρ(D, S)}
≤ αρ(x, u) + βρ(y, v).

Figure 4. ABCD and PQRS.

By similar calculations for the multivalued map G we get

e(G(z, w), G(t, s)) ≤ γρ(z, t) + δρp(w, s),

where

γ = max
i=1,2

{
mi(γi − βi)

2(δi + 1)mi

}
and δ = max

i=1,2

{
mi(γi − βi)

2((ηi + 1)mi − (αi + 1)mi )

}
and thus

e(F(x, y), F(u, v)) + e(G(z, w), G(t, s)) ≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s).

4.2. Examples for the Existence of an Equilibrium in Oligopoly (Duopoly) Markets

The theory of oligopoly (duopoly) markets was initiated in [21]. Following [22,23]
we present the main features of an oligopoly model in economics. The oligopoly is a
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market structure in the presence of imperfect competition in which a limited number of
large companies control the production and sale of a predominant part of the product in a
particular sector of the economy. It is believed that oligopolies are the result of the trend in
the economy towards concentration of capital and labor. The oligopoly is characterized by
product differentiation; high barriers preventing the emergence of new “players”; limited
access to information; non-price competition through advertising and other marketing
activities, as well as price control. In the oligopolistic structure, large companies determine
the behavior of competitors and take it into account when developing their strategy, which
can be rivalry, even “trade wars” in terms of production volume, sales, and prices; the
strategic interaction results in agreements (through secret or open collusion or without
collusion) in order to guarantee stability and ensure high profits. They contribute to
raising economic and organizational barriers, making it difficult for new “players” to
emerge. This is the nature of the large initial capital costs for entering the business and
achieving minimum effective production and sales capacity in view of economies of scale
and resilience against competitors, the development of own research and development for
product innovation, industrial and trade secrets. Oligopolistic market structures arise and
are imposed by three key points (1) the concentration of assets; (2) inter-firm agreements;
and (3) fencing off activities in order to gain market power, restrict competition, and
generate large profits.

The distinctive feature of the oligopoly is that in determining individual supply and
market price, companies are interdependent. The change in the market behavior of each of
them can lead to a change in market conditions and possibly cause a change in the behavior
of other companies.

The equilibrium quantity and price in the oligopoly will depend on the number of
firms on the market, the information available, the strategy chosen by competitors and
whether the firms in the market act independently of each other or in concert. The latter
factor is the basis for two types of oligopolistic equilibrium-coherent and inconsistent,
which differ significantly in end results and economic efficiency.

The classic model of uncoordinated oligopolistic behavior is the Cournot duopoly
model, which considers the problem of the interdependence of firms in the market. The
duopoly is a market structure in which two companies, protected from the emergence of
other sellers, act as the only producers of standardized products that have no close substi-
tutes, in which there are only two sellers of a particular product that are not interconnected
by monopolistic agreement for prices market for selling products and quotas. The partici-
pants in the model try to maximize their payoff functions Π1(x, y) = xP(x + y)− C1(x)
and Π2(x, y) = yP(x + y)− C2(x), respectively, where P(Z) = P(x + y) be the inverse of
the demand function and C1(x) and C2(y) be the cost functions of the two players. By
maximizing its payoff functions, the players get their response functions F : X×Y → X
and f : X×Y → X, respectively.

The company equilibrium would become market if the supply of one company is
equal to the supply of the other company, so that none of the companies is motivated
to change their positions condition for market equilibrium. This condition is present if
each of the companies produces one third of the total market supply under conditions of
perfect competition and both companies sell at a specific market price, which is one third
of the market price. Taking into account the strategic considerations of the companies, their
behavior will depend on the decisions of their competitors.

Cournot’s theory is based on competition and the fact that buyers announce prices
and sellers adjust their products to those prices. Each company evaluates the product
search function and then sets the quantity that will be sold, assuming that the competitor’s
output remains constant.

Deeper research on the oligopoly market can be found in [22–25].
Cournot’s classical model deals with a maximization of the payoff functions of each

of the players. A different approach is presented in [18], where attention is paid to the
response functions of the players. The benefits of this approach are commented on in [18].
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We will just say that as far as the players do not have a perfect knowledge of the market
they react in some sense by not maximizing their payoff function, but rather by choosing a
strategy based on their production and their rival’s production levels. The solution of the
maximization of the payoff function is actually the coupled fixed points (x, y), such that
x = F(x, y) and y = f (x, y).

Focusing on response functions allows us to put Cournot and Bertand’s models
together. Indeed let the first company reaction be F(X, Y) and the second one f (X, Y),
where X = (x, p) and Y = (y, q). Here x and y denote the output quantity and (p, q) are the
prices set by players. In this, companies can compete in terms of both price and quantity.

A disadvantage of the presented model is that players do not choose a fixed production
of a fixed price. Actually, the response of each player is any quality from a set of possible
productions or a price from possible prices. Therefore we will consider the response
functions F : X×Y ⇒ U ⊂ X and f : X×Y ⇒ V ⊂ Y be multivalued maps and a market
equilibrium will be the pair (x, y), such that x ∈ F(x, y) and y ∈ f (x, y).

Now we can restate Theorem 1 in terms of oligopoly.

Theorem 2. Let us assume that two companies are offering products that are perfect substitutes.
The first one can produce qualities from the set X and the second firm can produce qualities from
the set Y, where X and Y be nonempty subsets of a partially ordered complete metric space (Z, ρ)
and x̄ ∈ X, ȳ ∈ Y. Consider F : X × Y ⇒ X and G : X × Y ⇒ Y to be the response function of
players one and two, respectively. Let F and G satisfy all the conditions in Theorem 1.

Then there exists at least one market equilibrium point (x, y) ∈ Br(x̄)× Br(ȳ), which is a
coupled fixed point for the ordered pair of response functions (F, G).

Example 3: Let us consider in Example 1 two firms, producing one commodity, which
is a perfect substitute. Let us put α = 10, β = 30, γ = 50, δ = 80 and η = 100 in Example
1. We may consider the interval [0, η] as the set of the total production. Let the first firm
be a smaller one and its production set is [0, δ] and the second one be a larger firm with a
production set [α, η]. Let n = 1 and m = 1/2. Then for any initial start [x, y] in the market
the first firm chooses a production from the set[

y
9
+

260
9

,
10
81

x +
3250

81

]
,

and the second firm from the set[
10 2
√

y + 1 + 30 2
√

101− 40 2
√

11
2
√

101− 2
√

11
,

10
9

2
√

x + 1 + 40

]
,

and
S11 = e(F(x, y) ∩ Br(x), F(u, v)) + e(G(z, w) ∩ Br(y), G(t, s))

≤ 10
81 |x− u|+ 1

9 |y− v|+ 5
9 |z− t|+ γ|w− s|,

where γ = 5√
101−

√
11

< 5
6 . From max

{
10
81 + 5

9 , 1
9 + 5

6

}
= max

{
55
81 , 17

18

}
= 17

18 < 1 it follows
that the pair of response functions satisfies Theorem 2 and consequently there exists an
equilibrium pair of productions (x, y), such that x ∈ F(x, y) and y ∈ G(x, y).

Example 4. Let us consider a model of a duopoly with two players, producing
one good, which is a complete substitute, and let they compete on qualities and prices
simultaneously. Let us choose in Example 2, α1 = 10, β1 = 30, γ1 = 40, δ1 = 60, η1 = 100,
α2 = 1, β2 = 3, γ2 = 4, δ2 = 5, η2 = 8 n1 = 1, n2 = 1/2, m1 = 1/2, m2 = 1/4. Let us
consider the sets Xi = [0, δi], Yi = [αi, ηi] for i = 1, 2 and let X = X1 × X2, Y = Y1 × Y2
and the multivalued maps F : X × Y ⇒ X and G : X × Y ⇒ Y from Example 2, which
are the response functions of the two players, respectively, where the first coordinates are
the response on the qualities and the second coordinate is the response on the price. Let
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us endow R2 with the metrics ρ((x, y), (u, v)) =
(∣∣∣ x−u

θ1

∣∣∣p + ∣∣∣ y−v
θ2

∣∣∣p)1/p
, p ∈ (1,+∞) from

Example 2.
We get that

S12 = e(F(x, y), F(u, v)) + e(G(z, w), G(t, s))
≤ 0.2ρ(x, u) + 0.4ρ(y, v) + 0.2ρ(z, t) + 0.4ρ(w, s).

From the inequality max{0.2 + 0.2, 0.4 + 0.4} < 1 it follows that we can apply
Theorem 2. Consequently there exists an equilibrium pair of productions and prices
((x, p), (y, q)), such that (x, p) ∈ F((x, p), (y, q)) and (y, q) ∈ G((x, p), (y, q)).The actual
values of α, β, γ and δ are smaller.

4.3. Example for the Existence of an Equilibrium in Ecology

Despite the long history of aquatic ecosystems contamination and numerous extensive
research undertaken, there are still open questions that remain to be explored. Revealing
the relationship between the pollutant, pathway (water) and biota will help water bodies
assessment and management. Heavy metals and other contaminants can bioaccumulate
in aquatic organisms depending on their bioavailability and concentration in the water
media. Among the most applied biomonitors for evaluating sources and releases of
contaminants are aquatic bryophytes. Many studies reported a positive correlation between
contaminants in aqueous environment and in mosses, for example for Cu [26]. Nevertheless,
numerous research have reported that aquatic mosses often accumulate toxic elements in
concentrations much higher than those reached in their ambient water media [27] or even
when the contaminant in water samples is below the LOD [28].

Now we can restate Theorem 1 in terms of ecology.

Theorem 3. Let us assume that in an aquatic ecosystem there is one pollutant and a kind of aquatic
organisms that accumulate the pollutant. The pollutant can have qualities from the set Y and the
aquatic organisms can accumulate qualities from the pollutant from the set X, where X and Y be
nonempty subsets of a partially ordered complete metric space (Z, ρ) and x̄ ∈ X, ȳ ∈ Y. Consider
F : X×Y ⇒ X and G : X×Y ⇒ Y to be the response function of the aquatic organisms and the
pollutant, respectively. Let F and G satisfy all the conditions in Theorem 1.

Then there exists at least one point (x, y) ∈ Br(x̄)× Br(ȳ), which is a generalized coupled
fixed point for the ordered pair of response functions (F, G).

Example 5. Let us consider in Example 1 two media (water and biota), the first one
of which is an aquatic ecosystem (e.g. river water), which is polluted continuously and
the second one is a bryophyte species that accumulates the contaminant. Let the pollution
be from the set Y = [α, η] and the accumulated substance in the bryophyte be from the set
X = [0, δ]. Let us consider Example 1 with α = 1, β = 3, γ = 7, δ = 8, η = 10, n = 3/4 and
m = 4/5. If the pollution is y and the accumulated substance in the bryophyte is estimated
as x, then, due to the new inflow of pollution and the accumulation of the substance in the
bryophyte, which are also reproduced, the pollution and the accumulation change in time
to be the multivalued maps

F ⇒ [g(y), f (x)] for all (x, y) ∈ X×Y

and
G ⇒ [ψ(y), ϕ(x)] for all (x, y) ∈ X×Y,

respectively, where

f (x) =
2

4√93
4
√
(x + 1)3 + 5, g(y) =

2
4√113 − 4√23

4
√
(y + 1)3 + 3− 2 4√23

4√113 − 4√23
.



Axioms 2021, 10, 44 14 of 15

and

ϕ(x) =
2

5√94
4
√
(x + 1)5 + 5, ψ(y) =

2
5√114 − 5√24

5
√
(y + 1)4 + 3− 2 5√24

5√114 − 5√24
.

From Example 1 we get the inequality

S13 = e(F(x, y), F(u, v)) + e(G(z, w), G(t, s))
≤ 0.3ρ(x, u) + 0.4ρ(y, v) + 0.3ρ(z, t) + 0.4ρ(w, s).

and consequently there exists an equilibrium pair of (x, y), such that x ∈ F(x, y) and
y ∈ G(x, y). The actual values of α, β, γ and δ are smaller.
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