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Abstract

:

For a regularly converging-in- C  series   A  ( z )  =  ∑  n = 1  ∞   a n  f  (  λ n  z )  ,   where f is an entire transcendental function, the asymptotic behavior of the function    M f  − 1    (  M A   ( r )  )  ,   where    M f   ( r )  = max  { | f  ( z )  | : | z | = r }   , is investigated. It is proven that, under certain conditions on the functions f,  α , and the coefficients   a n  , the equality    lim  r → + ∞     α (  M f  − 1    (  M A   ( r )  )  )   α ( r )   = 1   is correct. A similar result is obtained for the Laplace–Stiltjes-type integral   I  ( r )  =  ∫ 0 ∞  a  ( x )  f  ( r x )  d F  ( x )  .   Unresolved problems are formulated.
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1. Introduction


Let


  f  ( z )  =  ∑  k = 0  ∞   f k   z k   



(1)




be an entire function,    M f   ( r )  = max  { | f  ( z )  | :  | z | = r }   , and    Φ f   ( r )  = ln  M f   ( r )   . For an entire function g with Taylor coefficients   g n  , the study of growth of the function    Φ f  − 1    ( ln  M g   ( r )  )    in terms of the exponential type was initiated in papers [1,2] and was continued in [3]. As a result, it is proven that, if    |   f  k − 1   /  f k   | ↗ + ∞    as   k → ∞  , then


    lim ¯   r → + ∞      Φ f  − 1    ( ln  M g   ( r )  )   r  =   lim ¯   k → ∞        |   g n   |     |   f n   |      1 / n   .  











We remark that    Φ f  − 1    ( x )  =  M f  − 1    (  e x  )    and, thus,    Φ f  − 1    ( ln  M g   ( r )  )  =  M f  − 1    (  M g   ( r )  )   . The order   ρ   [ g ]  g  =   lim ¯   r → + ∞     ln  M f  − 1    (  M g   ( r )  )    ln r     and the lower-order   λ   [ g ]  f  =   lim ̲   r → + ∞     ln  M f  − 1    (  M g   ( r )  )    ln r     of the function f with respect to the function g are used in Reference [4]. Research on the relative growth of entire functions was continued by many mathematicians (an incomplete bibliography is given in [5]).



Let   (  λ n  )   be a sequence of positive numbers increasing to   + ∞  . Suppose that the series


  A  ( z )  =  ∑  n = 1  ∞   a n  f  (  λ n  z )   



(2)




in the system   f (  λ n  z )   is regularly convergent in  C , i.e.,    ∑  n = 1  ∞   |  a n  |   M f   ( r  λ n  )  < + ∞   for all   r ∈ [ 0 , + ∞ )  . Many authors have studied the representation of analytic functions by series in the system   f (  λ n  z )   and the growth of such functions. Here, we specify only the monographs of A.F. Leont’ev [6] and B.V. Vinnitskyi [3], which are references to other papers on this topic.



Since series (2) is regularly convergent in  C  and the function A is an entire function, a natural question arises about the asymptotic behavior of the function    M f  − 1    (  M A   ( r )  )  .  



We suppose that the function F is nonnegative, nondecreasing, unbounded, and continuous on the right on   [ 0 , + ∞ ) ;   that f is positive, increasing, and continuous on   [ 0 , + ∞ )  ; and that a positive-on-  [ 0 , + ∞ )   function a is such that the Laplace–Stietjes-type integral


  I  ( r )  =  ∫ 0 ∞  a  ( x )  f  ( r x )  d F  ( x )   



(3)




exists for every   r ∈ [ 0 , + ∞ )  . The asymptotic behavior of such integrals in the case   f  ( x )  =  e x    is studied in the monograph [7]. A question arises again about the asymptotic behavior of the function    f  − 1    ( I  ( r )  )   . Here, we present some results that indicate the possibility of solving these problems.




2. Relative Growth of Series in Systems of Functions


As in [8], by L, we denote a class of continuous nonnegative-on-  ( − ∞ , + ∞ )   functions  α  such that   α  ( x )  = α  (  x 0  )  ≥ 0   for   x ≤  x 0    and   α ( x ) ↑ + ∞   as    x 0  ≤ x → + ∞  . We say that   α ∈  L 0  ,   if   α ∈ L   and   α ( ( 1 + o ( 1 ) ) x ) = ( 1 + o ( 1 ) ) α ( x )   as   x → + ∞  . Finally,   α ∈  L  s i   ,   if   α ∈ L   and   α ( c x ) = ( 1 + o ( 1 ) ) α ( x )   as   x → + ∞   for each   c ∈ ( 0 , + ∞ ) ,   i.e.,  α  is a slowly increasing function. Clearly,    L  s i   ⊂  L 0   . We need the following lemma [9].



Lemma 1.

If   β ∈ L   and   B  ( δ )  =   lim ¯   x → + ∞     β ( ( 1 + δ ) x )   β ( x )   ,     δ > 0 ,   then in order for   β ∈  L 0  ,   it is necessary and sufficient that   B ( δ ) → 1   as   δ → + 0  .





We need also some well-known (see, for example, [10]) properties of the function   ln  M f   ( r )   .



Lemma 2.

If a function f is transcendental, then the function   ln  M f   ( r )    is logarithmically convex and, thus,


    Γ f   ( r )  : =   d ln  M f   ( r )    d ln r   ↗ + ∞ ,   r → + ∞ ,   








(at the points where the derivative does not exist, where    d ln  M f   ( r )    d ln r    means the right-hand derivative).





For   α ∈ L ,    β ∈ L  , and entire functions f and g, we define the generalized   ( α , β )  -order    ρ  α , β     [ g ]  f    and the generalized lower   ( α , β )  -order    λ  α , β     [ g ]  f    of g with respect to f as follows:


   ρ  α , β     [ g ]  f  =   lim ¯   r → + ∞     α (  M f  − 1    (  M g   ( r )  )  )   β ( r )   ,    λ  α , β     [ g ]  f  =   lim ̲   r → + ∞     α (  M f  − 1    (  M g   ( r )  )  )   β ( r )   .  











Suppose that    a n  ≥ 0   for all   n ≥ 1  . Since


  A  ( z )  =  ∑  n = 1  ∞   a n   ∑  k = 0  ∞   f k    ( z  λ n  )  k  =  ∑  k = 0  ∞   f k    ∑  n = 1  ∞   a n   λ n k    z k  ,  








in view of the Cauchy inequality, we have


   M A   ( r )  ≥  |  f k  |    ∑  n = 1  ∞   a n   λ n k    r k  ≥  a n   |  f k  |    (  λ n  r )  k   



(4)




for all   n ≥ 1 ,    k ≥ 0   and   r ∈ [ 0 , + ∞ )  . We also remark that, if    μ f   ( r )  =  max { |  f k  |   r k  : k ≥ 0 }     is the maximal term of series (1), then


   M f   ( r )  ≤  ∑  k = 0  ∞   |   f k   |   r k  =  ∑  k = 0  ∞   |  f k  |    ( 2 r )  k   2  − k   ≤ 2  μ f   ( 2 r )  .  



(5)







We choose    n 0  ≥ 1   such that    a  n 0   > 0   and    λ  n 0   ≥ 2  . Then, from (4) and (5), we get


   M A    ( r )  ≥ max {   a  n 0   |  f k  |    (  λ  n 0   r )  k  :  k ≥ 0 }  ≥  a  n 0    μ f   ( 2 r )  ≥   a  n 0   2   M f   ( r )  ,  








where    M f  − 1     2  d  n 0     M A   ( r )   ≥ r  . By Lemma 2,     d ln  M f  − 1    ( x )    d ln x   ↘ 0   as   x → + ∞   and, thus, for every   c > 1  


  ln  M f  − 1    ( c x )  − ln  M f  − 1    ( x )  =  ∫ x  c x     d ln  M f  − 1    ( t )    d ln t   d ln t ≤   d ln  M f  − 1    ( x )    d ln x   → 0 ,  x → + ∞ ,  








i.e., the function   M f  − 1    is slowly increasing. Therefore,


   M f  − 1    (  M A   ( r )  )  ≥  ( 1 + o  ( 1 )  )  r ,  r → + ∞ .  



(6)







On the other hand, since series (2) is regularly convergent in  C , for each   r ∈ [ 0 , + ∞ )  , there exists    μ A   ( r )  =  max { | a n |   M f   ( r  λ n  )   : n ≥ 1 }    and, for every   r ∈ [ 0 , + ∞ )   and   τ > 0  , we have


   M A   ( r )  ≤  ∑  n = 1  ∞   |  a n  |   M f   ( r  λ n  )  ≤  μ F   (  ( 1 + τ )  r )   ∑  n = 1  ∞     M f   ( r  λ n  )     M f   (  ( 1 + τ )  r  λ n  )    .  



(7)







Then, by Lemma 2, for   r ≥ 1  , we have


     ln  M f   (  ( 1 + τ )  r  λ n  )  − ln  M f   ( r  λ n  )  =  ∫  r  λ n     ( 1 + τ )  r  λ n      d ln  M f   ( x )    d ln x   d ln x  =   ∫  r  λ n     ( 1 + τ )  r  λ n     Γ f   ( x )  d ln x  ≥        ≥  Γ f   ( r  λ n  )  ln  ( 1 + τ )  ≥  Γ f   (  λ n  )  ln  ( 1 + τ )  .     











Therefore, if   ln n ≤ q  Γ f   (  λ n  )    for all   n ≥  n 0    and   ln ( 1 + τ ) > q  , then


    ∑  n =  n 0   ∞     M f   ( r  λ n  )     M f   (  ( 1 + τ )  r  λ n  )     ≤   ∑  n =  n 0   ∞   exp  { −  Γ f   (  λ n  )  ln  ( 1 + τ )  }   ≤   ∑  n =  n 0   ∞   exp  −   ln ( 1 + τ )  q  ln n   <  +  ∞   








and (7) implies, for   r ≥ 1  ,


   M A   ( r )  ≤ T  μ A   (  ( 1 + τ )  r )  ,  T = const > 0 .  



(8)







Additionally, we have


      μ A   ( r )  ≤ max   |   a n   |   ∑  k = 0  ∞   |  f k  |    ( r  λ n  )  k  :  n ≥ 1  ≤       ≤  ∑  k = 0  ∞   max {   |  a n  |   λ n k  :  n ≥  1 } |  f k  |  r k   =  ∑  k = 0  ∞   μ D   ( k )   |  f k  |   r k  ,     



(9)




where    μ D   ( σ )  =  max { |   a n   | exp  { σ ln  λ n  }  :  n ≥ 1 }    is the maximal term of Dirichlet series


  D  ( σ )  =  ∑  n = 1  ∞   |  a n  |  exp  { σ ln  λ n  }  .  











Using estimates (6), (8), and (9), we prove the following theorem.



Theorem 1.

Let f be an entire transcendental function,    a n  ≥ 0   for all   n ≥ 1  , and series (2) be regularly convergent in  C . Suppose that   ln n ≤ q  Γ f   (  λ n  )    for some   q > 0   and all   n ≥  n 0    and that     lim ¯   σ → + ∞     ln  μ D   ( σ )    σ ln  M f  − 1    (  e σ  )    = γ .  



If   γ < 1  , then    λ  α , α     [ F ]  f  =  ρ  α , α     [ F ]  f  = 1   for every function α such that   α  (  e x  )  ∈  L  s i    . If   γ = 0  , then    λ  α , α     [ F ]  f  =  ρ  α , α     [ F ]  f  = 1   for every function α such that   α  (  e x  )  ∈  L 0   .





Proof. 

Since   α ∈  L 0  ,   from (6), we get


   λ  α , α     [ F ]  f  =   lim ̲   r → + ∞     α (  M f  − 1    (  M F   ( r )  )  )   α ( r )   ≥   lim ̲   r → + ∞     α ( ( 1 + o ( 1 ) ) r )   α ( r )   = 1 .  











On the other hand, in view of the Cauchy inequality, we have    ln |   f k   | ≤ ln   M f   ( r )  − k ln r   for all r and k. We choose   r =  r k  =  M f  − 1    (  e k  )  .   Then,    ln |   f k   | ≤ k − k ln   M f  − 1    (  e k  )   , i.e.,    − ln |   f k   | ≥ k   ( ln  M f  − 1    (  e k  )  − 1 )   . Therefore,


    lim ¯   k → ∞     ln  μ D   ( k )    − ln  f k    ≤   lim ¯   k → ∞     ln  μ D   ( k )    k ( ln  M f  − 1    (  e k  )  − 1 )   ≤   lim ¯   σ → + ∞     ln  μ D   ( σ )    σ ln  M f  − 1    (  e σ  )    = σ .  



(10)







If   γ < 1  , then in view of (10),     ln  μ D   ( k )     − ln |   f k   |    ≤ p   for each   p ∈ ( γ , 1 )   and all   k ≥  k 0    and, thus,    μ D   ( k )  ≤   |  f k  |   − p     for all   k ≥  k 0   . Therefore, in view of (9) and (5),


      μ A   ( r )  ≤   ∑  k = 0    k 0  − 1   +  ∑  k =  k 0   ∞    μ D   ( k )   |  f k  |   r k  ≤ O  (  r   k 0  − 1   )  +  ∑  k =  k 0   ∞    |  f k  |   1 − p    r k  ≤       ≤ O  (  r   k 0  − 1   )  + 2 max  {  f k  1 − p     ( 2 r )  k  :  k ≥ 0 }  =       = O  (  r   k 0  − 1   )  +  2 max { (   |  f k  |    ( 2 r )   k / ( 1 − p )     )  1 − p   :  k ≥ 0 }  =       = O  (  r   k 0  − 1   )  + 2   (  μ f   (   ( 2 r )   1 / ( 1 − p )   )  )   1 − p   ≤  μ f   (   ( 2 r )   1 / ( 1 − p )   )  ,  r ≥  r 0  ,     



(11)




because   ln r = o ( ln  μ f   ( r )  )   as   r → + ∞   for every entire transcendental function f and   1 − p < 1  . Therefore, from (8) and (11), we get


   M A   ( r )  ≤ T  μ A   (  ( 1 + τ )  r )  ≤ T  μ f   (   ( 2  ( 1 + τ )  r )   1 / ( 1 − p )   )  ≤ T  M f   (   ( 2  ( 1 + τ )  r )   1 / ( 1 − p )   )   








and, thus,    M f  − 1    (  M A   ( r )  )  ≤  ( 1 + o  ( 1 )  )    ( 2  ( 1 + τ )  r )   1 / ( 1 − p )     as   r → + ∞  . If   α ∈  L  s i    , then we obtain


    lim ¯   r → + ∞     α (  M f  − 1    (  M A   ( r )  )  )   α (  r  1 / ( 1 − p )   )   ≤ 1 .  



(12)







Suppose that   α  (  e x  )  ∈  L  s i   .   Then,


  α  (  r  1 / ( 1 − p )   )  = α  ( exp   1  1 − p   ln r  )  =  ( 1 + o  ( 1 )  )  α  ( exp  { ln r }  )  =  ( 1 + o  ( 1 )  )  α  ( r )   








as   r → + ∞  . Therefore, (12) implies the inequality    ρ  α , α     [ A ]  f  ≤ 1 ,   where in view of the inequality    λ  α , α     [ A ]  f  ≥ 1  , we get    λ  α , α     [ A ]  f  =  ρ  α , α     [ A ]  f  = 1 .  



If   γ = 0  , then (12) holds for every   p ∈ ( 0 , 1 )   and all   r ≥  r 0   ( p )   . If we put    1  1 − p   = 1 + δ  , then   δ → + 0   as   p → + 0  , and in view of the condition   α  (  e x  )  ∈  L 0   , by Lemma 1, we have


    lim ¯   r → + ∞     α (  r  1 / ( 1 − p )   )   α ( r )   =   lim ¯   r → + ∞     α ( exp { ( 1 + δ ) ln r } )   α ( exp { ln r } )   = B  ( δ )  → 1 ,  δ → 1 .  











Therefore,


     1 ≥   lim ¯   r → + ∞     α (  M f  − 1    (  M A   ( r )  )  )   α (  r  1 / ( 1 − p )   )   =   lim ¯   r → + ∞      α (  M f  − 1    (  M A   ( r )  )  )   α ( r )   ·   α ( r )   α (  r  1 + δ   )    ≥       ≥   lim ¯   r → + ∞     α (  M f  − 1    (  M A   ( r )  )  )   α ( r )     lim ̲   r → + ∞     α ( r )   α (  r  1 + δ   )   =    ρ  α , α     [ F ]  f    B ( δ )   .     











In view of the arbitrariness of  δ , we get    ρ  α , α     [ A ]  f  ≤ 1  , and again,    λ  α , α     [ A ]  f  =  ρ  α , α     [ A ]  f  = 1  . Theorem 1 is proven. □





We remark that, if    f k  ≥ 0   for all   k ≥ 0  , then    M f   ( r )  = f  ( r )   . Therefore, from Theorem 1, we obtain the following statement.



Corollary 1.

Let f be an entire transcendental function,    f k  ≥ 0   for all   k ≥ 0 ,     a n  ≥ 0   for all   n ≥ 1  , and series (2) be regularly convergent in  C . Suppose that    f ′   ( r )  / f  ( r )  ≥ h > 0   for all   r ≥  r 0  ,    ln n = O (  λ n  )   as   n → ∞   and     lim ¯   σ → + ∞     ln  μ D   ( σ )    σ ln  f  − 1    (  e σ  )    = γ .  



If   γ < 1  , then    λ  α , α     [ A ]  f  =  ρ  α , α    [ A ]  f = 1   for every function α such that   α  (  e x  )  ∈  L  s i    .



If   γ = 0  , then    λ  α , α     [ A ]  f  =  ρ  α , α     [ A ]  f  = 1   for every function α such that   α  (  e x  )  ∈  L 0   .






3. Relative Growth of Laplace–Stieltjes-Type Integrals


Suppose again that f is an entire transcendental function,    f k  ≥ 0   for all   k ≥ 0  , and    x 0  > 1   is such that    ∫ 1  x 0   a  ( x )  d F  ( x )  ≥ > 0 .   Then,


  I  ( r )  ≥  ∫ 1  x 0   a  ( x )  f  ( r x )  d F  ( x )  ≥ f  ( r )  c ,  








i.e., as above,    f  − 1    ( I  ( r )  )  ≥  ( 1 + o  ( 1 )  )  r   as   r → + ∞ ,   where for   α ∈  L 0   ,


   λ  α , α     [ I ]  f  =   lim ̲   r → + ∞     α (  f  − 1    ( I  ( r )  )  )   α ( r )   ≥ 1 .  











On the other hand, if   τ ≥ e − 1  , then as above, for   r ≥ 1  , we have


     ln f  (  ( 1 + τ )  r x )  − ln f  ( r x )  =  ∫  r x   ( 1 + τ ) r x     d ln f ( x )   d ln x   d ln x =  ∫  r x   ( 1 + τ ) r x    Γ f   ( x )  d ln x ≥       ≥  Γ f   ( x )  ln  ( 1 + x )  ,     








i.e.,     f ( r x )   f ( ( 1 + τ ) r x )   ≤  e  −  Γ f   ( x )  ln  ( 1 + τ )    .   Therefore, if    μ I   ( r )  = max  { a  ( x )  f  ( r x )  :  x ≥ 0 }    is the maximum of the integrand and   ln F  ( x )  ≤ q  Γ f   ( x )    for some   q > 0   and all   x ≥  x 0   , then for   ln ( 1 + τ ) > q   (for simplicity assuming    x 0  = 0  ), we get


     I  ( r )   =   ∫ 0 ∞  a  ( x )  f  (  ( 1 + τ )  r x )    f ( r x )   f ( ( 1 + τ ) r x )   d F  ( x )   ≤   μ I   (  ( 1 + τ )  r )   ∫ 0 ∞    f ( r x )   f ( ( 1 + τ ) r x )   d F  ( x )   ≤       ≤  μ I   (  ( 1 + τ )  r )   ∫ 0 ∞   e  −  Γ f   ( x )  ln  ( 1 + τ )     d F ( x ) ≤        ≤  μ I   (  ( 1 + τ )  r )  ln  ( 1 + τ )   ∫ 0 ∞   e  −  Γ f   ( x )  ln  ( 1 + τ )  + ln F  ( x )    d  Γ f   ( x )  ≤       ≤  μ I   (  ( 1 + τ )  r )  ln  ( 1 + τ )   ∫ 0 ∞   e  −  Γ f   ( x )   ( ln  ( 1 + τ )  − q )    d  Γ f   ( x )  =  μ I   (  ( 1 + τ )  r )    ln ( 1 + τ )   ln ( 1 + τ ) − q   =       = T  μ I   (  ( 1 + τ )  r )  .     



(13)







Additionally, as above, we have


      μ I   ( r )  = max  a  ( x )   ∑  k = 0  ∞   f k    ( x r )  k  :  x ≥ 0  ≤       ≤  ∑  k = 0  ∞  max  { a  ( x )   x k  :  x ≥ 0 }   f k   r k  =  ∑  k = 0  ∞   μ J   ( k )   f k   r k  ,     



(14)




where    μ J   ( σ )  = max  { a  ( x )   e  σ ln x   : x ≥ 0 }  = max  { a  ( x )   x  ln x   : x ≥ 0 }    is the maximum of the integrand for the Laplace integral


  J  ( σ )  =  ∫ 0 ∞  a  ( x )   e  σ ln x   d F  ( x )  .  











Using estimates (13) and (14), and    λ  α , α     [ I ]  f  ≥ 1  , we prove the following analog of Theorem 1.



Theorem 2.

Let   ln F  ( x )  ≤ q  Γ f   ( x )    for some   q > 0   and all   x ≥  x 0   , and     lim ¯   σ → + ∞     ln  μ J   ( σ )    γ ln  f  − 1    (  e σ  )    = γ .  



If   γ < 1  , then    λ  α , α     [ I ]  f  =  ρ  α , α     [ I ]  f  = 1   for every function α such that   α  (  e x  )  ∈  L  s i    .



If   γ = 0  , then    λ  α , α     [ I ]  f  =  ρ  α , α     [ I ]  f  = 1   for every function α such that   α  (  e x  )  ∈  L 0  .  





Proof. 

As in the proof of Theorem 1, we obtain    − ln |   f k   | ≥ k   ( ln  f  − 1    (  e k  )  − 1 )    and     lim ¯   k → ∞     ln  μ J   ( k )    − ln  f k    ≤ γ .   Therefore, if   γ < 1  , then    μ D   ( k )  ≤   |  f k  |   − p     for each   p ∈ ( γ , 1 )   and all   k ≥  k 0   , and in view of (14) and (5), as in the proof of Theorem 1, we get    μ I   ( r )  ≤  μ f   (   ( 2 r )   1 / ( 1 − p )   )    for   r ≥  r 0  .   Therefore, in view of (13), we get


  I  ( r )  ≤ T  μ I   (  ( 1 + τ )  r )  ≤ T f  (   ( 2  ( 1 + τ )  r )   1 / ( 1 − p )   )  ,  








where    f  − 1    ( I  ( r )  )  ≤  ( 1 + o  ( 1 )  )    ( 2  ( 1 + τ )  r )   1 / ( 1 − p )     as   r → + ∞  . If   α ∈  L  s i    , then we obtain


    lim ̲   r → + ∞     α (  f  − 1    ( I  ( r )  )  )   α (  r  1 / ( 1 − p )   )   ≤ 1 .  











Further proof of Theorem 2 is the same as that of Theorem 1. □





Theorem 2 implies the following statement.



Corollary 2.

Let    f ′   ( x )  / f  ( x )  ≥ h ,    h > 0 ,     ln F ( x ) ≤ q x   for some   q > 0   and all   x ≥ 0 ,   and     lim ¯   r → + ∞     ln  μ J   ( σ )    σ  f  − 1    (  e σ  )    = γ .  



If   γ < 1  , then    λ  α , α     [ I ]  f  =  ρ  α , α     [ I ]  f  = 1   for every function α such that   α  (  e x  )  ∈  L  s i   .  



If   γ = 0  , then    λ  α , α     [ I ]  f  =  ρ  α , α     [ I ]  f  = 1   for every function α such that   α  (  e x  )  ∈  L 0   .






4. Examples


Here, we consider the case when   f  ( z )  =  E ρ   ( z )  ,   where


   E ρ   ( z )  =  ∑  k = 0  ∞    z k   Γ ( 1 +  k ρ  )   ,  0 < ρ < + ∞ ,  








is the Mittag–Leffler function. The properties of this function have been used in many problems in the theory of entire functions. We only need the following property of the Mittag–Leffler function: if   0 < ρ < + ∞  , then ([11] p. 85)


   M  E ρ    ( r )  =  E ρ   ( r )  =  ( 1 + o  ( 1 )  )  ρ  e  r ρ   ,  r → + ∞  



(15)




and, if   1 / 2 < ρ < + ∞  , then [12]


   E ρ ′   ( r )  /  E ρ   ( r )  = ρ  r  ρ − 1   + O  (  r  ρ − 2    e  −  r ρ    )  ,   r → + ∞ .  



(16)







From (15), it follows that    E  ρ   − 1    ( x )  =  ( 1 + o  ( 1 )  )   ln  1 / ρ   x   as   x → + ∞  . Therefore, for   f  ( x )  =  E ρ   ( x )   , we have   σ ln  f  − 1    (  e σ  )  =   1 + o ( 1 )  ρ  σ ln σ   as   σ → + ∞  . Since in (16),    Γ  E ρ    ( r )  = ρ  r ρ  + o  ( 1 )    as   r → + ∞ ,   then if   ln F  ( x )  ≤ q ρ  x ρ    for some   q > 0   and all   x ≥  x 0   , and


    lim ¯   σ → + ∞     ln  μ J   ( σ )    σ ln σ   = 0 ,  



(17)




then for   α ( x ) = ln x    ( x ≥ e )  , by Theorem 2, we get


   lim  r → + ∞     ln  E ρ  − 1    (  I ρ   ( r )  )    ln r   = 1 ,    I ρ   ( r )  =  ∫ 0 ∞  a  ( x )   E ρ   ( r x )  d F  ( x )  .  



(18)







Let us now find out under what conditions (17) holds on   a ( x )  . For this, as in ([7] p. 29), by  Ω , we denote a class of positive unbounded functions  Φ  on   ( − ∞ , + ∞ )   such that the derivative   Φ 0   is positive, continuously differentiable, and increasing to   + ∞   on   ( − ∞ , + ∞ ) .   For   Φ ∈ Ω  , let  φ  be the inverse function to   Φ ′   and   Ψ  ( σ )  = σ −   Φ ( σ )    Φ ′   ( σ )      be the function associated with  Φ  in the sense of Newton.



By Theorem 2.2.1 from ([7] p. 30),   ln max { a  ( x )   e  σ x   : x ≥ 0 } ≤ Φ  ( σ )  ∈ Ω   for all   σ ≥  σ 0    if and only if   ln a ( x ) ≤ − x Ψ ( φ ( x ) )   for all   x ≥  x 0   . Choosing   Φ ( σ ) = ϵ σ ln σ   for   σ ≥  σ 0  ,   we obtain    Φ ′   ( σ )  = ϵ  ( ln σ + 1 )  ,    φ ( x ) = exp { x / ϵ − 1 }   and   x Ψ ( φ ( x ) ) = x φ ( x ) − Φ ( φ ( x ) ) = ϵ exp { x / ϵ − 1 }   for   x ≥  x 0   . Therefore,   ln  μ J   ( σ )  ≤ ε σ ln σ   for all   σ ≥  σ 0    if and only if   ln a ( x ) ≤ − ε exp { ln x / ε − 1 }   for   x ≥  x 0   . Hence, it follows that, if   ln x = o ( ln ln ( 1 / a ( x ) ) )   as   x → + ∞  , then (17) holds. Thus, the following statement is true.



Proposition 1.

If   ρ > 1 / 2 ,    ln F  ( x )  = O  (  x ρ  )    and   ln x = o ( ln ln ( 1 / a ( x ) ) )   as   x → + ∞  , then (18) holds.





Remark 1.

If   ρ = 1  , then    E ρ   ( r )  =  E 1   ( r )  =  e r   , and we have a usual Laplace–Stieltjes integral    I 1   ( r )  =  ∫ 0 ∞  a  ( x )   e  r x   d F  ( x )   . Therefore, if   ln F ( x ) = O ( x )   and   ln x = o ( ln ln ( 1 / a ( x ) ) )   as   x → + ∞  , then    p R   [  I 1  ]  : =  lim  r → + ∞     ln ln  I 1   ( r )    ln r   = 1  . On the other hand, the quantity    p R   [  I 1  ]    is called the logarithmic R-order of   I 1  , and in ([7] p. 83), it is proven that, if   ln F ( x ) = O ( x )   as   x → + ∞  , then    p R   [  I 1  ]  =   lim ¯   x → + ∞     ln x   ln (  1 x  ln  1  a ( x )   )   = 1 ,   i.e., if   ln F ( x ) = O ( x )   and   ln x = o ( ln ln ( 1 / a ( x ) ) )   as   x → + ∞  , then    p R   [  I 1  ]  = 1 .  





Similarly, we can prove the following statement.



Proposition 2.

Let   ρ ≥ 1 / 2  ,   ln n = O (  λ n ρ  )   as   n → ∞ ,      a n  ≥ 0   for all   n ≥ 1   and series    A ρ   ( z )  =  ∑  n = 1  ∞   a n   E ρ   (  λ n  z )    be regularly convergent in  C . If   ln n = o ( ln ln  ( 1 /  a n  )  )   as   n → ∞  , then    lim  r → + ∞     ln  E ρ  − 1    (  M  A ρ    ( r )  )    ln r   = 1 .  





Remark 2.

If   ρ = 1  , then we have a Dirichlet series    A 1   ( z )  =  ∑  n = 1  ∞   a n   e   λ n  z    . Therefore, if this Dirichlet series is absolutely convergent in  C ,    a n  ≥ 0   for all   n ≥ 1  ,   ln n = O (  λ n  )  , and   ln n = o ( ln ln  ( 1 /  a n  )  )   as   n → ∞  , then    p R   [  A 1  ]  : =  lim  r → + ∞     ln ln  M  A 1    ( r )    ln r   = 1  . On the other hand, the quantity    p R   [  A 1  ]    is called the logarithmic R-order of   A 1   and    p R   [  A 1  ]  =   lim ¯   n → + ∞     ln  λ n    ln (  1  λ n   ln  1  a n   )   = 1   provided   ln n = O (  λ n  )   as   n → ∞   [13], i.e., if   ln n = O (  λ n  )   and   ln  λ n  = o  ( ln ln  ( 1 /  a n  )  )    as   n → ∞  , then    p R   [  A 1  ]  = 1 .  






5. Discussion Open Problems


1. The natural problem studied was the relative growth when the domain of regular convergence of series (2) is the disk    D R  =  { z :  | z | < R < + ∞ }    and the function f is either entire or analytic in   D R  .



2. It is well known that the study of the growth of entire functions of many complex variables involves many options. The following problem is the simplest.



Let f be an entire function and the series   A  ( z , w )  =  ∑  m = 1 , n = 1  ∞   a  m , n   f  (  λ m  z +  μ n  w )    be regularly convergent in   C 2  . A question arises about the asymptotic behavior of the function    M f  − 1    (  M A   ( r , ρ )  )   , where    M A   ( r , ρ )  = max  { | A  ( z , w )  | : | z | ≤ r , | w | ≤ ρ }   .



3. The condition   ρ ≥ 1 / 2   in Propositions 1 and 2 arose in connection to the application of Equation (16). Probably, it is superfluous in the above statements.
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