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1. Introduction

In this paper, L(X) denotes the algebra of all bounded linear operators acting on
an infinite-dimensional complex Banach space X. By H(σ(T)), we denote the set of all
analytic functions defined on an open neighborhood of σ(T), where σ(T) is the spectrum
of T ∈ L(X), and also for f ∈ H(σ(T)), we define f (T) by means of the classical functional
calculus. The notion of invertibility for an operator T ∈ L(X) admits several generalizations
and has some significance in investigating the relationships between the spectral properties
of T and the spectral properties of a “generalized inverse” of T, if this exists. For instance,
the relationship of “reciprocity” mentioned above between the points of the approximate
point spectrum has been recently observed in the case that the “generalized inverse” is
given in the sense of left m-invertible operators [1]. Another generalization of the notion of
invertibility, which satisfies some relationships of “reciprocity” observed above, is provided
by the concept of Drazin invertibility. Recall that an operator T ∈ L(X) is said to be Drazin
invertible if there exists an operator S ∈ L(X) (called the Drazin inverse of T) and an integer
n ≥ 0 such that

TS = ST, STS = S, TnST = Tn. (1)

The operator S described in (1) is unique and also is Drazin invertible (see [2]).
In this case, T∗ (the dual operator of T) is Drazin invertible with Drazin inverse S∗, be-
cause (T∗)n = T∗S∗(Tn)∗ = T∗T∗S∗(Tn−1)∗ = (T∗)2S∗(Tn−1)∗ = . . . = (T∗)nS∗T∗. In
addition, if T ∈ L(X) is a Drazin invertible operator, then T and S satisfy the equation
TnSTn = TnSTTn−1 = TnTn−1 = T j for the same integers j = 2n− 1 > n ≥ 0 (see [3]).
The transfer of some spectral properties from T to S was studied in [4], but none of these
properties involve the B-Fredholm theory. Moreover, in the literature, the relationship
among the B-Fredholm spectra of a Drazin invertible operator with those of its Drazin
inverse has not been studied. In this work, we study the transfer of the polaroid condition
and the single-valued extension property, from a Drazin invertible operator T to its Drazin
inverse S. Furthermore, we show that the classical Weyl type theorems and other spectral
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properties are equivalent for f (S∗), where f ∈ H(σ(T)). Next, we show that the nonzero
points among the B-Fredholm spectra of T and S satisfy a reciprocal relationship. Finally,
we establish that the forty-four spectral properties in [5] (Table 1) are transferred from T to
S; in particular, the properties defined with B-Fredholm spectra. The importance of this
study is that it enables an extension of the theoretical framework of the transmission of
Weyl and Browder type theorems (generalized or not) from a Drazin invertible operator to
its Drazin inverse.

2. Preliminaries and Basic Results

In this section, we present some basic definitions and results that will be useful
throughout this manuscript. For T ∈ L(X), we denote by α(T) the dimension of ker (T)
(the kernel of T), by β(T) the co-dimension of T(X) (the range of T), by p(T) and q(T) the
ascent and descent of T, respectively. We refer to [6] for more details on notations and
terminologies. However, we give the following notations for some spectra:

• Fredholm spectrum: σe(T),
• Upper semi-Fredholm spectrum: σus f (T),
• Lower semi-Fredholm spectrum: σls f (T),
• B-Fredholm spectrum: σb f (T),
• Upper semi B-Fredholm spectrum: σub f (T),
• Lower semi B-Fredholm spectrum: σlb f (T),
• Approximate point spectrum: σa(T),
• Surjective spectrum: σs(T),
• Weyl spectrum: σw(T),
• Upper semi-Weyl spectrum: σuw(T),
• Lower semi-Weyl spectrum: σlw(T),
• B-Weyl spectrum: σbw(T),
• Upper semi B-Weyl spectrum: σubw(T),
• Lower semi B-Weyl spectrum: σlbw(T),
• Browder spectrum: σb(T),
• Upper semi-Browder spectrum: σub(T),
• Drazin invertible spectrum: σd(T),
• Left Drazin invertible spectrum: σld(T),
• Right Drazin invertible spectrum: σrd(T).

The single-valued extension property introduced by Finch in [7] plays a relevant role
in local spectral theory. An operator T ∈ L(X) is said to have the single-valued extension
property at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc D with λ0 ∈ D, the only
analytic function f : D → X that satisfies the equation (λI − T) f (λ) = 0 for all λ ∈ D is
the function f ≡ 0. The operator T is said to have SVEP, if it has SVEP at every point λ ∈ C.
It is easy to prove that T ∈ L(X) has SVEP at every isolated point of σ(T) and at each point
of the resolvent set ρ(T) := C \ σ(T). Moreover,

p(λI − T) < ∞⇒ T has SVEP at λ, (2)

and dually
q(λI − T) < ∞⇒ T∗ has SVEP at λ, (3)

see [8] (Theorem 3.8). From the definition of the localized SVEP, it is easily seen that

σa(T) does not cluster at λ⇒ T and has SVEP at λ, (4)

and dually
σs(T) does not cluster at λ⇒ T∗ and has SVEP at λ. (5)
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Note that H0(T) := {x ∈ X : ‖Tn(x)‖1/n → 0, n → ∞}, the quasi-nilpotent part of
T ∈ L(X), generally is not closed and by [8] (Theorem 2.31), we have

H0(λI − T) closed⇒ T has SVEP at λ. (6)

Remark 1. The converse of the implications (2)–(6) holds, whenever λI − T is a quasi-Fredholm
operator; in particular, whenever λI − T is left Drazin invertible or right Drazin invertible (see [9]).

Denote by iso A, the set of all isolated points of A ⊆ C. For T ∈ L(X), define the
following sets:

π00(T) := {λ ∈ iso σ(T) : 0 < α(λI − T) < ∞},
E(T) := {λ ∈ iso σ(T) : 0 < α(λI − T)},

Ea(T) := {λ ∈ iso σa(T) : 0 < α(λI − T)}.

The previous sets allow defining some spectral properties that will be treated in
this article.

Definition 1. An operator T ∈ L(X) is said to satisfy:

1. Property (R) [10] if σa(T) \ σub(T) = π00(T).
2. Property (gR) [11] if σa(T) \ σld(T) = E(T).
3. Property (w) [12] if σa(T) \ σuw(T) = π00(T).
4. Property (gw) [13] if σa(T) \ σubw(T) = E(T).
5. Property (Sb) [14] if σubw(T) = σb(T).
6. Property (VE) [5] if σ(T) \ σuw(T) = E(T).
7. Property (gz) [15] if σ(T) \ σubw(T) = Ea(T).

Theorem 1 ([5]). An operator T ∈ L(X) satisfies property (VE) if and only if T satisfies property
(gz) and σubw(T) = σuw(T).

Theorem 2 ([16]). If T ∈ L(X) is Drazin invertible with Drazin inverse S, then 0 ∈ σ(S) \
σuw(S) if and only if 0 ∈ σ(T) \ σuw(T).

Next, we consider five results that were proved in [4], which are interesting since they
present some basic relationships for Drazin invertible operators.

Lemma 1. If T ∈ L(X) is Drazin invertible with Drazin inverse S, then the following state-
ments hold:

1. 0 ∈ σ(T) if and only if 0 ∈ σ(S).
2. 0 ∈ iso σ(T) if and only if 0 ∈ iso σ(S).
3. 0 < α(T) < ∞ if and only if 0 < α(S) < ∞.

Theorem 3. If T ∈ L(X) is Drazin invertible with Drazin inverse S, then T has SVEP at λ 6= 0
if and only if S has SVEP at λ−1.

Theorem 4. If T ∈ L(X) is Drazin invertible with Drazin inverse S and λ 6= 0, then for all
k ∈ N, we have:

1. ker (λI − S)k = ker (λ−1 I − T)k.
2. (λI − S)k(X) = (λ−1 I − T)k(X).

Theorem 5. If T ∈ L(X) is Drazin invertible with Drazin inverse S and λ 6= 0, then the following
statements hold:

1. p(λI − T) = p(λ−1 I − S).
2. q(λI − T) = q(λ−1 I − S).
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Theorem 6. If T ∈ L(X) is Drazin invertible with Drazin inverse S, then the following state-
ments hold:

1. σw(S) \ {0} = {λ−1 : λ ∈ σw(T) \ {0}}.
2. σuw(S) \ {0} = {λ−1 : λ ∈ σuw(T) \ {0}}.

The following remark will be useful in obtaining some of our results.

Remark 2. Note that the implication p(T) < ∞⇒ p(T[n]) < ∞ always holds, since ker (Tp|Tn(X))
= ker (Tp) ∩ Tn(X).

3. Weyl and Browder Type Theorems and Related Properties

In this section, we study the connection among some Weyl and Browder type theorems.
This will enable obtaining some additional results of this paper. In order to established
some relations among property (gR) (resp. property (R)) and other Weyl type theorems,
we require the following two theorems.

Theorem 7. An operator T ∈ L(X) satisfies property (gw) if and only if T satisfies property (gR)
and T has SVEP at each λ /∈ σubw(T).

Proof. Assume that T satisfies property (gw). Let λ ∈ E(T). Then λ ∈ iso σ(T) and
0 < α(λI− T), it follows that T has SVEP in λ. By hypothesis, we have λ ∈ σa(T) \ σubw(T),
and so exists an integer n ≥ 0 such that (λI − T)[n] is an upper semi-Weyl operator.
By Remark 1, p(λI − T) < ∞, which implies by Remark 2 that p((λI − T)[n]) < ∞. Hence,
λ ∈ σa(T) \ σld(T) and so E(T) ⊆ σa(T) \ σld(T). As we have always σa(T) \ σld(T) ⊆
σa(T) \ σubw(T), and as T satisfies property (gw), it follows that σa(T) \ σld(T) ⊆ E(T).
Therefore, σa(T) \ σld(T) = E(T) and T satisfies property (gR). On the other hand, let
λ /∈ σubw(T). We consider two cases:

Case 1. λ /∈ σa(T).
Case 2. λ ∈ σa(T).
In Case 1, obviously T has SVEP at λ. In the Case 2, λ ∈ σa(T) \ σubw(T) = E(T) and

so λ ∈ iso σ(T), hence T has SVEP at λ again.
Conversely, let λ ∈ σa(T) \ σubw(T). Since T has SVEP at λ, by Remark 1, we have

p(λI − T) < ∞ and so λ ∈ σa(T) \ σld(T) = E(T). Furthermore, E(T) = σa(T) \ σld(T) ⊆
σa(T) \ σubw(T). Therefore, σa(T) \ σubw(T) = E(T) and T satisfies property (gw).

Remark 3. In [13] (Theorem 2.6), we can see another proof of Theorem 7 using different methods.

Considering Remark 1 and proceeding analogously as in the proof of Theorem 7, we
obtain the following result.

Theorem 8. An operator T ∈ L(X) satisfies property (w) if and only if T satisfies property (R)
and T has SVEP at each λ /∈ σuw(T).

We end this section by giving some results in connection with property (VE), which
we will use in Section 4.

Theorem 9. Let T ∈ L(X). The following statements are equivalent:

1. T satisfies properties (Sb) and (gz).
2. T satisfies property (VE).

Proof. (1) ⇒ (2). If T satisfies both properties (Sb) and (gz), then σubw(T) = σb(T)
and σ(T) \ σubw(T) = Ea(T). Thus, σubw(T) = σuw(T) = σub(T) = σb(T) and by [16]
(Lemma 2.1), it follows that σ(T) = σa(T). Therefore, σ(T) \ σuw(T) = σ(T) \ σubw(T) =
Ea(T) = E(T) and so T satisfies property (VE).
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(2)⇒ (1). It follows from [5] (Theorem 2.27).

Theorem 10. If T ∈ L(X) satisfies property (VE) and T has SVEP at each λ /∈ σlw(T), then
σw(T) = σuw(T) = σlw(T).

Proof. The first equality σuw(T) = σw(T) was given in [5] (Theorem 2.27). It only remains
to prove that σw(T) ⊆ σlw(T). Indeed, let λ /∈ σlw(T). Then λI − T is a lower semi-
Fredholm operator and as T has SVEP at λ, by Remark 1, we have p(λI − T) < ∞, which
implies that λ /∈ σuw(T). Hence, λ /∈ σw(T) and so σw(T) = σlw(T).

Recall that an operator T ∈ L(X) is polaroid if the isolated points of the spectrum
of T, points belonging iso σ(T), are poles of the resolvent of T. It is well-known, from
Reference [17] (Theorem 2.11), that T∗ is polaroid if and only if T is polaroid.

Theorem 11. Let T ∈ L(X) be a polaroid operator that has SVEP at each λ /∈ σlw(T). If T
satisfies property (VE), then T∗ satisfies property (VE).

Proof. Since T is polaroid, T∗ is also polaroid, it follows that E(T) = Π(T) = Π(T∗) =
E(T∗). On the other hand, as T has SVEP at each λ /∈ σlw(T), then by Theorem 10,
we have σ(T∗) \ σuw(T∗) = σ(T) \ σlw(T) = σ(T) \ σuw(T) and therefore, T∗ satisfies
property (VE).

4. B-Fredholm Spectra and Drazin Invertible Operators

In this section, we consider the transfers of the SVEP and the polaroid condition from
T ∈ L(X) to their Drazin inverse S. Consequently, we establish some spectral properties
for f (S∗), where f ∈ H(σ(T)). Moreover, we investigate the close relationship among the
B-Fredholm spectra of Drazin invertible operators.

Remark 4. For a Drazin invertible operator T ∈ L(X), we have:

1. The polaroid condition is transferred from T to their Drazin inverse S. Indeed, by Reference [6]
(Theorem 4.22), if T is polaroid, then S is too and also S∗ is polaroid (see [17] (Theorem 2.8)).
Moreover, if T is polaroid and f ∈ H(σ(T)), then f (S) and ( f (S))∗ = f (S∗) are polaroid
(see [17] (Lemma 3.11)).

2. The SVEP is transferred from T to their Drazin inverse S. To see this, note that if T has SVEP
at each λ 6= 0, then by Theorem 3, we conclude that S has SVEP at λ−1. Since p(S) < ∞,
we conclude that S has SVEP. Moreover, if T has SVEP and f ∈ H(σ(T)), then f (S) has
SVEP (see [8] (Theorem 2.40)). Similarly, we deduce that S∗ has SVEP whenever T∗ has
SVEP and, in this case, we have ( f (S))∗ = f (S∗) has SVEP for each f ∈ H(σ(T)).

Some operators are polaroid and their dual operators have SVEP, but they are not
Drazin invertible.

Example 1. Let H2(T) denote the Hardy space of the unit circle T in the complex plane. Given
φ ∈ L∞(T), the Toeplitz operator with symbol φ is the operator on H2(T) defined by

Tφ : f 7−→ P(φ f ),

where f ∈ H2(T) and P is the orthogonal projection of L∞(T) onto H2(T). We denote by C(T) the
algebra of all complex-valued continuous functions on T. Consider φ ∈ C(T) and denote Γ = φ(T).
By Reference [6] (Theorem 4.99), if φ is non-constant, then iso σ(Tφ) = ∅. Furthermore, it is
shown in [6] (Theorem 4.100) that if the orientation of the curve Γ traced out by φ is clockwise, then
T∗φ has SVEP. Thus, if Tφ has continuous symbol φ non-constant and the orientation of the curve Γ
traced out by φ is clockwise, then Tφ is a polaroid operator such that T∗φ has SVEP, but Tφ is not a
Drazin invertible operator.
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In the following theorem, we use the notation (W) (resp. (aW), (gW), (gaW)) for the
classic Weyl’s (resp. a-Weyl’s, generalized Weyl’s, generalized a-Weyl’s) theorem.

Theorem 12. Let T ∈ L(X) be a polaroid Drazin invertible operator with Drazin inverse S
and let f ∈ H(σ(T)) be not constant on each of the components of its domain. The following
statements hold:

1. If T∗ has SVEP, then properties (W), (aW), (R), (w), (gW), (gaW), (gR) and (gw) are
equivalent for f (S), and f (S) satisfies each of these properties.

2. If T has SVEP, then properties (W), (aW), (R), (w), (gW), (gaW), (gR) and (gw) are
equivalent for f (S∗), and f (S∗) satisfies each of these properties.

Proof. (1). By hypothesis and Remark 4, we have that f (S∗) is a polaroid operator and
f (S) has SVEP. Thus, by [17] (Theorem 3.12), it follows that f (S) satisfies properties (W),
(aW), (w), (gW), (gaW), (gw), and these properties are equivalent for f (S). On the other
hand, from Theorems 7 and 8, we obtain that properties (R), (gR) and (W) are equivalent
for f (S).

(2). Argue as in the proof of part (1). Just replace T∗ with T, and S with S∗.

Example 2. If T ∈ L(X) is a Drazin invertible H(p)-operator with Drazin inverse S, then
f (S∗) satisfies (ii) of Theorem 12, because in this case T is a polaroid operator having SVEP
(see [17]). An example of Drazin invertible H(p)-operators is the class of algebraic operators, see [8]
(Theorem 3.93 and Corollary 2.47). Nilpotent operators are special cases of algebraic operators.
An extensive class of nilpotent operators is the class of the analytically quasi-T HN operators,
which are quasi-nilpotent over L(H), where H is a Hilbert space (see [8] (Theorem 6.188)). In
addition, idempotent operators are algebraic, similar to operators for which some power has a
finite-dimensional range.

Next, we establish some results that relate the B-Fredholm spectra of a Drazin invert-
ible operator and those of its Drazin inverse. These are important because they will allow
the transfer of spectral properties defined in terms of the B-Fredholm spectra from a Drazin
invertible operator to its Drazin inverse.

Lemma 2. If T ∈ L(X) is a Drazin invertible operator with Drazin inverse S, then for each integer
n ≥ 0 and λ 6= 0 we have:

1. α[(λI − S)[n]] = α[(λ−1 I − T)[n]].
2. β[(λI − S)[n]] = β[(λ−1 I − T)[n]].
3. ind ((λI − S)[n]) = ind ((λ−1 I − T)[n]).

Proof. 1. For each integer n ≥ 0 and T ∈ L(X), we have ker (T[n]) = ker(T) ∩ Tn(X).
Then by Theorem 4 (case k = n), it follows that

ker(λI − S)[n] = ker(λI − S) ∩ (λI − S)n(X)

= ker(λ−1 I − T) ∩ (λ−1 I − T)n(X)

= ker(λ−1 I − T)[n], for all λ 6= 0.

Therefore, α[(λI − S)[n]] = α[(λ−1 I − T)[n]].
2. For each integer n ≥ 0 and T ∈ L(X), we have T[n](Tn(X)) = Tn+1(X). Then by

Theorem 4 (case k = n + 1), we have

(λI − S)[n]((λI − S)n(X)) = (λI − S)n+1(X) = (λ−1 I − T)n+1(X)

= (λ−1 I − T)[n]((λ
−1 I − T)n(X)).
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Therefore, β[(λI − S)[n]] = β[(λ−1 I − T)[n]].
3. Since ind (T) = α(T)− β(T), we have (3) follows from (1) and (2).

In the following theorem, we show that for a Drazin invertible operator T, the rela-
tionship of reciprocity between the nonzero parts of the B-Fredholm spectra of T and the
B-Fredholm spectra of its Drazin inverse, is true.

Theorem 13. Let T ∈ L(X) be a Drazin invertible operator with Drazin inverse S and λ 6= 0.
The following statements hold:

1. λ /∈ σus f (T) if and only if λ−1 /∈ σus f (S).
2. λ /∈ σubw(T) if and only if λ−1 /∈ σubw(S).
3. λ /∈ σld(T) if and only if λ−1 /∈ σld(S).
4. λ /∈ σub f (T) if and only if λ−1 /∈ σub f (S).

Proof. Without loss of generality, we prove only a sense of equivalences.

1. If λ /∈ σus f (T), then α(λI− T) < ∞ and (λI− T)(X) are closed. Hence, by Theorem 4,
we get that α(λ−1 I − S) < ∞ and (λ−1 I − S)(X) are closed, which implies that
λ−1 /∈ σus f (S).

2. If λ /∈ σubw(T), then ind(λI − T)[n0]
≤ 0 and (λI − T)n0(X) are closed, for some

integer n0 ≥ 0. Furthermore, by Lemma 2, ind (λ−1 I − S)[n0]
≤ 0 and, by Theorem 4,

we have (λ−1 I − S)n0(X) = (λI − T)n0(X) is closed. Hence, λ−1 /∈ σubw(S).
3. If λ /∈ σld(T), then λ /∈ σubw(T) and by part (2), it follows that λ−1 /∈ σubw(S).

Also, by Remark 2, there exists an integer n ≥ 0 such that k := p((λI − T)[n]) < ∞.
Proceeding as in the proof of Lemma 2, we deduce that ker(λ−1 I − S)k

[n] = ker(λI −
T)k

[n]. Thus, we get that p((λ−1 I − S)[n]) < ∞ and hence, λ−1 /∈ σld(S).

4. The proof of “λ−1 /∈ σub f (S) if λ /∈ σub f (T)” is similar to the proof of part (1). Just use
Lemma 2.

Theorem 14. Let T ∈ L(X) be a Drazin invertible operator with Drazin inverse S and λ 6= 0.
The following statements hold:

1. λ /∈ σls f (T) if and only if λ−1 /∈ σl f (S).
2. λ /∈ σlbw(T) if and only if λ−1 /∈ σlbw(S).
3. λ /∈ σrd(T) if and only if λ−1 /∈ σrd(S).
4. λ /∈ σlb f (T) if and only if λ−1 /∈ σlb f (S).

Proof. By Theorem 4 (case k = 1), we have β(λI − S) = β(λ−1 I − T), and by Theorem 5,
q(λI − S) = q(λ−1 I − T). In addition, by Lemma 2, β[(λI − S)[n]] = β[(λ−1 I − T)[n]] and
ind (λI − S)[n] = ind (λ−1 I − T)[n] for each integer n ≥ 0 and λ 6= 0. Thus, proceeding as
in the proof of Theorem 13, the result is obtained.

Combining Theorems 13 and 14, we obtain the following corollary.

Corollary 1. Let T ∈ L(X) be a Drazin invertible operator with Drazin inverse S and λ 6= 0.
The following statements hold:

1. λ /∈ σe(T) if and only if λ−1 /∈ σe(S).
2. λ /∈ σb f (T) if and only if λ−1 /∈ σb f (S).
3. λ /∈ σbw(T) if and only if λ−1 /∈ σbw(S).
4. λ /∈ σd(T) if and only if λ−1 /∈ σd(S).

Various spectral properties are defined through the spectral subsets Ea(T) and E(T),
so it is also necessary to study the reciprocity relationship for these subsets.
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Theorem 15. Let T ∈ L(X) be a Drazin invertible operator with Drazin inverse S and λ 6= 0.
The following statements hold:

1. λ ∈ Ea(S) if and only if λ−1 ∈ Ea(T).
2. λ ∈ E(S) if and only if λ−1 ∈ E(T).

Proof. 1. Let λ ∈ Ea(S) then λ ∈ iso σa(S) and 0 < α(λI − S). By Theorem 4 (case k = 1),
we get that 0 < α(λ−1 I − T). Note that λ−1 ∈ iso σa(T), otherwise we have λ ∈ acc σa(S).
Hence, λ−1 ∈ Ea(T). The converse is clear.

2. It is similar to part (1).

Remark 5. Let P be the set of all spectral properties that appear in [5](Table 1). If T satisfies prop-
erty (VE), then by [5] (Theorem 2.27), all properties in P are equivalent and T satisfies each of these
properties; in this case, T has SVEP at each λ /∈ σubw(T) (resp. λ /∈ σuw(T)), which implies by [11]
(Theorem 2.7) that property (gR) (resp. property (R)) is part of the aforementioned equivalence.

5. Some Applications

Throughout this section, let T ∈ L(X) be a Drazin invertible operator with Drazin
inverse S. According to [18], an operator T ∈ L(X) is said to satisfy property (VΠ) if
σuw(T) = σd(T). It was shown in [16] (Theorem 4.3) that T satisfies property (VΠ) if and
only if S satisfies property (VΠ). In this case, S is a Browder operator, because by [18]
(Theorem 2.27), we have σd(S) = σb(S). In this section, we transfer spectral properties
defined in terms of B-Fredholm spectra from T to S. Specifically, we have the following
results:

1. Recall that T ∈ L(X) satisfies property (gaz) [15] if σ(T) \ σubw(T) = σa(T) \ σld(T).
It was shown in [15] (Theorem 3.4) that T satisfies property (gaz) if and only if
σubw(T) = σld(T) and σa(T) = σ(T). In fact, this property is transferred from T to S.
Indeed, if T satisfies property (gaz) and λ 6= 0, then combining Theorems 4, 5 and 13,
we have

λ ∈ σ(S) \ σubw(S) ⇔ λ−1 ∈ σ(T) \ σubw(T)

⇔ λ−1 ∈ σa(T) \ σld(T)

⇔ λ ∈ σa(S) \ σld(S).

On the other hand, as S is a Drazin invertible operator, we have 0 ∈ iso σ(S) and
0 /∈ σubw(S). Consequently, 0 ∈ σ(S) \ σubw(S) and 0 ∈ σa(S) \ σld(S). Therefore,
σ(S) \ σubw(S) = σa(S) \ σld(S) and S satisfies property (gaz). An example of this type
of operators is the operator T ∈ `2(N) defined by T(x1, x2, x3, . . .) = (0, x2, x3, . . .),
for which σ(T) = σa(T) = {0, 1}, σubw(T) = σd(T) = ∅. Hence, T is a Drazin
invertible operator that satisfies property (gaz), it follows that S satisfies property
(gaz), or equivalently, by [19] (Theorem 3.6), S∗ has SVEP at each λ ∈ σubw(S).

2. Generalized a-Weyl’s theorem is transferred from T to S. Indeed, if λ 6= 0, then
combining Theorems 4, 13 and 15, we have

λ ∈ σa(S) \ σubw(S)⇔ λ−1 ∈ σa(T) \ σubw(T) = Ea(T)⇔ λ ∈ Ea(S).

Note that by Lemma 1, for λ = 0, there is no problem because T and S are left Drazin
invertible operators and hence, T(X) and S(X) are closed when α(T) = α(S) = 0.
Therefore, σa(S) \ σubw(S) = Ea(S), and S satisfies generalized a-Weyl’s theorem.
Similarly, we get that if T satisfies property (gR), then S satisfies property (gR). This
is also true for generalized Weyl’s theorem and property (gw).

3. Property (VE) is transferred from T to S. If λ ∈ σ(S) \ σuw(S) and λ 6= 0, then by
Theorem 6, λ−1 ∈ σ(T) \ σuw(T). Since T satisfies property (VE), we have λ−1 ∈ E(T),
which implies, by Theorem 15, that λ ∈ E(S). Therefore, σ(S) \ σuw(S) ⊆ E(S).
Similarly, if λ 6= 0 and λ ∈ E(S), then λ−1 ∈ E(T) and so, λ−1 ∈ σ(T) \ σuw(T).
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By Theorem 6, we have λ ∈ σ(S) \ σuw(S). Hence, E(S) ⊆ σ(S) \ σuw(S). Observe
that by Lemma 1 and Theorem 2, for λ = 0, there is no difficulty. Thus, we conclude
that σ(S) \ σuw(S) = E(S) and S satisfies property (VE). An example of this type
of operator is a quasi-nilpotent operator T ∈ L(Cn), which is Drazin invertible and
satisfies property (VE).

4. If T satisfies properties (gz) and (Sb), then by Theorem 9, we have T satisfies property
(VE). By part (3), we obtain that S satisfies property (VE), which implies, by Remark 5,
that all properties in P are equivalent for S, and S satisfies each of these properties.

5. Let T ∈ L(X) be a polaroid operator having SVEP at each λ /∈ σlw(T). If T satisfies
property (VE), then S∗ satisfies property (VE). Indeed, by Theorem 11, T∗ satisfies
property (VE) and by part (3), S∗ satisfies property (VE).

6. An operator T ∈ L(X) satisfies property (gbz) (resp. (bz)) [20] if σub f (T) = σld(T)
(resp. σus f (T) = σub(T)). By Theorems 6 and 13, and Lemma 1, we get that if T
satisfies property (gbz) (resp. (bz)), then S satisfies property (gbz) (resp. (bz)).

6. Conclusions

This paper studied the relationship between some spectra originating from the B-
Fredholm theory of a Drazin operator invertible and its Drazin inverse; some applications
concerning the polaroid property and SVEP of these operators were given. It should be
noted that by the results established in this paper, it follows that each spectral property is
defined in terms of Fredholm or B-Fredholm spectra; in particular, each property belonging
to P is transferred from T to their Drazin inverse S.
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