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Abstract: It is well known that Zermelo-Fraenkel Set Theory (ZF), despite its usefulness as a founda-
tional theory for mathematics, has two unwanted features: it cannot be written down explicitly due
to its infinitely many axioms, and it has a countable model due to the Löwenheim–Skolem theorem.
This paper presents the axioms one has to accept to get rid of these two features. For that matter,
some twenty axioms are formulated in a non-classical first-order language with countably many
constants: to this collection of axioms is associated a universe of discourse consisting of a class of
objects, each of which is a set, and a class of arrows, each of which is a function. The axioms of ZF are
derived from this finite axiom schema, and it is shown that it does not have a countable model—if it
has a model at all, that is. Furthermore, the axioms of category theory are proven to hold: the present
universe may therefore serve as an ontological basis for category theory. However, it has not been
investigated whether any of the soundness and completeness properties hold for the present theory:
the inevitable conclusion is therefore that only further research can establish whether the present
results indeed constitute an advancement in the foundations of mathematics.
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1. Introduction
1.1. Motivation

Zermelo–Fraenkel set theory, which emerged from the axiomatic set theory proposed
by Zermelo in [1] by implementing improvements suggested independently by Skolem and
Fraenkel, is without a doubt the most widely accepted foundational theory for mathematics.
However, it has two features that we may call “unwanted” or “pathological”. Let us, in
accordance with common convention, use ZFC to denote the full theory, ZF for the full
theory minus the axiom of choice (AC), and let us use ZF(C) in statements that are to hold
for both ZF and ZFC; in a sentence, the two pathological features are then the following:

(i) The number of axioms of ZF(C) is infinite, as a result of which ZF(C) cannot be written
down explicitly;

(ii) A corollary of the downward Löwenheim–Skolem theorem [2,3] is that ZF(C) has a
countable model (if it has a model at all), as a result of which we have to swallow that
there is a model of ZF(C) in which the powerset of the natural numbers is countable.

However, let us be more specific, starting with the infinite axiomatization of ZF(C).
One might have the impression that ZF(C) has just eight or nine axioms—that is eight for
ZF and nine for ZFC which includes AC. This impression, however, is false. The crux is
that ZF(C) contains two axiom schemata, which are sometimes colloquially referred to as
“axioms”: each axiom schema consists of infinitely many axioms. The first of these is the
separation axiom schema, usually abbreviated by SEP. A standard formulation of SEP is the
following:

∀X∃Y∀z(z ∈ Y ⇔ z ∈ X ∧Φ) (1)
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This means: for any set X there is a set Y, such that any z is an element of Y if and
only if z is an element of X and Φ is true. With such an axiom, we can construct a subset
Y of X. The fact is, however, that Φ is a metavariable: it is a variable that stands for any
well-formed formula not open in X. So, in fact, we have a separation axiom for every
suitable well-formed formula that we substitute for Φ in Equation (1). For example, if we
substitute “z = ∅” for “Φ” in Equation (1), then we have a separation axiom. The second
axiom schema of ZF(C) is the replacement axiom schema, usually abbreviated by REP. A
standard formulation of REP is the following:

∀x∃!yΦ(x, y)⇒ ∀X∃Y∀y(y ∈ Y ⇔ ∃x ∈ X(Φ(x, y))) (2)

This means: if for every set x there is a unique set y such that the relation Φ(x, y)
is true, then for any set X there is a set Y made up of all the elements y for which there
is an element x in X such that the relation Φ(x, y) is true. Again, Φ is a metavariable but
now it stands for any well-formed functional relation. So, in fact, we have a replacement
axiom for every well-formed functional relation that we substitute for Φ in Equation (2).
For example, if we substitute “y = {x, ∅}” for “Φ(x, y)” in Equation (2), then we have a
replacement axiom. Ergo, ZF(C) is infinitely axiomatized: as a consequence, ZF(C) cannot
ever be written down explicitly—that is our first pathological feature of ZF(C).

Now let us turn to the corollary of the downward Löwenheim–Skolem theorem that if
ZF(C) has a model, it has a countable model—of all people, Zermelo himself considered
this a pathological feature of the theory [4]. This countable model, let us call it “M”, thus
consists of a universe |M|, which is a countable family of sets m1, m2, m3, . . . such that for
every axiom A of ZF(C), its translation A∗ in the language of the model M is valid in M.
That is, we have

|=M A∗ (3)

for the translation A∗ of any axiom A of ZF(C) in the language of M. Elaborating, the
countable universe |M| contains at least the following sets:

(i) The natural numbers 0, 1, 2, . . . defined as sets;

(ii) The countable set of natural numbers N = {0, 1, 2, . . .};
(iii) Countably many subsets S1, S2, S3, . . . of the set N;

(iv) A countable set K that contains the above subsets of N, so K = {S1, S2, S3, . . .}.
Now the powerset axiom of ZF(C), usually abbreviated POW, is the following:

∀X∃Y∀z(z ∈ Y ⇔ z ⊂ X) (4)

This means: for any set X there is a set Y made up of the subsets of X. The set Y is
then usually denoted by Y = P(X). However, in our model M, this translates as: for any
set X in |M| there is a set Y in |M|made up of all the subsets of X in |M|. As a result, we
have

|=M K = P(N) (5)

So, in our model M the powerset of the natural numbers is a countable set. Intuitively
we think that the powerset ofN is uncountable and contains subsets ofN other than the Sj’s
in the universe |M| of the model M. However, the crux is that these “other” subsets of N
are not in |M|. Löwenheim and Skolem have proven that the existence of such a model M is
an inevitable consequence of the standard first-order axiomatization of ZF. This is a famous
result in the foundations of mathematics and one that is completely counterintuitive to
boot. The proof is not constructive, that is, there exists no specification of how the set K can
be constructed, but nevertheless we have to swallow that ZF(C) has a model M in which
a countable set K is the powerset of the natural numbers. This is the second pathological
feature of ZF(C).

The purpose of this paper is to present the axioms one has to accept such that the
axioms of ZF can be derived from the new axioms—we omit a discussion of AC—but such
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that these two pathological features are both removed. The collection of these new axioms
will henceforth be referred to with the symbol T (a Gothic “T”): it is thus the case that T
has a finite number of non-logical axioms of finite length.

1.2. Related Works

While it is emphasized that it is not the purpose of this paper to review every idea ever
published in set theory, it is true that at least one set theory that can be finitely axiomatized
has already been suggested, namely Von Neumann–Gödel–Bernays set theory (NGB). NGB
is provably a mere conservative extension of ZF and as such “it seems to be no stronger
than ZF” [5]. However, NGB shares the second of the two aforementioned unwanted
features with ZF: if it has a model at all, it also has a countable model. In that regard, Von
Neumann has been quoted stating

“At present we can do no more than note that we have one more reason here to entertain
reservations about set theory and that for the time being no way of rehabilitating this
theory is known” [6].

That shows that Von Neumann too considered the countable model a pathological
feature. That being said, a finite theory in the same language as ZF (without extra objects)
and as strong as ZF has already in the 1950s been proved impossible by Montague [7]. This
result is a landmark in the historical development of the foundations of mathematics: even
though it may not be stated anywhere explicitly, it has ever since become accepted that
there is no standard solution to “our” problem identified in the beginning. That is, the
general consensus is that it is impossible to develop a foundational theory for mathematics
in standard first-order language that lacks both pathological features of ZF—all the more
so because the downward Löwenheim–Skolem theorem pertains to standard first-order
theories in general. It is therefore not surprising that this is not an active research field:
those working in the foundations of mathematics are well aware of “our” problem, but
ongoing research in set theory focuses on other topics such as, for example, large cardinals,
forcing, and inner models—see, e.g., [8–10] for some recent works. That being said, the
finitely axiomatized theory T that we present here is a nonstandard solution to “our” problem:
it entails a rather drastic departure from the language, ontology, and logic of ZF. Earlier,
a radical departure was already suggested by Lawvere, who formulated a theory of the
category of sets: here the ∈-relation has been defined in terms of the primitive notions of
category theory, that is, in terms of mappings, domains, and codomains [11]. The present
theory T, however, is more of a “marriage”—for lack of a better term—between set theory
and category theory: the ∈-relation is maintained as an atomic expression, while the notion
of a category is built in as the main structural element. So, regarding the philosophical
position on the status of category theory, here neither Lawvere’s position, that category
theory provides the foundation for mathematics [12], Mayberry’s position, that category
theory requires set theory as a foundation [13], nor Landry’s position, that category theory
provides (all of) the language for mathematics [14], is taken: instead, the present position is
that category theory is incorporated in the foundations.

1.3. Informal Overview of the Main Result

Category theory being incorporated means that the universe of (mathematical) dis-
course is not Cantor’s paradise of sets, but a category:

Definition 1. The universe of discourse is a category C consisting of:

(i) A proper class of objects, each of which is a set;

(ii) A proper class of arrows, each of which is a function.

�
As to the meaning of the term “universe of discourse” in Definition 1, the following

quote from a standard textbook is interesting:
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“Instead of having to say the entities to which the predicates might in principle apply, we
can make things easier for ourselves by collectively calling these entities the universe of
discourse” [15].

So, a theory without a universe of discourse is nothing but a schema of meaningless
strings of symbols, which are its axioms; an inference rule is then nothing but a rule by
which (other) meaningless strings of symbols can be “deduced” from those axioms. Such a
notion of “theory” might be acceptable from the perspective of a formalist, but here the
position is taken that theories c.q. strings of symbols without meaning are not interesting.
So, to the present theory T is associated a Platonic universe of discourse—in case of the
category C of Definition 1—which we can think of as being made up of the things that
satisfy the axioms of T. That does not mean that for every thing in the universe of discourse
a constant needs to be included in the formal language: the vocabulary contains only
countably many constants. However, T has been formulated with an intended model in
mind: its universe is then a “Platonic imitation” of the universe of discourse. Below we
briefly elaborate on the universe of discourse using set-builder notation: strictly speaking
this is not a part of the formal language, but given its status as a widely used tool for the
description of sets it is suitable for an informal introductory exposition that one can hold in
the back of one’s mind.

For starters, the primitive notion of a set is, of course, that it is an object made up of
elements: a thing α being an element of a set S is formalized by an irreducible ∈-relation,
that is, by an atomic expression of the form α ∈ S. The binary predicate “∈” is part of the
language for T: there is no need to express it in the language of category theory, since that
does not yield a simplification. (Hence the language of the present theory is not reduced
to the language of category theory.) In ZF we then have the adage “everything is a set”,
meaning that if we have x ∈ y, then x is a set too. Here, however, that adage remains valid
in this proper class of objects only to the extent that all the objects are sets—the adage does
not hold for all elements of all sets. That is, we will assume that every object of the category
is either the empty set or an object that contains elements, but an element of an object—if
any—can either be the empty set, or again an object made up of elements, or a function: a
function is then not a set. A number of constructive set-theoretical axioms then describe in
terms of the ∈-relation which sets there are at least in this proper class of sets; these axioms
are very simple theorems of ZF that hardly need any elaboration.

As to the notion of a function, in the framework of ZF a function is identified with its
graph. However, as hinted at above, here we reject that set-theoretical reduction. First of
all, functions are objects sui generis. If we use simple symbols like X and Y for sets, then a
composite symbol fX—to be pronounced “f-on-X”—can be used for a function on X: in the
intended model, a function is a thing fX where the “ f ” in “ fX” stands for the graph of the
function and the “X” in “ fX” for its domain. To give an example, let the numbers 0 and 1 be
defined as sets, e.g., by 0 := ∅ and 1 := {∅}, and let, for sets x and y, a two-tuple 〈x, y〉 be
defined as a set, e.g., by 〈x, y〉 := {x, {x, y}}; then the composite symbol {〈0, 1〉, 〈1, 0〉}{0,1}
refers to the function on the set {0, 1} whose graph is the set {〈0, 1〉, 〈1, 0〉}. However, we
have fX 6= Y for any function on any domain X and for any set Y, so

{〈0, 1〉, 〈1, 0〉}{0,1} 6= {〈0, 1〉, 〈1, 0〉} (6)

That is, the function {〈0, 1〉, 〈1, 0〉}{0,1} is not identical to its graph {〈0, 1〉, 〈1, 0〉}—nor,
in fact, to any other set Y. At this point one might be inclined to think that the whole
idea of functions on a set as objects sui generis is superfluous and should be eliminated
in favor of the idea that functions are identified with their graphs (which are sets). That,
however, has already been tried in an earlier stage of this investigation: it turned out to
lead to unsolvable difficulties with the interpretation of the formalism, cf. [16]. The crux
is that the main constructive axiom of the theory—here a constructive axiom is an axiom
that, when certain things are given (e.g., one or two sets or a set and a predicate), states the
existence of a uniquely determined other thing [17]—“produces” things referred to by a
symbol FX : one gets into unsolvable difficulties if one tries to interpret these things as sets.
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However, functions are not completely different than sets. Contrary to a set, a function
in addition has a domain and a codomain—both are sets—and it also does something:
namely, it maps every element in its domain to an element in its codomain. This first
aspect, that a function “has” a domain and a codomain, can be expressed in the language
of category theory: an atomic formula fX : Y � Z expresses that the function fX has
domain Y and codomain Z. In accordance with existing convention, the two-headed arrow
“�” expresses that fX is a surjection: the codomain is always the set of the images of the
elements of the domain under fX . Since such an expression fX : Y � Z is irreducible in the
present framework, it requires some function-theoretical axioms to specify when such an
atomic formula is true and when it is not. For example, for the function {〈0, 1〉, 〈1, 0〉}{0,1}
discussed above we have

{〈0, 1〉, 〈1, 0〉}{0,1} : {0, 1}� {0, 1} (7)

while other expressions {〈0, 1〉, 〈1, 0〉}{0,1} : Y � Z are false. Again, at this point one
might be inclined to think that these expressions fX : Y � Z are superfluous, because the
notation fX already indicates that X is the domain of fX . The crux, however, is that these
expressions are essential to get to a finite axiomatization: we may, then, have the opinion
that it is obvious from the notation fX that X is the domain of fX , but only an expression
fX : X � Z expresses this fact—it is, thus, an axiom of the theory that fX : Y � Z is only
true if Y = X. In particular, this expression is not true if Y  X.

The second aspect, that for any set X any function fX “maps” an element y of its
domain to an element z of its codomain, is expressed by another atomic formula fX : y 7→ z.
In the framework of ZF this is just a notation for 〈y, z〉 ∈ fX , but in the present framework
this is also an irreducible expression: therefore, it requires some more function-theoretical
axioms to specify when such an atomic formula is true and when not. The idea, however,
is this: given a set X and a function fX , precisely one expression fX : y 7→ z is true for each
element y in the domain of fX . For example, we have

{〈0, 1〉, 〈1, 0〉}{0,1} : 0 7→ 1 (8)

{〈0, 1〉, 〈1, 0〉}{0,1} : 1 7→ 0 (9)

for the above function {〈0, 1〉, 〈1, 0〉}{0,1}. Importantly, each function is thus a total function.
However, for any set X, any total function fX with codomain Y, and any set Z for which
X  Z, we may view fX as a partial function on Z. We might express that with a formula
fX : Z 9 Y, which we may define in the language of our theory T by

fX : Z 9 Y ⇔ fX : X � Y ∧ X ⊂ Z (10)

We then have fX : z 7→ y for some y ∈ Y if z ∈ X, and ∀u( fX : z 6 7→ u) if z ∈ Z/X. We
will not use the notion of a partial function to build our theory T, but this shows that we
can still use the notion of a partial function in the framework of T.

All the above can be expressed with a dozen and a half very simple axioms—these
can, in fact, all be reformulated in the framework of ZF. The present axiomatic schema
does, however, contain “new mathematics” in the form of the second axiom of a pair of
constructive, function-theoretical axioms. The first one is again very simple and merely
states that given any two singletons X = {x} and Y = {y}, there exists an “ur-function”
that maps the one element x of X to the one element y of Y. An ur-function is thus a function
with a singleton domain and a singleton codomain. The above function {〈0, 1〉, 〈1, 0〉}{0,1}
is thus not an ur-function but the function referred to by the symbol {〈0, 1〉}{0} is: we have

{〈0, 1〉}{0} : {0}� {1} (11)

{〈0, 1〉}{0} : 0 7→ 1 (12)
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That said, the second of the pair of constructive, function-theoretical axioms is a
new mathematical principle: it states that given any family of ur-functions f{j} indexed
in a set Z, there exists a sum function FZ such that the sum function maps an element
j of Z to the same image as the corresponding ur-function f{j}. The formulation of this
principle requires, however, a new non-classical concept that can be called a “multiple
quantifier”. This new concept can be explained as follows. Suppose we have defined the
natural numbers 0, 1, 2, . . . as sets, suppose the singletons {0}, {1}, {2}, . . . exist as well, and
suppose we also have the set of natural numbers ω = {0, 1, 2, . . .}. We can, then, consider
variables f{0}, f{1}, f{2}, . . . ranging over all ur-functions on a singleton of a natural number
as indicated by the subscript—so, f{0} is a variable that ranges over all ur-functions on
the singleton of 0. In the standard first-order language of ZF, we have the possibility to
quantify over all ur-functions on a singleton {a} by using a quantifier ∀ f{a}, and we have
the possibility to use any finite number of such quantifiers in a sentence. For example, we
can have a formula

∀ f{0}∀ f{1}∀ f{2}Ψ (13)

meaning: for all ur-functions on {0}, for all ur-functions on {1}, and for all ur-functions on
{2}, Ψ. We can then introduce a new notation by the following postulate of meaning:

(∀ f{j})j∈{0,1,2}Ψ⇔ ∀ f{0}∀ f{1}∀ f{2}Ψ (14)

This formula can be read as: for any family of ur-functions indexed in {0, 1, 2}, Ψ.
So (∀ f{i})i∈{0,1,2} is then a multiple quantifier that, in this case, is equivalent to three
quantifiers in standard first-order language. The next step is now that we lift the restriction
that a multiple quantifier has to be equivalent to a finite number of standard quantifiers:
with that step we enter into non-classical territory. In the language of T we can consider a
formula like

(∀ f{i})i∈ω
Ψ (15)

The multiple quantifier is equivalent to a sequence ∀ f{0}∀ f{1}∀ f{2} · · · of infinitely
many standard quantifiers in this case. However, in the present framework the constant ω
in Formula (15) can be replaced by any constant, yielding non-classical multiple quantifiers
equivalent to an uncountably infinite number of standard quantifiers.

To yield meaningful theorems, the subformula Ψ of Formula (15) has to be open in
infinitely many variables f{0}, f{1}, f{2}, . . ., each of which ranges over all ur-functions on
a singleton of a natural number. This is achieved by placing a conjunctive operator

∧
i∈ω

in front of a standard first-order formula Ψ( f{i}) that is open in a composite variable f{i},
yielding an expression ∧

i∈ω
Ψ( f{i}) (16)

Syntactically this is a formula of finite length, but semantically it is the conjunction of a
countably infinite family of formulas Ψ( f{0}), Ψ( f{1}), Ψ( f{2}), . . .. Together with the mul-
tiple quantifier from Formula (15) it yields a sentence (∀ f{i})i∈ω

∧
i∈ωΨ( f{i}): semantically

it contains a bound occurrence of the variables f{0}, f{1}, f{2}, . . .. The non-classical “sum
function axiom” constructed with these formal language elements is so powerful that it
allows one to derive the infinite schemas SEP and REP of ZF from just a finite number
of axioms.

That said, the literature already contains a plethora of so-called infinitary logics; see [18]
for a general overview and [19,20] for an example of some recent work. In the framework
of such an infinitary logic, one typically can form infinitary conjunctions of a collection
Σ of standard first-order formulas indexed by some set S. So, if Σ = {φj | j ∈ S} is
such a collection of formulas, then a formula

∧
Σ stands for ∧j∈Sφj, which resembles

Formula (16). That way, one can, for example, form the conjunction of all the formulas of
the SEP schema of ZF: that yields a finite axiomatization of set theory. However, such an
infinitary conjunction cannot be written down explicitly: the string of symbols “∧j∈Sφj”
is an informal abbreviation that is not part of the formal language—that is, it is not a
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well-formed formula. In the present case, however, we are only interested in well-formed
formulas of finite length, which can be written down explicitly. This is achieved by building
restrictions in the definition of the syntax, so that a conjunctive operator like

∧
x∈ω only

forms a well-formed formula if it is put in front of an atomic expression of the type
f{x} : x 7→ t(x) where both f{x} and t(x) are terms with an occurrence of the same variable
x that occurs in the conjunctive operator: the way typographically finite expressions obtain
that semantically is infinitary conjunctions. So, the language for our theory T is much more
narrowly defined than the language of (overly?) general infinitary logics: as it turns out,
that suffices for our present aims.

That brings us to the next point, which is to discuss the (possible) practical use of the
new finite theory T as a foundational theory for mathematics, that is, as a framework for
proofs in mathematics. The practical usefulness of the schema lies therein that it (i) provides
an easy way to construct sets and (ii) that categories like Top, Mon, Grp, etc., which are
subjects of study in category theory, can be viewed as subcategories of the category of
sets and functions of Definition 1, thus providing a new approach to the foundational
problem identified in [21]. While that latter point (ii) hardly needs elaboration, the former
(i) does. The crux is that one does not need to apply the non-classical sum function axiom
directly: what one uses is the theorem—or rather: the theorem schema—that given any
set X, we can construct a new function on X by giving a function prescription. So, this
is a philosophical nuance: in ZF one constructs a new object with the ∈-relation, but in
the present framework one can construct a new function fX not with the ∈-relation but by
simply defining which expressions fX : y 7→ z are true for the elements y in the domain.
On account of the sum function axiom, it is then a guarantee that the function fX exists. So,
given any set X one can simply give a defining function prescription

fX : y def7−→ ızΦ(y, z) (17)

(where the iota-term ızΦ(y, z) denotes the unique thing z for which the functional relation
Φ(y, z) holds) and it is then a guarantee that fX exists. Furthermore, having constructed the
function, we have implicitly constructed its graph and its image set. Ergo, giving a function
prescription is constructing a set. The non-classical axiom, which may be cumbersome to
use directly, stays thus in the background: one uses the main theorem of T.

What remains to be discussed is that T, as mentioned in the first paragraph, entails the
axioms of ZF and does not have a countable model. As to the first-mentioned property, it
will be proven that the infinite axiom schemas SEP and SUP of ZF, translated in the formal
language of T, can be derived from the finitely axiomatized theory T: that provides an
argument for considering T to be not weaker than ZF. Secondly, even though the language
of T has only countably many constants, it will be shown that the validity of the non-
classical sum function axiom in a modelM of T has the consequence that the downward
Löwenheim–Skolem theorem does not hold: if T has a modelM, thenM is uncountable.
This is a significant result that does not hold in the framework of ZF: it provides, therefore,
an argument for considering T to be stronger than ZF.

1.4. Point-by-Point Overview

(i) Zermelo–Fraenkel set theory is the most widely accepted foundational theory for
mathematics, but the problem is that it has two unwanted features:

– It has infinitely many axioms;
– It has a countable model in which the powerset of the naturals is countable;

(ii) Since the 1950s it has been generally accepted that this problem has no standard
solution;

(iii) This paper presents a nonstandard solution, which opens up an entirely new research
field that may be called “infinitary mathematical logic”;
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(iv) The main result, the non-classical theory T, incorporates category theory and axiomatic
set theory in a single framework;

(v) Category theory is incorporated by the ontological assumption that the universe of T is a
class of sets and a class of functions: this universe satisfies the axioms of category theory;

(vi) Set theory is incorporated in the sense that the axioms of ZF can be derived from the
axioms of T;

(vii) T can be considered stronger than ZF since it lacks the two unwanted features:

– T has finitely many axioms of finite length;
– If T has a model, it is uncountable;

(viii)T is introduced here as a candidate for a foundational theory for mathematics,
the corresponding philosophy of mathematics being that mathematics—i.e., all of
mathematics—can be viewed as the collection of valid inferences within the frame-
work of T;

(ix) The true merit of T as a foundational theory for mathematics has yet to be established
by a program for further research: negative results may invalidate the idea that T is
suitable as a foundational theory for mathematics.

This concludes the introductory discussion. The remainder of this paper is organized
as follows. The next section axiomatically introduces this finitely axiomatized non-classical
theory T. The section thereafter discusses the theory T (i) by deriving its main theorem, (ii)
by deriving the axiom schemas SEP and REP of ZF, (iii) by showing that the downward
Löwenheim–Skolem theorem does not hold for the non-classical theory T, (iv) by showing
the axioms of category theory hold for the class of arrows of the universe of discourse
meant in Definition 1, and (v) by addressing the main concerns for inconsistency. The final
section states the conclusions.

2. Axiomatic Introduction
2.1. Formal language

First of all a remark. In standard first-order logic, the term “quantifier” refers both
to the logical symbols “∀” and “∃” and to combinations like ∀x, ∃y consisting of such
a symbol and a variable. While that may be unproblematic in standard logic, here the
logical symbols “∀” and “∃” are applied in different kinds of quantifiers. Therefore, to avoid
confusion we will refer to the symbol “∀” by the term “universal quantification symbol”
and to the symbol “∃” by the term “existential quantification symbol”.

Definition 2. The vocabulary of the language LT of T consists of the following:

(i) The constants ∅ and ω, to be interpreted as the empty set and the first infinite ordinal;

(ii) The constants 1∅, to be interpreted as the inactive function;

(iii) Simple variables x, X, y, Y, . . . ranging over sets;

(iv) For any constant X̂ referring to an individual set, composite symbols fX̂, gX̂, . . . with
an occurrence of the constant X̂ as the subscript are simple variables ranging over
functions on that set X̂;

(v) For any simple variable X ranging over sets, composite symbols fX, gX, . . . with an
occurrence of the variable X as the subscript are composite variables ranging over
functions on a set X;

(vi) Simple variables α, β, . . . ranging over all things (sets and functions);

(vii) The binary predicates “∈” and “=”, and the ternary predicates “(.) : (.) � (.)” and
“(.) : (.) 7→ (.)”;

(viii) The logical connectives of first-order logic ¬,∧,∨,⇒,⇔;

(ix) The universal and existential quantification symbols ∀, ∃;
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(x) The brackets “(’ and ‘)”. �

Remark 1. To distinguish between the theory T and its intended model, boldface symbols
with a hat like X̂, α̂, etc., will be used to denote constants in the vocabulary of the theory T,
while underlined boldface symbols like X, α, etc., will be used to denote individuals in the
intended model of T. �

Definition 3. The syntax of the language LT is defined by the following clauses:

(i) If t is a constant, or a simple or a composite variable, then t is a term;

(ii) If t1 and t2 are terms, then t1 = t2 and t1 ∈ t2 are atomic formulas;

(iii) If t1, t2, and t3 are terms, then t1 : t2 � t3 and t1 : t2 7→ t3 are atomic formulas;

(iv) If Φ and Ψ are formulas, then ¬Φ, (Φ∧Ψ), (Φ∨Ψ), (Φ⇒ Ψ), (Φ⇔ Ψ) are formulas;

(v) If Ψ is a formula and t a simple variable ranging over sets, over all things, or over
functions on a constant set, then ∀tΨ and ∃tΨ are formulas;

(vi) If X and fX̂ are simple variables ranging respectively over sets and over functions on
the set X̂, fX a composite variable with an occurrence of X as the subscript, and Ψ a
formula with an occurrence of a quantifier ∀ fX̂ or ∃ fX̂ but with no occurrence of X,
then ∀X[X\X̂]Ψ and ∃X[X\X̂]Ψ are formulas. �

Remark 2. Regarding clause (vi) of Definition 3, [u\t]Ψ is the formula obtained from Ψ by
replacing t everywhere by u. This definition will be used throughout this paper. Note that
if Ψ is a formula with an occurrence of the simple variable fX̂, then [X\X̂]Ψ is a formula
with an occurrence of the composite variable fX . �

Definition 4. The language LT contains the following special language elements:

(i) If t is a simple variable ranging over sets, over all things, or over functions on a
constant set, then ∀t and ∃t are quantifiers with a simple variable;

(ii) If fX is a composite variable, then ∀ fX and ∃ fX are a quantifiers with a composite
variable.

A sequence like ∀X∀ fX can be called a double quantifier. �

The scope of a quantifier is defined as usual: note that a quantifier with a composite
variable can only occur in the scope of a quantifier with a simple variable. A free occurrence
and a bounded occurrence of a simple variable is also defined as usual; these notions can
be simply defined for formulas with a composite variable.

Definition 5. Let fX be a composite variable with an occurrence of the simple variable
X; then

(i) An occurrence of fX in a formula Ψ is free if that occurrence is neither in the scope of
a quantifier with the composite variable fX nor in the scope of a quantifier with the
simple variable X;

(ii) An occurrence of fX in a formula Ψ is bounded if that occurrence is in the scope of a
quantifier with the composite variable fX .

A sentence is a formula with no free variables—simple or composite. A formula is
open in a variable if there is a free occurrence of that variable. A formula that is open in a
composite variable fX is also open in the simple variable X. �

Definition 6. The semantics of any sentence without a quantifier with a composite variable
is as usual. Furthermore,

(i) A sentence ∀XΨ with an occurrence of a quantifier ∀ fX or ∃ fX with the composite
variable fX is valid in a modelM if and only if for every assignment g that assigns
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an individual set g(X) = X inM as a value to the variable X, the sentence [X\X]Ψ is
valid inM;

(ii) The sentence [X\X]Ψ obtained in clause (i) is a sentence without a quantifier with a
composite variable, hence with usual semantics.

The semantics of a sentence ∃XΨ with an occurrence of a quantifier ∀ fX or ∃ fX is left
as an exercise. �

After the introduction of the “standard” first-order axioms of T, the language LT will
be extended to enable the formulation of the desired non-classical formulas.

2.2. Set-Theoretical Axioms

Below the set-theoretical axioms are listed; these are all standard first-order formulas.
Due to the simplicity of the axioms, comments are kept to a bare minimum.

Axiom 1. Extensionality Axiom for Sets (EXT): two sets X and Y are identical if they have
the same things (sets and functions) as elements.

∀X∀Y(X = Y ⇔ ∀α(α ∈ X ⇔ α ∈ Y)) (18)

�

Axiom 2. For any set X, any function fX is not identical to any set Y:

∀X∀ fX∀Y( fX 6= Y) (19)

�

Axiom 3. A set X has no domain or codomain, nor does it map any thing to an image:

∀X∀α∀β(X : α 6� β ∧ X : α 6 7→ β) (20)

�

These latter two axioms establish that sets are different from functions on a set and do
not have the properties of functions on a set.

Axiom 4. Empty Set Axiom (EMPTY): there exists a set X, designated by the constant ∅,
that has no elements.

∃X(X = ∅ ∧ ∀α(α 6∈ X)) (21)

�

Axiom 5. Axiom of Pairing (PAIR): for every thing α and every thing β there exists a set X
that has precisely the things α and β as its elements.

∀α∀β∃X∀γ(γ ∈ X ⇔ γ = α ∨ γ = β) (22)

�

Remark 3. Using set-builder notation, the empty set can be interpreted as the individual
{} in the intended model. Furthermore, given individual things α and β in the universe
of the intended model, the pair set of α and β can then be identified with the individual
{α, β}. Note that this is a singleton if α = β. �

Remark 4. The sets in the present theory cannot be viewed as multisets, the objects of
multiset theory [22]. In the framework of our theory T, we have for any thing α in
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the category of sets and functions that {α} = {α, α} = {α, α, α}. In multiset theory,
this is not the case: an element may occur more than once in a multiset. We then have
{α, α} 6= {α, α, α} for multisets {α, α} and {α, α, α}. �

Definition 7. (Extension of vocabulary of LT.)
If t is a term, then (t)+ is a term, to be called “the singleton of t”—which may be

written as t+ if no confusion arises. In particular, if α is a variable ranging over all things
and x a variable ranging over all sets, then α+ is a variable ranging over all singletons and
x+ a variable ranging over all singletons of sets. We thus have

∀α∀β(β = α+ ⇔ ∃X(β = X ∧ ∀γ(γ ∈ X ⇔ γ = α))) (23)

Likewise for x+. �

Notation 1. On account of Definition 7, the constants ∅+, ∅++, ∅+++, . . . are contained in
the language LT. Therefore, we can introduce the (finite) Zermelo ordinals at this point as
a notation for these singletons: 

0 := ∅
1 := ∅+

2 := ∅++

...

(24)

According to the literature, the idea stems from unpublished work by Zermelo in 1916 [23].
�

Axiom 6. Sum Set Axiom (SUM): for every set X there exists a set Y made up of the
elements of the elements of X.

∀X∃Y∀α(α ∈ Y ⇔ ∃Z(Z ∈ X ∧ α ∈ Z)) (25)

�

Remark 5. Given an individual set X in the universe of the intended model, the sum set of
X can be denoted by the symbol

⋃
X and, using set-builder notation, can be identified with

the individual {α | ∃Z ∈ X(α ∈ Z)}. �

Axiom 7. Powerset Axiom (POW): for every set X there is a set Y made up of the subsets
of X.

∀X∃Y∀α(α ∈ Y ⇔ ∃Z(Z ⊂ X ∧ α = Z)) (26)

�

Remark 6. Given an individual set X in the universe of the intended model, the powerset
of X can be denoted by the symbol P(X) and, using set-builder notation, be identified with
the individual {x | x ⊂ X}. �

Axiom 8. Infinite Ordinal Axiom (INF): the infinite ordinal ω is the set of all finite Zermelo
ordinals.

0 ∈ ω ∧ ∀α(α ∈ ω⇒ α+ ∈ ω) ∧ ∀β ∈ ω( 6 ∃γ ∈ ω(β = γ+)⇔ β = ∅)) (27)

�

Remark 7. The set ω in INF is uniquely determined. In the intended model, the set ω
can be denoted by the symbol N and, using set-builder notation, be identified with the
individual N := { {}, {{}}, {{{}}}, . . .}. �
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Axiom 9. Axiom of Regularity (REG): every nonempty set X contains an element α that
has no elements in common with X.

∀X 6= ∅∃α(α ∈ X ∧ ∀β(β ∈ α⇒ β 6∈ X)) (28)

�

Definition 8. For any things that are α and β, the two-tuple 〈α, β〉 is the pair set of α and
the pair set of α and β; using the iota-operator we get

〈α, β〉 := ıx(∀γ(γ ∈ x ⇔ γ = α ∨ ∃Z(γ = Z ∧ ∀η(η ∈ Z ⇔ η = α ∨ η = β))) (29)

�

A simple corollary of Definition 8 is that for any things that are α and β, the two-tuple
〈α, β〉 always exists. There is, thus, no danger of nonsensical terms involved in the use of
the iota-operator in Definition 8.

Remark 8. Given individual things α and β in the universe of the intended model, the two-
tuple 〈α, β〉 can, using set-builder notation, be identified with the individual {α, {α, β}}.
�

In principle, these set-theoretical axioms suffice: the function-theoretical axioms in the
next section provide other means for the construction of sets.

2.3. Standard Function-Theoretical Axioms

Axiom 10. A function fX on a set X has no elements:

∀X∀ fX∀α(α 6∈ fX) (30)

�

Remark 9. One might think that Axiom 10 destroys the uniqueness of the empty set.
However, that is not true. It is true that a function on a set X and the empty set share the
property that they have no elements, but the empty set is the only set that has this property:
Axiom 2 guarantees, namely, that a function on a set X is not a set! �

Axiom 11. General Function-Theoretical Axiom (GEN-F): for any nonempty set X, any
function fX has a set Y as domain and a set Z as codomain, and maps every element α in Y
to a unique image β:

∀X∀ fX(X 6= ∅⇒ ∃Y∃Z( fX : Y � Z ∧ ∀α ∈ Y∃!β( fX : α 7→ β))) (31)

�

Axiom 12. For any set X, any function fX has no other domain than X:

∀X∀ fX∀α(α 6= X ⇒ ∀ξ( fX : α 6� ξ)) (32)

�

Axiom 13. For any set X, any function fX does not take a thing outside X as argument:

∀X∀ fX∀α 6∈ X∀β( fX : α 6 7→ β) (33)

�
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Remark 10. Axiom 11 dictates that precisely one expression fX : α 7→ β is true for each
α ∈ X. This does not a priori exclude that such an expression can also be true for another
thing α not in X. However, by Axiom 13 this is excluded. �

Axiom 14. For any nonempty set X and any function fX, the image set is the
only codomain:

∀X∀ fX(X 6= ∅⇒ ∀β( fX : X � β⇒ ∃Z(β = Z ∧ ∀γ(γ ∈ Z ⇔ ∃η ∈ X( fX : η 7→ γ))))) (34)

(This is the justification for the use of the two-headed arrow “�”, commonly used for
surjections.) �

Remark 11. Note that these first function-theoretical axioms already provide a tool to
construct a set: if we can construct a new function fX on a set X from existing functions (an
axiom will be given further below), then these axioms guarantee the existence of a unique
codomain made up of all the images of the elements of X under fX . �

Remark 12. Given an individual set X and an individual function fX in the universe of
the intended model, this unique codomain can be denoted by fX[X] or cod(fX), and, using
set-builder notation, be identified with the individual {β | ∃α ∈ X(fX : α 7→ β)} in the
universe of the intended model. Furthermore, given a thing α in X, its unique image under
fX can be denoted by the symbol fX(α). �

Notation 2. At this point we can introduce expressions fX : X → Y, to be read as “the
function f-on-X is a function from the set X to the set Y”, by the postulate of meaning

fX : X → Y ⇔ ∃Z( fX : X � Z ∧ Z ⊂ Y) (35)

This provides a connection to existing mathematical practices. �

Axiom 15. Inverse Image Set Axiom (INV): for any nonempty set X and any function fX
with domain X and any co-domain Y, there is for any thing α a set Z ⊂ X that contains
precisely the elements of X that are mapped to α by fX :

∀X 6= ∅∀ fX∀Y( fX : X � Y ⇒ ∀β∃Z∀α(α ∈ Z ⇔ α ∈ X ∧ fX : α 7→ β)) (36)

�

Remark 13. Note that INV, in addition to GEN-F, also provides a tool to construct a
set: if we have constructed a new function fX with domain X from existing functions,
then with this axiom guarantees that the inverse image set exists of any thing β in the
codomain of fX . �

Remark 14. Given an individual set X, an individual function fX, and an individual thing
β in the universe of the intended model, the unique inverse image set can be denoted by
the symbol f−1

X (β) and can, using set-builder notation, be identified with the individual
{α | α ∈ X∧ fX : α 7→ β} in the universe of the intended model. �

Axiom 16. Extensionality Axiom for Functions (EXT-F): for any set X and any function fX ,
and for any set Y and any function gY, the function fX and the function gY are identical if
and only if their domains are identical and their images are identical for every argument:

∀X∀ fX∀Y∀gY( fX = gY ⇔ X = Y ∧ ∀α∀β( fX : α 7→ β⇔ gY : α 7→ β)) (37)

�
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Axiom 17. Inactive Function Axiom (IN-F): there exists a function f∅, denoted by the
constant 1∅, which has the empty set as domain and codomain, and which does not map
any argument to any image:

∃ f∅( f∅ = 1∅ ∧ f∅ : ∅ � ∅ ∧ ∀α∀β( f∅ : α 6 7→ β)) (38)

�

Note that there can be no other functions on the empty set than the inactive function
1∅, since the image set is always empty: the atomic expression f∅ : ∅ � A cannot be true
for any nonempty set A.

Axiom 18. Ur-Function Axiom (UFA): for any things α and β there exists an ur-function
fα+ with domain α+ and codomain β+ that maps α to β:

∀α∀β∃ fα+( fα+ : α+ � β+ ∧ fα+ : α 7→ β) (39)

�

Remark 15. Given individual things α and β in the universe of the intended model, the
ur-function on {α} that maps α to β can, using set-builder notation, be identified with the
individual {〈α, β〉}{α} in the universe of the intended model. Note that the graph of the
ur-function is guaranteed to exist. �

Axiom 19. Axiom of Regularity for Functions (REG-F): for any set X and any function fX
with any codomain Y, fX does not take itself as argument or has itself as image:

∀X∀ fX∀Y( fX : X � Y ⇒ ∀α( fX : fX 6 7→ α ∧ fX : α 6 7→ fX)) (40)

�

Remark 16. As to the first part, Wittgenstein already mentioned that a function cannot have
itself as argument [24]. The second part is to exclude the existence of pathological “Siamese
twin functions”, e.g., the ur-function fX and gY given, using set-builder notation, by

fX : {hY}� { fX} , fX : hY 7→ fX (41)

hY : { fX}� {hY} , gY : fX 7→ gY (42)

We thus have dom( fX) = X = {hY} and dom(hY) = Y = { fX}; if one tries to
substitute that in the above equations, then one gets “infinite towers”. These functions may
not be constructible from the axioms, but they could exist a priori in the category of sets
and functions: to avoid that, we practice mathematical eugenics and prevent them from
occurring with REG-F. See Figure 1 for an illustration. The name “Siamese twin functions”
is derived from the name “Siamese twin sets” for sets A and B satisfying A ∈ B ∧ B ∈ A,
as published by Muller in [25]. �

Figure 1. Venn diagram of the Siamese twin functions fX and hY . The left oval together with the black
point inside it is a Venn diagram representing the singleton { fX}; the right oval together with the
black point inside it is a Venn diagram representing the singleton {hy}. The upper arrow represents
the mapping of fX to hY by hY , the lower arrow the mapping of hY to fX by fX .
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2.4. The Non-Classical Function-Theoretical Axiom and Inference Rules

Definition 9. The vocabulary of LT as given by Definition 2 is extended:

(i) With symbols “ı”, the iota-operator, and “
∧

”, the conjunctor;

(ii) For any constant X̂ denoting a set, with enough composite symbols f̂α+ , ĥβ+ , ... such
that each of these is a variable that ranges over a family of ur-functions indexed in X̂.

The syntax of LT as given by Definition 3 is extended with the following clauses:

(iii) If f̂α+ is a variable as in clause (ii) of Definition 9, then f̂α+ is a term;

(iv) If t is a term and ut+ is a composite term with an occurrence of t, and β is a variable
ranging over all things, then ıβ(ut+ : t 7→ β) is a iota-term denoting the image of t
under the ur-function ut+ ;

(v) If X̂ is a constant designating a set, α a simple variable ranging over all things, and
Ψ(α) an atomic formula of the type t : t′ 7→ t′′ that is open in α, then

∧
α∈X̂ Ψ(α) is a

formula;

(vi) If Φ is a formula with a subformula
∧

α∈X̂ Ψ(α) as in (v) with an occurrence of a
composite variable fα+ , then (∀ fα+)α∈X̂Φ and (∃ fα+)α∈X̂Φ are formulas;

(vii) If X is a simple variable ranging over sets, and Ψ a formula with no occurrence of
X but with a subformula (∀ fα+)α∈X̂Φ as in (vi), then ∀X[X\X̂]Ψ and ∃X[X\X̂]Ψ are
formulas with a subformula (∀ fα+)α∈X [X\X̂]Φ;

(viii) If X is a simple variable ranging over sets, and Ψ a formula with no occurrence of
X but with a subformula (∃ fα+)α∈X̂Φ as in (vi), then ∀X[X\X̂]Ψ and ∃X[X\X̂]Ψ are
formulas with a subformula (∃ fα+)α∈X [X\X̂]Φ. �

Remark 17. Concerning the iota-operator in clause (iv) of Definition 9, we thus have

∀α∀ fα+∀γ(γ = ıβ( fα+ : α 7→ β)⇔ fα+ : α 7→ γ) (43)

Note that upon assigning constant values to α and fα+ , the term ıβ( fα+ : α 7→ β)
always refers to an existing, unique thing: there is thus no danger of nonsensical terms
involved in this use of the iota-operator. �

Definition 10. The following special language elements are added:

(i) If X̂ is a constant designating a set, X and α simple variables ranging over sets c.q.
things, and fα+ a composite variable ranging over ur-functions on α+, then

• (∀ fα+)α∈X̂ is a multiple universal quantifier;

• (∃ fα+)α∈X̂ is a multiple existential quantifier;

• (∀ fα+)α∈X in the scope of a quantifier ∀X is a universally generalized multiple
universal quantifier;

• (∀ fα+)α∈X in the scope of a quantifier ∃X is an existentially generalized multi-
ple universal quantifier;

• (∃ fα+)α∈X in the scope of a quantifier ∀X is a universally generalized multiple
existential quantifier;

• (∃ fα+)α∈X in the scope of a quantifier ∃X is an existentially generalized multi-
ple existential quantifier;

(ii) If X̂ is a constant designating a set, X a simple variable ranging over sets, and α a
simple variable ranging over all things, then

•
∧

α∈X̂ is a conjunctive operator with constant range;

•
∧

α∈X is a conjunctive operator with variable range. �
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Concerning the language elements in clause (i), if

K

and

K′ are existential or universal
quantification symbols, then we can generally say that (

K

fα+)α∈X̂ is a multiple quantifier
and that (

K

fα+)α∈X in the scope of a quantifier

K′X is a generalized multiple quantifier.

Definition 11. If X̂ is a constant designating a set and
∧

α∈X̂ Ψ is a subformula of a formula
Φ, then Ψ is the scope of the conjunctive operator; furthermore,

(i) If there is an occurrence of a variable α and/or f̂α+ in the scope of the conjunctive
operator, then a formula

∧
α∈X̂ Ψ has a semantic occurrence of each of the constants

α̂ referring to a thing in the range of the variable α, and/or of each of the constant
ur-functions ûα̂+ over which the variable f̂α+ ranges—a subformula

∧
α∈X̂ Ψ has thus

to be viewed as the conjunction of all the formulas [α̂\α][ûα̂+\f̂]α+ ]Ψ with α̂ ∈ X̂.

(ii) If there is an occurrence of a composite variable fα+ in the scope of the conjunctive
operator, then the subformula

∧
α∈X̂ Ψ( fα+) has a free semantic occurrence of each of

the simple variables fα̂+ ranging over ur-functions on the singleton of α̂ with α̂ ∈ X̂—
the formula

∧
α∈X̂ Ψ( fα+) has thus to be viewed as the conjunction of all the formulas

[α̂\α][ fα̂+\ fα+ ]Ψ. �

Definition 12. If X̂ is a constant designating a set,

K

an existential or universal quan-
tification symbol, and (

K

fα+)α∈X̂Ψ a subformula of a formula Φ, then Ψ is the scope of
the multiple quantifier; likewise for the scope of the generalized multiple quantifiers of
Definition 10. If a formula Ψ has a free semantic occurrence of each of the simple variables
fα̂+ with a constant α̂ ∈ X̂, then a formula (

K

fα+)α∈X̂Ψ has a bounded semantic occur-
rence of each of the simple variables fα̂+ with a constant α̂ ∈ X̂. A non-classical formula Ψ
without free occurrences of variables is a sentence. If X is a simple variable ranging over
sets and Ψ is a sentence with an occurrence of a multiple quantifier (

K
fα+)α∈X̂ and with

no occurrence of X, then ∀X[X\X̂]Ψ and ∃X[X\X̂]Ψ are sentences with an occurrence of a
generalized multiple quantifier (

K

fα+)α∈X . �

Axiom 20. Sum Function Axiom (SUM-F): for any nonempty set X and for any family of
ur-functions fα+ indexed in X, there is a sum function FX with some codomain Y such that
the conjunction of all mappings by FX of α to its image under the ur-function fα+ holds for
α ranging over X:

∀X 6= ∅(∀ fα+)α∈X∃FX∃Y
(

FX : X � Y ∧
∧

α∈X
FX : α 7→ ıβ( fα+ : α 7→ β)

)
(44)

�

With SUM-F, all non-logical axioms of the present non-classical theory have been
introduced. However, still, rules of inference must be given to derive meaningful theorems
from SUM-F. So, the rules of inference that follow have to be seen as part of the logic.

Inference Rule 1. Nonstandard Universal Elimination:

∀XΨ
(
(

K

fα+)α∈X ,
∧

α∈X

)
` [X̂\X]Ψfor any constant X̂ (45)

where Ψ
(
(

K

fα+)α∈X ,
∧

α∈X
)

is a formula with an occurrence of a generalized multiple
quantifier and of a conjunctive operator with variable range, and where [X̂\X]Ψ is a formula
with an occurrence of a multiple quantifier (

K

fα+)α∈X̂ and of a conjunctive operator
∧

α∈X̂
with constant range. �

Thus speaking, from SUM-F we can deduce a formula

(∀ fα+)α∈X̂∃FX̂∃Y
(

FX̂ : X̂ � Y ∧
∧

α∈X̂
FX̂ : α 7→ ıβ( fα+ : α 7→ β)

)
(46)
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for any constant X̂ designating a set.

Inference Rule 2. Multiple Universal Elimination:

(∀ fα+)α∈X̂Φ( fα+) ` [f̂α+\ fα+ ]Φ (47)

where Φ( fα+) is a formula with an occurrence of the same composite variable fα+ that
also occurs in the preceding multiple universal quantifier (∀ fα+)α∈X̂, and where f̂α+ is a
variable as meant in clause (ii) of Definition 9. �

Thus speaking, from a sentence (46), which is an instance of SUM-F derived by
inference rule 1, we can derive a formula

∃FX̂∃Y
(

FX̂ : X̂ � Y ∧
∧

α∈X̂
FX̂ : α 7→ ıβ(f̂α+ : α 7→ β)

)
(48)

for each variable f̂α+ ranging over a family of ur-functions indexed in X̂. Note that the
range of such a variable f̂α+ is constructed by assigning to each of the simple variables fα̂+

semantically occurring in Formula (46) a constant value ûα̂+ .

Inference Rule 3. Nonstandard Rule-C:

∃tΦ ` [t̂\t]Φ (49)

where t is a simple variable x ranging over sets or a simple variable fX̂ ranging over
functions on a constant set, and where t̂ is a constant in the range of t that does not
occur in Φ but for which [t̂\t]Φ holds. If Φ has an occurrence of a generalized multiple
quantifier (

K
fα+)α∈t, then [t̂\t]Φ has an occurrence of a multiple quantifier (

K
fα+)α∈t̂; if Φ

has an occurrence of a conjunctive operator
∧

α∈t with variable range, then [t̂\t]Φ has an
occurrence of a conjunctive operator

∧
α∈t̂ with constant range. �

Thus speaking, from SUM-F we can deduce a formula

∃Y(F̂X̂ : X̂ � Y) ∧
∧

α∈X̂
F̂X̂ : α 7→ ıβ(f̂α+ : α 7→ β) (50)

which is a conjunction of a standard first-order formula and a non-classical formula with
an occurrence of the new constant F̂X̂, designating the sum function on X̂, in the scope
of a conjunctive operator. Of course, this conjunction Ψ ∧Φ is true if and only if both its
members are true. This requires one more inference rule.

Inference Rule 4. Conjunctive Operator Elimination:∧
α∈X̂

Ψ(α) ` [α̂\α]Ψ(α) (51)

where Ψ(α) is a formula of the type t : t′ 7→ t′′ that is open in α, and α̂ any constant
designating an element of X̂. �

Thus speaking, from the right member of the conjunction (50) we can derive an entire
schema, consisting of one standard first-order formula

F̂X̂ : α̂ 7→ ıβ(ûα̂+ : α̂ 7→ β) (52)

for each constant ûα̂+ . So given an infinitary conjunction
∧

α∈X̂ F̂X̂ : α 7→ ıβ(f̂α+ : α 7→ β),
the sentences (52) derived by rule 4 are true for each constant ûα̂+ semantically occurring
in Equation (50).
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Remark 18. Given an individual set X and a variable fα+ that ranges over a family of
ur-functions indexed in X in the universe of the intended model, the unique sum function
FX for which ∧

α∈X
FX : α 7→ ıβ(fα+ : α 7→ β) (53)

can, using set-builder notation, be identified with the individual

FX = {〈α, β〉 | α ∈ X∧ β = fα+(α)}X (54)

in the universe of the intended model. The graph of FX, which can be identified with
the set {〈α, β〉 | α ∈ X ∧ β = fα+(α)}, is certain to exist, see Theorem 1 (next section). So,
constructing a sum function is a means to constructing a set. �

Example 1. Consider the infinite ordinal ω from Axiom 8: its elements are the finite
ordinals 0, 1, 2, . . . Applying Nonstandard Universal Elimination, we thus deduce from
SUM-F that

(∀ fα+)α∈ω∃Fω∃Y
(

Fω : ω � Y ∧
∧

α∈ω
Fω : α 7→ ıβ( f{α} : α 7→ β)

)
(55)

On account of the ur-function Axiom 18 we have

∀x ∈ ω∃ fx+( fx+ : x 7→ x) (56)

That is, for any finite ordinal x there is an ur-function that on the singleton of x that
maps x to itself. Let the variable f̂1

α+
range over these identity ur-functions; applying

Multiple Universal Elimination to the sentence (55) then yields a sentence

∃Fω∃Y
(

Fω : ω � Y ∧
∧

α∈ω
Fω : α 7→ ıβ(f̂1

α+ : α 7→ β)
)

(57)

Introducing the new constant 1ω by applying Rule-C to the sentence (57) and substi-
tuting ıβ(f̂1

α+
: α 7→ β) = α then yields the conjunction

1ω : ω � ω ∧
∧

α∈ω
1ω : α 7→ α) (58)

By applying Conjunctive Operator Elimination to the right member of this conjunction
(58), we obtain the countable schema

1ω : 0 7→ 0
1ω : 1 7→ 1
1ω : 2 7→ 2

...

(59)

This example demonstrates, strictly within the language of T, how SUM-F and the
inference rules can be used to construct the identity function on ω from a family of ur-
functions indexed in ω. �

Remark 19. Summarizing, it has thus to be taken:

(i) That SUM-F is a typographically finite sentence;

(ii) That an instance (46) of SUM-F, deduced by applying Nonstandard Universal Elimi-
nation, is a typographically finite sentence;

(iii) That a Formula (48), deduced from an instance of SUM-F by applying Multiple
Universal Elimination, is a typographically finite sentence;

(iv) That a conjunction (50), deduced by applying Rule-C to a sentence deduced from
SUM-F by successively applying Nonstandard Universal Elimination and Multiple
Universal Elimination, is a typographically finite sentence.
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We thus get that SUM-F being true means that every instance (46) of SUM-F obtained
by Nonstandard Universal Elimination is true; that an instance (46) of SUM-F being
true means that for any variable f̂α+ ranging over a family of ur-functions indexed in X̂,
Formula (48) is true; and that a non-classical Formula (48) with an occurrence of a variable
f̂α+ being true means that, after applying Rule-C, the schema of standard formulas (52)
obtained by Conjunctive Operator Elimination is true—one true standard formula obtains
for every ur-function ûα̂+ in the range of the variable f̂α+ . �

This concludes the axiomatic introduction of the non-classical theory T. Since we are
primarily interested in the theorems that can be derived from the axioms of T, no rules
have been given for the introduction of (multiple) quantifiers or conjunctive operators.
Below such rules are given for the sake of completeness, but these will not be discussed.
(These rules are not a part of the current axiomatic system, but we can consider adding
these rules if we want to extend the current system.)

Inference Rule 5. Conjunctive Operator Introduction:

{[I(α)\α]Ψ(α)}I(α)∈X̂ `
∧

α∈X̂
Ψ(α) (60)

where Ψ(α) is a formula of the type t : t′ 7→ t′′ that is open in α, and {[I(α)\α]Ψ(α)}I(α)∈X̂
is a possibly infinite collection of formulas, each of which is obtained by interpreting the
variable α as a constant I(α) ∈ X̂ and replacing α in Ψ(α) everywhere by I(α). �

Note that the collection of formulas {[I(α)\α]Ψ(α)}I(α)∈X̂ in Equation (60) is itself not
a well-formed formula of the language LT, but each of the formulas in the collection is.

Inference Rule 6. Multiple Universal Introduction:

Φ
(∧

α∈X̂
Ψ(f̂α+)

)
` (∀ fα+)α∈X̂[ fα+\f̂α+ ]Φ (61)

where Φ
(∧

α∈X̂Ψ(f̂α+)
)

denotes a formula Φ with a subformula
∧

α∈X̂Ψ(f̂α+) (implying

that Ψ is an atomic formula of the type t : t′ 7→ t′′), and where the variable f̂α+ ranges over
an arbitrary family of ur-functions indexed in X̂. �

Inference Rule 7. Multiple Existential Introduction:

Φ
(∧

α∈X̂
Ψ(f̂α+)

)
` (∃ fα+)α∈X̂[ fα+\f̂α+ ]Φ (62)

where Φ
(∧

α∈X̂Ψ(f̂α+)
)

denotes a formula Φ with a subformula
∧

α∈X̂Ψ(f̂α+) (implying

that Ψ is an atomic formula of the type t : t′ 7→ t′′), and where the variable f̂α+ ranges over
a specific family of ur-functions indexed in X̂. �

Remark 20. Nonstandard Universal Quantification, i.e., the rule

Ψ(X̂) ` ∀X[X\X̂]Ψ (63)

for a non-classical formula Ψ with an occurrence of an arbitrary constant X̂, and Nonstan-
dard Existential Quantification, i.e., the rule

Ψ(X̂) ` ∃X[X\X̂]Ψ (64)

for a non-classical formula Ψ with an occurrence of a specific constant X̂, are the same
as in the standard case, but with the understanding that upon quantification a multiple
quantifier (

K

fα+)α∈X̂ in Ψ becomes a generalized multiple quantifier (

K

fα+)α∈X in [X\X̂]Ψ,
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and a conjunctive operator
∧

α∈X̂ with constant range in Ψ becomes a conjunctive operator∧
α∈X with variable range in [X\X̂]Ψ. �

3. Discussion
3.1. Main theorems

Theorem 1. Graph Theorem: for any set X and any function fX with any codomain Y,
there is a set Z that is precisely the graph of the function fX—that is, there is a set Z whose
elements are precisely the two-tuples 〈α, β〉 made up of arguments and images of the
function fX . In a formula:

∀X∀ fX∀Y( fX : X � Y ⇒ ∃Z∀ζ(ζ ∈ Z ⇔ ∃α∃β(ζ = 〈α, β〉 ∧ fX : α 7→ β)))) (65)

�

Proof. Let X̂ be an arbitrary set, and let the function f̂X̂ be an arbitrary function on X̂.
On account of GEN-F (Axiom 11), for any α ∈ X there is then precisely one β such that
f̂X̂ : α 7→ β . Using Definition 8, there exists then for each α ∈ X̂ a singleton 〈α, β〉+ such
that f̂X̂ : α 7→ β. On account of the ur-function axiom (Axiom 18), there exists then also
an ur-function uα+ : α+ � 〈α, β〉+ , uα+ : α 7→ 〈α, β〉 for each α ∈ X̂. Thus, on account of
SUM-F there is a sum function ĜX̂ with some codomain Z such that ĜX̂ maps every α ∈ X
precisely to the two-tuple 〈α, β〉 for which f̂X̂ : α 7→ β. On account of GEN-F, the codomain
Z of ĜX̂ exists, and on account of Axiom 14 it is unique: this codomain is precisely the
graph of f̂X̂. Since X̂ and f̂X̂ were arbitrary, the Graph Theorem follows from universal
generalization.

In the intended model of T, there is thus no risk involved in identifying a function
f with the individual graph( f )dom( f ), where graph( f ) is the graph of f and dom( f ) the
domain of f , cf. Remark 18.

Theorem 2. Main Theorem: for any nonempty set X, if there is a functional relation Φ(α, β)
that relates every α in X to precisely one β, then there is a function FX with some codomain
Y that maps every η ∈ X to precisely that ξ ∈ Y for which Φ(η, ξ). In a formula, using the
iota-operator:

∀X 6= ∅(∀α ∈ X∃!βΦ(α, β)⇒ ∃FX∃Y(FX : X � Y ∧ ∀η ∈ X(FX : η 7→ ıξΦ(η, ξ)))) (66)

�

Proof. Let X̂ be an arbitrary nonempty set. Suppose then, that for every α ∈ X̂ we have
precisely one β such that Φ(α, β). On account of the ur-function axiom (Axiom 18), for an
arbitrary constant α̂ ∈ X̂ there exists then also an ur-function ûα̂+ for which

ûα̂+ : α̂ 7→ ıβΦ(α̂, β) (67)

Let the variable f̂α+ range over these ur-functions. We then deduce from SUM-F
by applying Nonstandard Universal Elimination and subsequently Multiple Universal
Elimination that

∃FX̂∃Y
(

FX̂ : X̂ � Y ∧
∧

α∈X̂
FX̂ : α 7→ ıβ(f̂α+ : α 7→ β)

)
(68)

By subsequently applying Rule-C and Conjunctive Operator Elimination we then
deduce the schema

F̂X̂ : α̂ 7→ ıβΦ(α̂, β) (69)
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for the sum function F̂X̂. Generalizing this schema we obtain

∀η ∈ X̂(F̂X̂ : η 7→ ıξΦ(η, ξ))) (70)

We thus obtain

∃FX̂∃Y
(

FX̂ : X̂ � Y ∧ ∀η ∈ X̂(FX̂ : η 7→ ıξΦ(η, ξ)))
)

(71)

Since the functional relation was assumed, we get ∀α ∈ X̂∃!βΦ(α, β)⇒ Ψ where Ψ is
Formula (71). Since X̂ was an arbitrary nonempty set, we can quantify over nonempty sets.
This gives precisely the requested Formula (66).

Remark 21. Theorem 2 is an infinite schema, with one formula for every functional relation
Φ. The point is this: given a set X, on account of this theorem we can construct a function
fX by giving a function prescription—what we then actually do is define an ur-function for
every α ∈ X; the function fX then exists on account of SUM-F. Furthermore, by constructing
the function we construct its graph, which exists on account of Theorem 1. Generally
speaking, if we define an ur-function for each singleton α+ ⊂ X, then we do not yet have
the graphs of these ur-functions in a set. However, in the present framework, the set of
these graphs is guaranteed to exist. Ergo, giving a function prescription is constructing
a set! �

3.2. Derivation of SEP and REP of ZF

We start by proving that the infinite axiom schema SEP of ZF is a theorem (schema) of
our theory T:

Theorem 3. Separation Axiom Scheme of ZF:
∀X∃Y∀α(α ∈ Y ⇔ α ∈ X ∧Φ(α))

Proof. Let X̂ be an arbitrary set and let Φ be an arbitrary unary relation on X̂. On account
of the ur-function axiom (Axiom 18), for an arbitrary constant α̂ ∈ X̂ there exists then an
ur-function ûα̂+ for which {

ûα̂+ : α̂ 7→ 1 i f Φ(α̂)
ûα̂+ : α̂ 7→ 0 i f ¬Φ(α̂)

(72)

Let the variable f̂η+ range over these ur-functions. On account of Theorem 2 we
then get

∃FX̂∀η ∈ X̂(FX̂ : η 7→ ıβ(f̂η+ : η 7→ β)) (73)

Let this sum function be designated by the constant F̂X̂. On account of INV
(Axiom 15), the inverse image set F̂−1

X̂
(1) exists: we then have ∀α(α ∈ F̂−1

X̂
(1)⇔ α ∈ X̂ ∧

Φ(α)). Theorem 3 then obtains from here by existential generalization and
universal generalization.

Proceeding, we prove that the infinite axiom schema REP of ZF is a theorem (schema)
of our theory T:

Theorem 4. Replacement Axiom Scheme of ZF:
∀X(∀α ∈ X∃!βΦ(α, β)⇒ ∃Z∀γ(γ ∈ Z ⇔ ∃ξ(ξ ∈ X ∧Φ(ξ, γ))))

Proof. Let X̂ be an arbitrary set and let there for every α ∈ X̂ be precisely one β such that
Φ(α, β). Then on account of Theorem 2, a sum function F̂X̂ exists for which

∀α ∈ X(F̂X̂ : α 7→ ıβΦ(α, β)) (74)
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On account of Axiom 14, the codomain of F̂X̂ is the image set; denoting this by F̂X̂[X̂]
we then have

∀γ(γ ∈ F̂X̂[X̂]⇔ ∃ξ(ξ ∈ X ∧Φ(ξ, γ))) (75)

Since the functional relation Φ on the arbitrary set X̂ was assumed, this is implied by
∀α ∈ X̂∃!βΦ(α, β). We write out this implication: Theorem 4 then obtains by existential
generalization and universal generalization.

These two theorems’ schemas provide an argument for considering our theory T to be not
weaker than ZF. However, we have strictly speaking not yet proven that every result in
ZF about sets automatically translates to the present framework, in which not all things
are sets.

Remark 22. Should further research on T reveal unintended consequences that render it
inconsistent or otherwise useless, there is still the possibility to remove SUM-F from T and
add the above Theorem schemas 3 and 4 as axioms to T. That still gives a theory—although
a standard one with infinitely many axioms—that incorporates set theory and category
theory into a single framework. �

3.3. Model theory

Definition 13. A model M of the present theory T consists of the universe |M| ofM,
which is a concrete category made up of a nonempty collection of objects (sets) and a
nonempty collection of arrows (functions on sets), and the language LM ofM, which is
the language LT of T extended with a constant for every object and for every arrow in |M|,
such that the axioms of T are valid inM. �

In standard first-order logic it is well defined what it means that a formula is “valid”
in a model M. This notion of validity translates to the framework of T for all standard
formulas. However, it remains to be established what it means that SUM-F and non-
classical consequences thereof are valid in a modelM of T. Recall that symbols referring to
individuals in |M| will be underlined to distinguish these individuals from constants of T.

Definition 14. (Validity of non-classical formulas):

(i) A sentence ∀X 6= ∅Ψ with a non-classical subformula Ψ, such as the sum function
axiom, is valid in a modelM of T if and only if for every assignment g that assigns
an individual nonempty set g(X) = X in |M| as a value to the variable X, [X\X]Ψ is
valid inM;

(ii) A sentence (∀ fα+)α∈XΦ with an occurrence of an individual nonempty set X of |M|,
such as an instance of SUM-F, is valid in a model M of T if and only if for every
“team assignment” g that assigns an individual ur-function g( fα+) = uα+ in |M| as a
value to each variable fα+ semantically occurring in Φ, the sentence [fg

α+
\ fα+ ]Φ with

the variable fg
α+

ranging over the family of ur-functions (uα+)α∈X is valid inM;

(iii) A sentence ∃tΥ with an occurrence of a simple variable t ranging over sets or over
functions on a set X and with Υ being a non-classical formula, such as the sentences
that can be obtained by successively applying Nonstandard Universal Elimination
and Multiple Universal Elimination to SUM-F, is valid in a modelM of T if and only
if for at least one assignment g that assigns an individual function g(t) = FX or an
individual nonempty set g(t) = Y as value to the variable t, the sentence [g(t)\t]Υ is
valid inM;

(iv) A sentence
∧

α∈XΨ(fα+ , α) is valid in a modelM of T if and only if for every assign-
ment g that assigns an individual ur-function g(fα+) = uα+ from the range (uα+)α∈X
of the variable fα+ and an individual α as values to the variables fα+ and α respectively,
the sentence [α\α][uα+\fα+ ]Ψ is valid inM.
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This defines the validity of the non-classical formulas that can be deduced from SUM-F
in terms of the well-established validity of standard first-order formulas. �

Proposition 1. If T has a modelM, thenM is not countable.

Proof. Suppose T has a modelM, andM is countable. That means that there are only
countably many subsets of N = {0, 1, 2, . . .} in M, and that the powerset P(N) in M
contains those subsets: we thus assume that there are subsets of N that are “missing” inM.
Let A be any subset of N that is not inM, and let h ∈ A. All numbers 0, 1, 2, . . . are inM
(including h), so for an arbitrary number n ∈ N there is thus on account of the ur-function
axiom (Axiom 18) an ur-function on {n} that maps n to n and an ur-function on {n} that
maps n to h. Since N is inM, we get on account of SUM-F and Nonstandard Universal
Elimination that

|=M (∀ fp+)p∈N∃FN∃Y
(

FN : N� Y ∧
∧

p∈NFN : p 7→ ıq( fp+ : p 7→ q)
)

(76)

Equation (76) being valid inMmeans thus that for any team assignment g, there is a
sum function Fg

N in |M| for which

∀p ∈ N(Fg
N : p 7→ ıq(fg

p+ : p 7→ q)) (77)

where the variable fg
p+ ranges over ur-functions g( f0+), g( f1+), g( f2+), . . . That said, the

crux is that there is a team assignment g∗ which assigns to the variables f0+ , f1+ , f2+ , . . . ,
the constants g∗( f0+), g∗( f1+), g∗( f2+), . . . such that for all n ∈ ω we have{

g∗( fn+) : n 7→ n i f n ∈ A
g∗( fn+) : n 7→ h i f n 6∈ A

(78)

To see that, note that it is a certainty that there is at least one team assignment g0 such
that Equation (78) is satisfied for n = 0. Namely, there is (i) at least one team assignment g
such that g( f0+) = {〈0, 0〉}{0} so that g( f0+) : 0 7→ 0, and (ii) at least one team assignment
g′ such that g′( f0+) = {〈0, h〉}{0} so that g′( f0+) : 0 7→ h. Now assume that there is a
team assignment gk such that Equation (78) is satisfied for n ∈ {0, 1, . . . , k}: it is then a
certainty that there is at least one team assignment gk+1 such that Equation (78) is satisfied
for n ∈ {0, 1, . . . , k + 1}. Namely, there is (i) at least one team assignment gk

k+1 such that
for n ∈ {0, 1, . . . , k} we have gk

k+1( fn+) = gk( fn+) and such that for n = k + 1 we have
gk

k+1( fn+) = {〈n, n〉}{n} so that gk
k+1( f(k+1)+) : k + 1 7→ k + 1, and (ii) at least one team

assignment gk
h such that for n ∈ {0, 1, . . . , k} we have gk

h( fn+) = gk( fn+) but such that for
n = k + 1 we have gk

h( f(n)+) = {〈n, h〉}{n} so that gk
h( f(k+1)+) : k + 1 7→ h. By induction,

there is thus a team assignment g∗ such that Equation (78) is satisfied for all n ∈ ω. Ergo,
there is a sum function F∗ω for which

∀p ∈ ω(F∗ω : p 7→ g∗( fp+)(p)) (79)

However, then we get F∗ω[ω] = A, so A is inM, contrary to what was assumed. Ergo,
if T has a model, it is not countable.

Remark 23. Proposition 1 is a significant result that does not hold in ZF: given Theorems 3
and 4, this provides an argument for considering the present theory T to be stronger than
ZF. The crux here is that the non-classical sentence (76) has to be valid inM: the notion
of validity of Definition 14 entails that there are uncountably many variables fg

p+ , ranging
over a family of individual ur-functions indexed in N, in the language of the model. As a
result, the subsets of N that can be constructed within the model are non-denumerable—a
model of T in which Multiple Universal Elimination, inference rule 2, applies for at most
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countably many variables fg
p+ is thus nonexistent. Thus speaking, the Löwenheim–Skolem

theorem does not apply because T is a non-classical first-order theory, meaning that T
cannot be reformulated as a standard first-order theory. �

Proposition 2. T is not a second-order theory.

Proof. Let us assume that T is a second-order theory. That is, let us assume that the use
of a multiple quantifier (∀ f{α})α∈X̂

amounts to second-order quantification. With such a
multiple quantifier, we de facto quantify over all functional relations on the set X̂—note,
however, that we do not quantify over all functional relations on the universe of sets!
However, this has an equivalent in ZF: if X̂ is a constant (a set), and ŶX̂ is the set of all
functions from X̂ to a set Ŷ, then with the quantifier ∀B∀ f ∈ BX̂ in a sentence

∀B∀ f ∈ BX̂Ψ (80)

we de facto quantify over all functional relations on the set X̂ too. Ergo, if T is a second-
order theory, then ZF is a second-order theory too. However, ZF is a first-order theory and
not a second-order theory. So by modus tollens, T is not a second-order theory.

As an additional heuristic argument, we can also directly compare second-order
quantification and the present non-classical first-order quantification with a multiple
quantifier (∀ f{α})α∈X̂

. Let us first look at second-order quantification with a quantifier
∀Φ where the variable Φ ranges over functional relations on the class of sets. An arbitrary
individual functional relation Φ̂ has the entire proper class of things as its “domain”, so Φ̂

corresponds to a proper class of ur-functions: for an arbitrary thing α̂ there is a Φ̂-related
ur-function ûα̂+ for which ûα̂+ : α̂ 7→ ıβΦ̂(α̂, β). A quantifier ∀Φ is thus equivalent to a
proper class of simple quantifiers fα̂+ ranging over ur-functions on the singleton of a thing
α̂. The universe of T, however, does not contain a set Û of all things, so there is no multiple
quantifier (∀ fα+)α∈Û which would be equivalent to quantifier ∀Φ: a multiple quantifier
(∀ fα+)α∈X̂ is at most equivalent to an infinite set of simple quantifiers fα̂+ and the degree of
infinity is then bounded by the notion of a set. Thus, since a set does not amount to a proper
class, a multiple quantifier (∀ fα+)α∈X̂ does not amount to second-order quantification. See
Figure 2 for an illustration.
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(a) 2nd order (b) non-classical 1st order

Figure 2. Illustration of the heuristic argument. In both diagrams (a,b), all things in the universe
of T are for illustrative purposes represented on the horizontal and vertical axes. In diagram (a), the
dotted black line represents an arbitrary functional relation Φ̂: each dot corresponds to a constant
ur-function as indicated, so the dotted line is equivalent to a proper class of ur-functions. In diagram
(b) it is indicated of which things on the horizontal axis the set X̂ is made up, and each of the black
dots within the red oval corresponds to a constant ur-functions: the dotted line segment is thus
equivalent to a set of ur-functions. So, a multiple quantifier (∀ fα+ )α∈X̂ cannot be equivalent to a
quantifier ∀Φ.

Figure 2. Illustration of the heuristic argument. In both diagrams (a,b), all things in the universe
of T are for illustrative purposes represented on the horizontal and vertical axes. In diagram (a), the
dotted black line represents an arbitrary functional relation Φ̂: each dot corresponds to a constant
ur-function as indicated, so the dotted line is equivalent to a proper class of ur-functions. In diagram
(b) it is indicated of which things on the horizontal axis the set X̂ is made up, and each of the black
dots within the red oval corresponds to a constant ur-functions: the dotted line segment is thus
equivalent to a set of ur-functions. So, a multiple quantifier (∀ fα+ )α∈X̂ cannot be equivalent to a
quantifier ∀Φ.
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This heuristic argument can also be formulated in another way. Let Û and X̂ be two
nonempty disjoint sets, and let us then compare a truly second-order quantification ∀Φ over
all functional relations on the class of sets with our non-classical first-order quantification
with a multiple quantifier (∀ f{α})α∈X̂

. In the first case, given any individual functional
relation Φ̂ we can construct image sets of both Û and X̂ that contain precisely the images
of the elements of Û c.q. X̂ under the functional relation Φ̂. In the second case, however,
given any family of ur-functions (f̂{α})α∈X̂ we can construct the image set of X̂ that for each
element α of X̂ contains the image of α under the ur-function f̂α+ , but we cannot construct
any image set of Û. That shows that our non-classical first-order quantification is not the
same as second-order quantification.

3.4. The Axioms of Category Theory

In Definition 1 it has been assumed that the universe of sets and functions is a category.
In this section we prove that the axioms of category theory for the arrows indeed hold for
the functions (which are the arrows of the present category). That means that we must
prove the following:

(i) That domain and codomain of any function on any set are unique;

(ii) That, given sets X and Y and functions fX and gY with Y = fX [X], there is a function
hX = gY ◦ fX such that hX maps every α ∈ X to the image under gY of its image under
fX ;

(iii) That for any set X there is a function 1X such that fX ◦ 1X = fX and 1 fX [X] ◦ fX = fX
for any function fX on X.

Ad(i): domain and codomain of a function fX are unique
This has already been proven in Section 2.3. GEN-F (Axiom 11) guarantees that for

any set X, any function fX has at least one domain and at least one codomain. Axiom 12
guarantees that no other thing (set or function) than X is a domain of fX. Furthermore,
Axiom 14 guarantees that no other thing (set or function) than the image set fX [X] is a
codomain of fX . That proves uniqueness of domain and codomain.

Ad(ii): existence of the composite of two functions
Given a set X, a function fX and a function gY with Y = fX [X], there is for every

α ∈ X precisely one ur-function hα+ such that

hα+ : α 7→ ıβ(gY : fX(α) 7→ β) (81)

So, there is a sum function HX that maps each α ∈ X precisely to its image under the
ur-function hα+ for which ıξ(hα+ : α 7→ ξ) = ıβ(gY : fX(α) 7→ β). This sum function is
precisely the composite HX = gY ◦ fX . The proof that function composition is associative
is omitted.

Ad(iii): existence of an identity function on any set X
Given a set X, there is for every α ∈ X precisely one ur-function 1α+ for which

1α+ : α 7→ α (82)

Therefore, there is a sum function FX that maps every α ∈ X to ıξ(1α+ : α 7→ ξ) = α.
This sum function is the requested function 1X . The proof that this sum function 1X satisfies
the properties that gX ◦ 1X = gX and 1gX [X] ◦ gX = gX for any function gX on X, is omitted.

This shows that the axioms for a category hold for the proper class of functions.

3.5. Concerns Regarding Inconsistency

We address the main concerns regarding inconsistency, which are in particular that
the existence of a set of all sets or a set of all functions can be derived from T.

Conjecture 1. The category of sets and functions does not contain a set of all sets.
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Heuristic argument:
A set Û of all sets does not exist (i) because REG (Axiom 9) excludes that Û exists a

priori, and (ii) because SUM-F, the only constructive axiom of T that is not a theorem of
ZF, excludes that Û exists by construction. The crux is that one must first have constructed
the set X before one can construct a sum function FX: the set X is thus a regular set, and
by applying SUM-F one cannot create a new set with a higher cardinality than the set X
because the graph of FX contains precisely one element for each element of X. It is the
same for the image set FX [X]: it cannot have a higher cardinality than X. Therefore, SUM-F
does not allow the construction of a set Û of all sets. �

Conjecture 2. The category of sets and functions on sets does not contain a set Ω̂ of all functions.

Heuristic argument:
Suppose that we have a set Ω̂ such that

∀X∀ fX( fX ∈ Ω̂) (83)

Then on account of Theorem 3 we can single out the subset Ω̂1 of all identity functions:

∀α(α ∈ Ω̂1 ⇔ α ∈ Ω̂ ∧ ∃X(α = 1X)) (84)

However, then there also exists the identity function 1Ω̂1
, for which

1Ω̂1
: Ω̂1 � Ω̂1 , 1Ω̂1

: 1Ω̂1
7→ 1Ω̂1

(85)

This latter feature that 1Ω̂1
maps itself to itself contradicts the axiom of regularity for

functions, REG-F (Axiom 19). Ergo, there is no set Ω̂ of all functions. �

4. Concluding Remarks
4.1. Limitations of the Present Study

First of all, the syntax of the formal language for the theory T has been defined in
such a way that the axioms of T are well-formed formulas. While this definition of the
syntax has been checked for obvious mistakes, a limitation of the present study is that it
has not been checked exhaustively for unintended consequences. That is, it may turn out
that details of the present definition of the syntax require revision to avoid the situation
that this or that “weird” formula becomes a well-formed formula.

As to the axioms of T, the axiom of regularity for functions, Axiom 19, has been formu-
lated to rule out the existence of the pathological functions mentioned in its formulation.
While the existence of certain other pathological objects, such as a set X and a function fX
for which X = { fX}, is also ruled out as a corollary of this axiom, it cannot be excluded
that a creative mind can come up with even more pathological objects that are not ruled out
by the two axioms of regularity of T. That is, it may turn out that the axioms of regularity
require revision to avoid the situation that T has a model in which certain pathological
objects exist a priori.

Furthermore, since T is a non-classical theory there is the obvious risk that T is not
(relatively) consistent. While the theory T has been checked for the most obvious concerns
regarding inconsistency—we have argued that the category of sets and functions cannot
contain a set of all sets nor a set of all functions—it has not been checked exhaustively for
inconsistency. That is, further research may reveal that T has unintended consequences
which render it inconsistent. In such a case the approach would be to resolve the inconsis-
tency by a revision of the axioms of T. However, if that fails, we still have the prospect of
a fallback position: as outlined in Remark 22, we can remove the non-classical part of T
and add the infinite theorem schemas for SEP and REP as axioms; the standard first-order
theory thus obtained then no longer solves the problem identified in the introduction, but
it still incorporates category theory and set theory in a single framework.
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A further limitation of this study is that the axiom of choice has been left out. We can
easily express AC in the language LT as

∀X 6= ∅(Θ(X)⇒ ∃ fX∀Z ∈ X∀γ( fX : Z 7→ γ⇒ γ ∈ Z) (86)

where Θ(X) stands for

∀α ∈ X∃Y(α = Y ∧ ∃η(η ∈ Y)) ∧ ∀U ∈ X∀V ∈ X 6 ∃β(β ∈ U ∧ β ∈ V) (87)

However, the question is whether this has to be added as an axiom or whether it can
be derived as a theorem of T—we certainly have for any Z ∈ X that there is an ur-function
fZ+ such that ıξ( fZ+ : Z 7→ ξ) ∈ Z. We leave this as a topic for further research.

Last but not least, another limitation of the present study is that the metamathematics
of T have not been studied. That is, it has not been investigated whether the calculus has
any of the various soundness and completeness properties. This is left as a topic for further
research—(dis-)proving that these properties hold is a sizeable research project in itself.

4.2. Aesthetic Counterarguments

The present theory T gives immediate rise to at least three purely aesthetical arguments
for rejection.

First of all, the universe of T contains sets and functions, the latter being objects
sui generis: this entails a departure from the adage “everything is a set” that holds in
the framework of ZF(C) and that will be enough to evoke feelings of dislike among
mathematical monists who hold the position that set theory, in particular ZF or ZFC, has to
be the foundation for mathematics.

Secondly, although the universe of T is a category, the formal language of T contains
∈-relations t1 ∈ t2 as atomic formulas: an ∈-relation is, thus, not reduced to a mapping
in the language of category theory and that fact alone will be enough to evoke feelings of
dislike among mathematical monists who hold the position that category theory has to be
the foundation for mathematics.

Thirdly, the language of T entails a rather drastic departure from standard first-order
language: that will be enough to evoke feelings of dislike among those who attach a notion
of beauty to the standard first-order language of ZF(C) or who consider that the language
of category theory is all of the language of mathematics.

These arguments can be dismissed as nonmathematical, but those who experience
these feelings of dislike will nevertheless reject the theory T straightaway as not suitable as
a foundational theory for mathematics.

4.3. Main Conclusions

The main conclusion is that the aim stated in the introduction has been achieved: a
theory T, with a vocabulary containing countably many constants, has been introduced
which lacks the two unwanted c.q. pathological features of ZF. Each axiom of T is a
typographically finite sentence, so contrary to what is the case with infinitary logics, each
axiom can be written down explicitly. However, not just that: T is finitely axiomatized, so
contrary to what is the case with ZF, the entire theory T can be written down explicitly
on a piece of paper. In addition, it has been shown that T, contrary to ZF, does not
have a countable model—if it has a model at all, that is. This failure of the downward
Löwenheim–Skolem theorem for T is due to the non-classical nature of T.

Furthermore, three reasons can be given as to why T might be potentially applicable
as a foundational theory for mathematics. First of all, it has been proven that the axioms
of ZF, translated in the language LT of T, can be derived from T. While we acknowledge
that this result does not automatically imply that all theorems about sets derived within
the framework of ZF are necessarily also true in the framework of T because in the latter
framework sets exist whose elements are not sets, it nevertheless shows that the tools
available in the framework ZF for constructing sets are also available in the framework
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of T. Secondly, it has been proved that the axioms of a category hold for the universe of
discourse that is associated to T, which is a category of sets and functions: this universe
might then serve as the ontological basis for the various (large) categories studied in
category theory. Thirdly, T is easy to use in everyday mathematical practice because
for any set X we can construct a function fX by giving a defining function prescription

fX : X � Y , fX : α
def7−→ ιβΦ(α, β) where Φ is some functional relation: T then guarantees

that FX exists, as well as its graph, its image set, and the inverse image sets for every element
of its codomain—ergo, giving a defining function prescription is a tool for constructing sets.

That being said, there are also arguments why T cannot be generally accepted as a
new foundational theory for mathematics right now by a collective act of instant rationality.
The strongest of these may be that the methamathematics have not been studied: contrary
to the purely aesthetic arguments against T, negative results in that direction may yield
a decisive argument to reject T as not suitable as a foundational theory for mathematics.
Therefore, this topic should be given highest priority in further research; the prospect is
that it should become clear within a few years whether or not the various soundness and
completeness properties apply.

The bottom line is that the present results are rather avant-garde and that further
research is necessary to establish whether the non-classical theory T introduced in this
paper constitutes an advancement in the foundations of mathematics. The proven fact that
T lacks the pathological features of ZF may provide a reason for such further research, but
it is emphasized that it may turn out to be a dead end. That is to say: the present marriage
of set theory and category theory—as we called it in the introduction—may look promising
from a certain perspective, but it still may end in divorce.
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