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Abstract: The closed forms of the non-resonant thermonuclear function in the Maxwell–Boltzmann
and Tsallis case with depleted tail are obtained in generalized special functions. The results are
written in terms of H-function of two variables. The importance of the results in this paper lies in
the fact that the reaction rate probability integrals in Maxwell-Boltzmann and Tsallis cases are not
obtained by the conventional method of approximation or by means of a single variable transform
technique but by means of a two variable transform method. The behaviour of the depleted non-
resonant thermonuclear functions are examined using graphs. The results in the paper are of much
interest to astrophysicists and statisticians in their future work in this area.

Keywords: H-function; mellin transform; two variable mellin transform; pathway model; reaction
rate probability integral

MSC: 33C60; 44A05; 44A30; 03C65; 82C05

1. Introduction

Thermonuclear reactions taking place in Sun-like stars has received considerable
interest in the past few years. The reaction rate probability integrals were obtained in closed
forms by using generalized specials functions by many authors, see for example [1–4]. The
evaluation of the reaction rates for low-energy non-resonant thermonuclear reactions in
the non-degenerate case is performed using the principles of nuclear physics and kinetic
theory of gases [5]. A nuclear reaction in which a particle of type i strikes a particle of type
j producing a nucleus p and a new particle q is symbolically represented as i + j→ p + q.
If ni and nj are the number densities of particles i and j, respectively, and if the reaction
cross section is denoted by σ(v) where v is the relative velocity of the particle and f (v) is
the normalized velocity distribution, then the thermonuclear reaction rate rij is obtained
by averaging the reaction cross section over the normalized distribution function of the
relative velocity of the particles given by [3,6,7].

rij = ninj

∫ ∞

0
vs.σ(v) f (v)dv = ninj〈σv〉ij. (1)

The bracketed quantity 〈σv〉ij is the probability per unit time that two particles of
type i and j confined to a unit volume will react with each other. For a non-relativistic,
non-degenerate plasma of nuclei in thermodynamic equilibrium, the particles in the plasma
possess a classical Maxwell–Boltzmann velocity distribution given by [7].

fMBD(v)dv =
( µ

2πkT

) 3
2 exp

(
− µv2

2kT

)
4πv2dv, (2)

where µ is the reduced mass of the particles given by µ =
mimj

mi+mj
, T is the temperature, k is
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the Boltzmann constant. Writing in terms of the relative kinetic energy E = µv2

2 we obtain
the Maxwell–Boltzmann energy distribution as [2,8].

fMBD(E)dE = 2π

(
1

πkT

) 3
2

exp
(
− E

kT

)√
EdE. (3)

Using (1) and (3) we have,

rij = ninj

(
8

πµ

) 1
2
(

1
kT

) 3
2 ∫ ∞

0
Eσ(E) exp

(
− E

kT

)
dE. (4)

For a non-resonant nuclear reactions between two nuclei of charges zi and zj colliding
at low energies below the Coulomb barrier, the reaction cross section has the form [6,8].

σ(E) =
S(E)

E
exp

[
−2π

(µ

2

) 1
2 zizje2

h̄E
1
2

]
, (5)

where e is the quantum of electric charge, h̄ is the Plank’s quantum of action and S(E) is
the cross section factor which is often found to be constant or a slowly varying function of
energy over a limited range of energy given by [3,9].

S(E) ≈ S(0) +
dS(0)

dE
E +

1
2

d2S(0)
dE2 E2 =

2

∑
ν=0

S(ν)(0)
ν!

Eν (6)

Substituting (5) and (6) in (4) we obtain

rij = ninj

(
8

πµ

) 1
2
(

1
kT

) 3
2 2

∑
ν=0

S(ν)(0)
ν!

∫ ∞

0
Eν exp

[
− E

kT
− 2π

(µ

2

) 1
2 zizje2

h̄E
1
2

]
dE. (7)

Putting y = E
kT and x = 2π

( µ
2kT
) 1

2 zizje2

h̄ we have

rij = ninj

(
8

πµ

) 1
2 2

∑
ν=0

(
1

kT

)−ν+ 1
2 S(ν)(0)

ν!

∫ ∞

0
yνe−y−xy−

1
2 dy. (8)

Thus, the reaction rate probability integral in the Maxwell–Boltzmann case is given by

I1(ν, 1, x,
1
2
) =

∫ ∞

0
yνe−y−xy−

1
2 dy. (9)

Let us consider a general form of the integral as

I1(γ− 1, z, x, ρ) =
∫ ∞

0
yγ−1e−zy−xy−ρ

dy, γ ∈ C, z > 0, x > 0, ρ ∈ R+. (10)

Physical situations different from the ideal non-resonant Maxwell–Boltzmann case can
be obtained by modification of the cross section σ(E) for the reacting particles and/or by
the modification of their energy distribution. Some of the non standard physical situations
are as follows [4,10,11]:

1.1. Non-Resonant Case with High Energy Cut-OFF

If the thermonuclear fusion plasma is not in a thermodynamic equilibrium then there
is a cut-off in the high energy tail of the Maxwell–Boltmann distribution function, then the
thermonuclear function to be evaluated takes the form

Id
2 (ν, 1, x,

1
2
) =

∫ d

0
yνe−y−xy−

1
2 dy, x > 0, d < ∞. (11)
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The general form of the integral in this case can be taken as

Id
2 (γ− 1, z, x, ρ) =

∫ d

0
yγ−1e−zy−xy−ρ

dy, γ ∈ C, z > 0, x > 0, d < ∞. (12)

1.2. Non-Resonant Case with Depleted Tail

If we consider an ad hoc modification of the Mawell–Boltzmann distribution, this
looks like a depletion of the tail of the Maxwell–Boltzmann distribution as suggested by
Eder and Motz [12], Clayton et al. [13] and Mathai and Haubold [3], which is given by

I3(ν, 1, 1, δ, x,
1
2
) =

∫ ∞

0
yνe−y−yδ−xy−

1
2 dy, x > 0, δ ∈ R+. (13)

We will consider here the general integral of the type

I3(γ− 1, t, z, δ, x, ρ) =
∫ ∞

0
yγ−1e−ty−zyδ−xy−ρ

dy, (14)

where γ ∈ C, t > 0, z > 0, x > 0, ρ ∈ R+, δ ∈ R+.

1.3. Non-Resonant Case with Screening

The electron screening effects for the reacting particles can modify the cross section of
the reaction. The reaction rate probability integral in this case will take the form

I4(ν, 1, b, t,
1
2
) =

∫ ∞

0
xνe−y−x(y+t)−

1
2 dy, x > 0 , t > 0 (15)

where t is the electron screening parameter. Here, we consider the general integral as

I4(γ− 1, z, x, t, ρ) =
∫ ∞

0
yγ−1e−zy−x(y+t)−ρ

dy, γ ∈ C, z > 0, x > 0, t > 0, ρ ∈ R+. (16)

The evaluation of the integrals I1, Id
2 , I3 and I4 in the physical and astrophysical litera-

ture are by approximating the integrals by means of the method of steepest descent [6,14,15].
The closed forms of the integrals I1, Id

2 , I3 and I4 in terms of Fox’s H-function and Meijer’s
G-function can be seen in a series of papers by Mathai and Haubold, see for example
Haubold and Mathai [7], Mathai and Haubold [4,11] etc. To date, in the literature, the
integral I3, representing the depleted case, is evaluated in closed form after obtaining
approximation of certain terms. In the present paper we will consider the integral I3 in
the depleted case in detail and obtain the closed form evaluation of the function by a
different method. Furthermore, we extend the integral to a more general case than the
Maxwell–Boltzmann case using the pathway model introduced by Mathai in 2005. Hence
the importance of the present study is that it provides the exact analytic solution of I3 and
its pathway extension in closed form.

The paper is organized as follows: In the next section, we consider the general form of
the non-resonant reaction rate probability integral in the Maxwell–Boltzmann case with
depleted tail and obtain the closed form via the H-function in two variables. A more
general form of the depleted non-resonant thermonuclear function is obtained by using
the pathway model in Section 3. Section 4 is devoted to studying the behaviour of the
depleted non-resonant thermonuclear function in the Maxwell–Boltzmann and Tsallis case
and comparing the Maxwell–Boltzmann energy distribution with a more general energy
distribution. Concluding remarks are included in Section 5.

2. Standard Non-Resonant Thermonuclear Functions with Depleted Tail

In this section, we evaluate the integral I3(γ − 1, t, z, δ, x, ρ) and give a representa-
tion for it in terms of H-function in two variables. For non-negative integers m1, m2, m3,
n1, n2, n3, p1, p2, p3, q1, q2, q3 such that 0 ≤ m1 ≤ q1, 0 ≤ m2 ≤ q2,0 ≤ m3 ≤ q3,0 ≤ n2 ≤ p2,
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0 ≤ n3 ≤ p3, for ai, bj, cj, dj, ej, f j ∈ C and for αj, β j, Aj, Bj, Cj, Dj, Ej, Fj ∈ R+ = (0, ∞), the
H-function in two variables is defined via a double Mellin–Barnes type integral in the form

H
[

x
y

]
= Hm1,0:m2,n2 :m3,n3

p1,q1 :p2,q2 :p3,q3

[
x
y

∣∣∣∣ (aj, αj, Aj)1,p1 , (cj, Cj)1,p2 , (ej, Ej)1,p3

(bj, β j, Bj)1,q1 , (dj, Dj)1,q2 , ( f j, Fj)1,q3

]
=

1
(2πi)2

∫
L1

∫
L2

h1(s1, s2)h2(s1)h3(s2)x−s1 y−s2ds1ds2 (17)

where

h1(s1, s2) =

{
m1

∏
j=1

Γ(bj + β js1 + Bjs2)

}
{

q1

∏
j=m1+1

Γ(1− bj − β js1 − Bjs2)

}{
p1

∏
j=1

Γ(aj + αjs1 + Ajs2)

} (18)

h2(s1) =

{
m2

∏
j=1

Γ(dj + Djs1)

}{
n2

∏
j=1

Γ(1− cj − Cjs1)

}
{

q2

∏
j=m2+1

Γ(1− dj − Djs1)

}{
p2

∏
j=n2+1

Γ(cj + Cjs1)

} (19)

h3(s2) =

{
m3

∏
j=1

Γ( f j + Fjs2)

}{
n3

∏
j=1

Γ(1− ej − Ejs2)

}
{

q3

∏
j=m3+1

Γ(1− f j − Fjs2)

}{
p3

∏
j=n3+1

Γ(ej + Ejs2)

} (20)

and x and y are not equal to zero, and an empty product is interpreted as unity. The
contour L1 is in the s1-plane which runs from δ1 − i∞ to δ1 + i∞, which separates all the
poles of Γ(bj + β js1 + Bjs2) and Γ(dj + Djs1) to the left and all the poles of Γ(1− cj − Cjs1)
to the right. The contour L2 is in the s2-plane which runs from δ2 − i∞ to δ2 + i∞, which
separates all the poles of Γ(bj + β js1 + Bjs2) and Γ( f j + Fjs2) to the left and all the poles
of Γ(1− ej − Ejs2) to the right. The H-function in two variable given in (17) will have
meaning even if some of these quantities are zeros. For details about the contours and
existence conditions see Srivastava et al. [16], and Mathai and Saxena [17]. The details of
the H-function and G-function in one variable can be seen in [18–20].

Let the function f (x1, x2) be defined in R2
+ = (0,+∞)× (0,+∞). Then, the Mellin

transform of a function f (x1, x2) in points (s1, s2) ∈ C2 is defined as

M f (s1, s2) =
∫ ∞

0

∫ ∞

0
xs1−1

1 xs2−1
2 f (x1, x2)dx1dx2 (21)

with the inverse

f (x1, x2) =
1

(2πi)2

∫ δ1+i∞

δ1−i∞

∫ δ2+i∞

δ2−i∞
M f (s1, s2)x−s1

1 x−s2
2 ds1ds2. (22)

The conditions under which the (21) and (22) are valid have been discussed by Fox [21]
and Hai and Yakubovich [22]. Now, consider the integral I3(γ− 1, t, z, δ, x, ρ) given in (14).
We evaluate this integral by using the Mellin transform technique for two variables. Using
(21) and

f (t, z) = I3(γ− 1, t, z, δ, x, ρ) =
∫ ∞

0
yγ−1e−ty−zyδ−xy−ρ

dy,

we have,

M f (s1, s2) =
∫ ∞

0

∫ ∞

0
ts1−1zs2−1

∫ ∞

0
yγ−1e−ty−zyδ−xy−ρ

dydtdz.
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Changing the order of integration due to the uniform convergence of the integral, we obtain

M f (s1, s2) =
∫ ∞

0
yγ−1e−xy−ρ

∫ ∞

0
ts1−1e−tydt

∫ ∞

0
zs2−1e−zyδ

dzdy

= Γ(s1)Γ(s2)
∫ ∞

0
yγ−s1−δs2−1e−xy−ρ

dy, <(s1) > 0,<(s2) > 0. (23)

Putting xy−ρ = u we obtain,

M f (s1, s2) =
x

γ−s1−δs2
ρ

ρ
Γ(s1)Γ(s2)Γ

(
s1 + δs2 − γ

ρ

)
,<
(

s1 + δs2 − γ

ρ

)
> 0. (24)

Taking the inverse Mellin transform using (22) we obtain,

f (t, z) =
x

γ
ρ

ρ

1
(2πi)2

∫
L1

∫
L2

Γ(s1)Γ(s2)Γ
(

s1 + δs2 − γ

ρ

)
(x

1
ρ t)−s1(x

δ
ρ z)−s2ds1ds2

=
x

γ
ρ

ρ
H1,0:1,0:1,0

0,1:0,1:0,1

[
x

1
ρ t

x
δ
ρ z

∣∣∣∣∣ −(− γ
ρ , 1

ρ , δ
ρ

)
, (0, 1), (0, 1)

]
. (25)

where H1,0:1,0:1,0
0,1:0,1:0,1 is an H-function in two variables defined as in (17). If 1

ρ is an integer

then put 1
ρ = m, m = 1, 2, · · · . Then, using the multiplication formula for gamma function

defined by [18,19]

Γ(mz) = (2π)
1−m

2 mmz− 1
2 Γ(z)Γ

(
z +

1
m

)
· · · Γ

(
z +

m− 1
m

)
, (26)

where z ∈ C, z 6= 0,−1,−2, ... and m a positive integer, we have (25) as

f (t, z) =
√

m(2π)
1−m

m xmγ

mmγ

× Hm,0:1,0:1,0
0,m:0,1:0,1

[
xmt
mm

xmδz
mmδ

∣∣∣∣∣ −(−γ, 1, δ), (−γ + 1
m , 1, δ), · · · , (−γ + m−1

m , 1, δ), (0, 1), (0, 1)

]
(27)

For the non-resonant case with depleted tail, we have γ = 1 + ν, ρ = 1
2 , then, by using

the duplication formula for gamma functions, we obtain

I3(ν, 1, 1, δ, x,
1
2
) =

2√
π

(
x2

4

)ν+1

× H2,0:1,0:1,0
0,2:0,1:0,1

[
x2

4
x2δ

4δ

∣∣∣∣∣ −(−ν− 1, 1, δ), (−ν− 1
2 , 1, δ), (0, 1), (0, 1)

]
. (28)

Thus, using the H-function in two variables, we have obtained the closed form of the
depleted non-resonant thermonuclear function. It is first time ever in the literature the two
variable Mellin transform technique has been used to obtain the closed form solution of a
non-resonant thermonuclear function and the depleted case in particular, which makes the
result important. Next, we obtain the extension of these results by using the pathway model
of Mathai which helps in generalizing the present results to a more general framework
so that a wider class of integrals are covered, which include the stable as well as the
unstable situations.

3. Extension of the Non-Resonant Thermonuclear Function with Depleted Tail

In this section, we try to extend the non-resonant reaction rate probability integrals
to a more general case. The extension is done by using the pathway model introduced by
Mathai in 2005 [23,24]. This model was first introduced for the matrix variate case but here
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we make use of the scalar case of the model for extension of the results. By the pathway
model, one can move between three different functional forms, namely, the generalized
type-1 beta form, generalized type-2 beta form and the generalized gamma form. The
pathway model for the real scalar case is defined as follows: The generalized type-1 beta
form of the pathway model is given by

f1(x) = c1xγ−1[1− a(1− α)xδ]
1

1−α , a > 0, δ > 0, 1− a(1− α)xδ > 0, γ > 0, α < 1 (29)

where α is the pathway parameter. This is the case of right tail cut-off. For a = 1, γ = 1,
δ = 1 we obtain the Tsallis Statistics for α < 1 [25–27]. For α > 1

f2(x) = c2xγ−1[1 + a(α− 1)xδ]−
1

α−1 , 0 < x < ∞ (30)

is a generalized type-2 beta form of the pathway model. Here, also for γ = 1, a = 1, δ = 1
we obtain the Tsallis Statistics for α > 1 [25–27]. Superstatistics of Beck and Cohen [28] is
obtained for a = 1, δ = 1. As α→ 1 the functions given in (29) and (30) will reduce to the
generalized gamma form of the model given by

f3(x) = c3xγ−1e−axδ
, x > 0. (31)

Here, c1, c2 and c3 are the normalizing constants if we consider the above functions as
statistical densities. Many statistical densities come as particular cases of the above three
functional forms, see Mathai [23] and Mathai and Haubold [24,29] for details. By using the
principles of the pathway model, we can obtain a new energy distribution given by

fPD(E)dE =
2π(α− 1)

3
2

(πkT)
3
2

Γ
(

1
α−1

)
Γ
(

1
α−1 −

3
2

)√E
[

1 + (α− 1)
E

kT

]− 1
α−1

dE, (32)

for α > 1, 1
α−1 −

3
2 > 0, which is more general than the Maxwell–Boltzmann energy distri-

bution defined in (3). As α → 1, we obtain the Maxwell–Boltzmann energy distribution.
Substituting the pathway distribution (32) in (1) and using (5) and (6), we obtain the
reaction rate probability integral in the extended form denoted by r̃ij as

r̃ij = ninj

(
8

πµ

) 1
2
(

α− 1
kT

) 3
2 Γ

(
1

α−1

)
Γ
(

1
α−1 −

3
2

)
×

2

∑
ν=0

S(ν)(0)
ν!

∫ ∞

0
Eν

[
1 + (α− 1)

E
kT

]− 1
α−1

exp

[
−2π

(µ

2

) 1
2 zizje2

h̄E
1
2

]
dE. (33)

This is the extended non-resonant thermonuclear function in the Maxwell–Boltzmannian
form. Putting y = E

kT and x = 2π
( µ

2kT
) 1

2 zizje2

h̄ , we obtain the above integral in a more
simplified form as

r̃ij = ninj

(
8

πµ

) 1
2
(α− 1)

3
2

Γ
(

1
α−1

)
Γ
(

1
α−1 −

3
2

) 2

∑
ν=0

(
1

kT

)−ν+ 1
2

× S(ν)(0)
ν!

∫ ∞

0
yν[1 + (α− 1)y]−

1
α−1 e−xy−

1
2 dy, (34)

for α > 1, 1
α−1 −

3
2 > 0. The integral to be evaluated in this case is of the form

I1α(ν, 1, x,
1
2
) =

∫ ∞

0
yν[1 + (α− 1)y]−

1
α−1 e−xy−

1
2 dy. (35)
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A more general integral to be evaluated in the extended Maxwell–Boltzmann form
can be taken as

I1α(γ− 1, z, x, ρ) =
∫ ∞

0
yγ−1[1 + (α− 1)zy]−

1
α−1 e−xy−ρ

dy. (36)

Other general integrals to be evaluated are

Id
2α(γ− 1, z, x, ρ) =

∫ d

0
yγ−1[1− (1− α)zy]

1
1−α e−xy−ρ

dy, d < ∞, (37)

I3α(γ− 1, t, z, δ, x, ρ) =
∫ ∞

0
yγ−1[1 + (α− 1)ty]−

1
α−1 e−zyδ−xy−ρ

dy, (38)

I4α(γ− 1, z, x, t, ρ) =
∫ ∞

0
yγ−1[1 + (α− 1)zy]−

1
α−1 e−x(y+t)−ρ

dy, t > 0, (39)

which are the extended cut-off case, extended depleted case and extended screened case,
respectively. Among these integrals, the closed form representations of I1α(γ− 1, z, x, ρ)
and Id

2α(γ− 1, z, x, ρ) in terms of Fox’s H-function can be obtained as in [1,2].

I1α(γ− 1, z, x, ρ) =
1

ρ[z(α− 1)]γΓ
(

1
α−1

)H2,1
1,2

(
z(α− 1)x

1
ρ
∣∣(1− 1

α−1+γ,1)
(γ,1), (0, 1

ρ )

)
(40)

and

Id
2α(γ− 1, z, x, ρ) =

Γ
(

1
1−α + 1

)
ρ[z(1− α)]γ

H2,0
1,2

(
z(1− α)b

1
ρ
∣∣(1+γ+ 1

1−α ,1)
(γ,1), (0, 1

ρ )

)
.

For the case of astrophysical interest, the extended Maxwell–Boltzmann case or the
Tsallis reaction rate can be obtained as

r̃ij = ninj

(
8
µ

) 1
2 π−1

Γ
(

1
α−1 −

3
2

) 2

∑
ν=0

(
α− 1

kT

)−ν+ 1
2 S(ν)(0)

ν!
G3,1

1,3

[
(α− 1)x2

4

∣∣2− 1
α−1+ν

0, 1
2 ,ν+1

]
(41)

and the extended cut-off case can be obtained as

r̃d
ij = ninj

(
8

πµ

) 1
2
(1− α)

3
2

Γ
(

1
1−α + 5

2

)
Γ
(

1
1−α + 1

) 2

∑
ν=0

(
1

kT

)−ν+ 1
2

× S(ν)(0)
ν!

∫ d

0
yν[1− (1− α)y]

1
1−α e−xy−

1
2 dy

= ninj

(
8

πµ

) 1
2
π−1Γ

(
1

1− α
+

5
2

) 2

∑
ν=0

(
1− α

kT

)−ν+ 1
2

× S(ν)(0)
ν!

G3,0
1,3

(
(1− α)x2

4

∣∣ν+ 1
1−α +2

0, 1
2 ,ν+1

)
(42)

where Gp,q
m,n is the Meijer’s G-function, see Mathai [18], Mathai and Saxena [20] or Mathai

and Haubold [19] for details. The detailed evaluation of the integrals in terms of H-function
and their special cases in Meijer’s G-functions can be seen in Haubold and Kumar [1,2],
Kumar and Haubold [30]. The integral I4α(γ − 1, z, x, t, ρ) can be obtained in terms of
I1α(γ− 1, z, x, ρ) and Id

2α(γ− 1, z, x, ρ) by some basic arithmetic procedure. Here, we will
evaluate the integral I3α(γ − 1, t, z, δ, x, ρ) and obtain the closed form representation in
terms of H-function in two variables. For, let us consider the integral

g(t, z) = I3α =
∫ ∞

0
yγ−1[1 + (α− 1)ty]−

1
α−1 e−zyδ−xy−ρ

dy.
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We will evaluate this integral also by using the Mellin transform technique as in the
case discussed in the previous section. We have:

M f (s1, s2) =
∫ ∞

0

∫ ∞

0
ts1−1zs2−1

∫ ∞

0
yγ−1[1 + (α− 1)ty]−

1
α−1 e−zyδ−xy−ρ

dydtdz.

Changing the order of integration and simplifying using suitable substitution, we obtain

M f (s1, s2) =
∫ ∞

0
yγ−1e−xy−ρ

∫ ∞

0
ts1−1[1 + (α− 1)ty]−

1
α−1 dt

∫ ∞

0
zs2−1e−zyδ

dzdy

=
Γ(s1)Γ

(
1

α−1 − s1

)
Γ(s2)

(α− 1)s1 Γ
(

1
α−1

) ∫ ∞

0
yγ−s1−δs2−1e−xy−ρ

dy, (43)

where <(s1) > 0,<(s2) > 0,<
(

1
α−1 − s1

)
> 0. Then, simplifying exactly as in the previous

case we obtain

M f (s1, s2) =
x

γ−s1−δs2
ρ

ρ(α− 1)s1 Γ
(

1
α−1

)Γ(s1)Γ
(

1
α− 1

− s1

)
Γ(s2)Γ

(
s1 + δs2 − γ

ρ

)
, (44)

where <(s1) > 0,<(s2) > 0,<
(

1
α−1 − s1

)
> 0,<

(
s1+δs2−γ

ρ

)
> 0. By using (22), we obtain

f (t, z) =
x

γ
ρ

ρΓ
(

1
α−1

)H1,0:1,1:1,0
0,1:1,1:0,1

 x
1
ρ t(α− 1)

x
δ
ρ z

∣∣∣∣∣∣
(

1− 1
α−1 , 1

)(
− γ

ρ , 1
ρ , δ

ρ

)
, (0, 1), (0, 1)

 (45)

where H1,0:1,1:1,0
0,1:1,1:0,1 is an H-function in two variables defined as in (17). If 1

ρ = m, m = 1, 2, · · ·
then by using (26), we obtain

g(t, z) =
√

m(2π)
1−m

m xmγ

mmγΓ
(

1
α−1

)
× Hm,0:1,1:1,0

0,m:1,1:0,1

[
xmt(α−1)

mm

xmδz
mmδ

∣∣∣∣∣
(

1− 1
α−1 , 1

)
(−γ, 1, δ), (−γ + 1

m , 1, δ), · · · , (−γ + m−1
m , 1, δ), (0, 1), (0, 1)

]
. (46)

For the extended non-resonant case with depleted tail, we have γ = 1 + ν, ρ = 1
2 ,

we have,

I3α(ν, 1, 1, δ, x,
1
2
) =

2
√

πΓ
(

1
α−1

)( x2

4

)ν+1

× H2,0:1,0:1,0
0,2:0,1:0,1

[
x2(α−1)

4
x2δ

4δ

∣∣∣∣∣
(

1− 1
α−1 , 1

)
(−ν− 1, 1, δ), (−ν− 1

2 , 1, δ), (0, 1), (0, 1)

]
. (47)

Thus, the integral I3α(ν, 1, 1, δ, x, 1
2 ) obtained here creates a wider class of integral

including the standard integral I3(ν, 1, 1, δ, x, 1
2 ). In the next section, we compare the

standard non-resonant thermonuclear function in depleted tail with the extended depleted
case which illustrates the importance of the present study.
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4. Comparison of the Extended Results with the Standard Results

Here, we try to compare the results obtained in the standard and extended non-
resonant thermonuclear functions in the standard and extended case. In the Mellin–Barnes
integral representation of (47) given by

I3α(ν, 1, 1, δ, x,
1
2
) =

2
√

πΓ
(

1
α−1

)( x2

4

)ν+1 1
(2πi)2

∫
L1

∫
L2

Γ(s1)Γ
(

1
α− 1

− s1

)

× Γ(s2)Γ
(

s1 + δs2 − γ

ρ

)
[x

1
ρ t(α− 1)]−s1(x

δ
ρ z)−s2ds1ds2, (48)

If we take the limit as α → 1, then by using the asymptotic expansion of gamma
function [14,18].

Γ(z + a) ∼ (2π)
1
2 zz+a− 1

2 e−z, z→ ∞, |arg(z + a)| < π − ε, ε > 0, (49)

where the symbol ∼means asymptotically equivalent to, we obtain (28). Thus, α creates
a pathway among the extended depleted case and the standard depleted case by which
one can move from several unstable or chaotic situation to the stable situation α→ 1. By
assuming various values to α, we obtain a more wider class of integral where the limiting
case the Maxwell–Boltzmann situation.

Next, we compare the Maxwell–Boltzmann energy distribution with the pathway
energy distribution. Figure 1a shows the Maxwell–Boltzmann energy distribution for
the value of kT = 100, 200, 300. As we increase the value of kT it is observed that the
function is heavy tailed and less peaked. Figure 1b–d show the pathway distribution for
kT = 100, 200, 300, respectively. fPD(E) is plotted for α = 1, α = 1.1, α = 1.2, α = 1.3,
α = 1.5 and α = 1.6.

From the graphs, it can be observed that the pathway energy distribution ( fPD(E)) is
more general than the Maxwell–Boltzmann energy distribution ( fMBD(E)). We can retrieve
the Maxwell–Boltzmann energy distribution from pathway distribution as α→ 1. As we
increase the value of kT in fPD(E) we observe that the function becomes thinker-tailed and
the peak is reduced.
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(a) (b)

(c) (d)

Figure 1. (a) fMBD(E) for kT = 100, 200, 300. (b) fPD(E) for kT = 100, α = 1, α = 1.1, α = 1.2, α = 1.3, α = 1.5
and α = 1.6. (c) fPD(E) for kT = 200, α = 1, α = 1.1, α = 1.2, α = 1.3, α = 1.5 and α = 1.6. (d) fPD(E) for
kT = 300, α = 1, α = 1.1, α = 1.2, α = 1.3, α = 1.5 and α = 1.6.

5. Conclusions

An attempt has been made to change the energy distribution of the ions in the plasma
from the Maxwell–Boltzmann case. By this change of using the pathway energy distribu-
tion, more unstable and chaotic situations are covered, whereas the standard Maxwell–
Boltzmann situation is retrieved by letting α → 1. It may be noted that even a small
deviation of the energy distribution with α produces dramatic effects on those nuclear
reaction rates whose main contribution comes from the high energy tail of the distribution
which can be observed from the Figure. The extended non-resonant thermonuclear func-
tions in the Maxwell–Boltzmann and cut-off case were already obtained in the paper of
Haubold and Kumar [1,2] by using the single variable Mellin transform technique. Here,
the standard and extended non-resonant thermonuclear functions with depleted tail are
evaluated by using the two variable Mellin transform technique which helped to obtain
more convenient closed form representations. It is first time ever in the literature the
two variable Mellin transform technique and the two variable H-function are utilized to
obtain closed form representations of the thermonuclear functions. The generalization
technique obtained here by means of the pathway model of Mathai provides a motivation
to apply these technique to any other situation were similar circumstances arise, creating a
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more general class of solutions. The figures are plotted by using Maple 14 under Microsoft
Windows XP platform.
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