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Abstract: In this paper, a new self-adaptive step size algorithm to approximate the solution of the
split minimization problem and the fixed point problem of nonexpansive mappings was constructed,
which combined the proximal algorithm and a modified Mann’s iterative method with the inertial
extrapolation. The strong convergence theorem was provided in the framework of Hilbert spaces
and then proven under some suitable conditions. Our result improved related results in the literature.
Moreover, some numerical experiments were also provided to show our algorithm’s consistency,
accuracy, and performance compared to the existing algorithms in the literature.
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1. Introduction

Throughout this paper, we denote two nonempty closed convex subsets of two real
Hilbert spaces H1 and H2 by C and Q, respectively. We denote the orthogonal projections
onto a set C by PC and let A∗ : H2 → H1 be an adjoint operator of A : H1 → H2, where A
is a bounded linear operator.

Over the past decade, inverse problems have been widely studied since they stand
at the core of image reconstruction problems and signal processing. The split feasibility
problem (SFP) is one of the most popular inverse problems that has attracted the attention
of many researchers. Cencer and Elfving first considered the split feasibility problem (SFP)
in 1994 [1]. The split feasibility problem (SFP) can mathematically be expressed as follows:
find an element x with:

x ∈ C such that Ax ∈ Q. (1)

As mentioned above, the SFP (1) has received much attention from many researchers
because it can be applied to various science branches. Several practical algorithms to solve
the SFP (1) presented in recent years were given in [2–7]. It is important to note that the
split feasibility problem (SFP) (1) is equivalent to the following minimization formulation:

min
x∈C

1
2
‖Ax− PQ Ax‖2. (2)

In 2002, Byrne [2] introduced a practical method called the CQ algorithm for solving
the SFP, which is defined as follows:

xn+1 = PC(xn − τn A∗(A− PQ A)xn), (3)

Axioms 2021, 10, 109. https://doi.org/10.3390/axioms10020109 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-3300-0106
https://orcid.org/0000-0002-8496-7803
https://doi.org/10.3390/axioms10020109
https://doi.org/10.3390/axioms10020109
https://doi.org/10.3390/axioms10020109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10020109
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10020109?type=check_update&version=2


Axioms 2021, 10, 109 2 of 18

for all n ≥ 1 and x1 ∈ H1 is arbitrarily chosen. They considered the step size τn ∈
(0, 2/‖A‖2). The advantage of the CQ algorithm is that there is no need to compute the
inverse of a matrix because it only deals with an orthogonal projection. However, the CQ
algorithm still needs to compute an operator norm of A.

A self-adaptive step size was then introduced by Yang [8] to avoid computing an
operator norm of A. Yang designed the step size as follows:

τn =
ρn

‖A∗(I − PQ)Axn‖
, (4)

where ρn is a positive sequence parameter that satisfies ∑∞
n=0 ρn = ∞ and ∑∞

n=0 ρ2
n < ∞.

Moreover, there are two additional conditions for the self-adaptive step size: (1) Q must be
a bounded subset; (2) A must be a full-column-rank matrix.

After that, López [9] modified a self-adaptive step size to remove the two additional
conditions of Yang [8]. López then obtained a practical self-adaptive step size given by:

τn =
ρn‖(I − PQ)Axn‖
‖A∗(I − PQ)Axn‖2 , (5)

where ρn is a positive sequence bounded below by zero and bounded above by four.
The split minimization problem is presented below. Let f and g be two proper semi-

continuous and convex functions on H1 and H2, respectively. Moudafi and Thakur [10]
considered the interesting problem called the proximal split feasibility problem. This
problem is defined to find a minimizer x such that:

min
x∈H1
{ f (x) + gλ(Ax)} (6)

where λ > 0 and gλ(Ax) is the following Moreau–Yoshida approximate:

gλ(Ax) = min
y∈H2

{
g(y) +

1
2λ
‖y− Ax‖2

}
. (7)

It is fascinating to observe the case of C ∩ A−1Q 6= ∅. The minimization problem (6)
can be reduced to the SFP (1) when we set f = δC and g = δQ, where δC and δQ are the
indicator functions of the subsets C and Q, respectively. The reader can refer to [11] for
details. By using the relations (7), we can then define the proximity operator of a function
g of order λ as the following form:

proxλg(y) = arg min
ỹ∈H2

{
g(ỹ) +

1
2λ
‖ỹ− y‖2

}
. (8)

Moreover, the subdifferential of function f at the point x is given by the following form:

∂ f (x) = {x̂ ∈ H1 | f (x) + 〈x̂, x̄− x〉 ≤ f (x̄), ∀x̄ ∈ H1}. (9)

Recall the following notations:

arg min f = {x̂ ∈ H1 : f (x̂) ≤ f (x), ∀x ∈ H1}

and
arg min g = {ŷ ∈ H2 : g(ŷ) ≤ g(y), ∀y ∈ H2}.

In the case of (arg min f ) ∩ (A−1 arg min g) 6= ∅, Moudafi and Thakur [10] also
considered a generalization for the minimization problem (6), named the split minimization
problem (SMP), which can be expressed to find:

x ∈ arg min f such that Ax ∈ arg min g. (10)
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Besides considering the SMP (10), they also introduced an algorithm to solve the
SMP (10). It is defined as follows:{

xn+1 = proxλτn f (I − τn A∗(I − proxλg A)xn), ∀n ≥ 1, (11)

where x1 ∈ H1 is arbitrarily chosen and τn is a self-adaptive step size. In addition, Moudafi
and Thakur [10] proved a weak convergence result under some suitable conditions imposed
on the parameters.

Recently, Abbas [12] constructed and introduced two iterative algorithms to solve the
split minimization problem (SMP) (10). These algorithms are defined as follows:{

xn+1 = proxλτn f ((1− εn)− τn A∗(I − proxλg)A)xn, ∀n ≥ 1, (12)

and: {
xn+1 = (1− εn)proxλτn f (I − τn A∗(I − proxλg)A)xn, ∀n ≥ 1, (13)

where x1 is arbitrarily chosen, step size τn =
ρn(h(xn) + l(xn))

‖∇h(xn)‖2 + ‖∇l(xn)‖2 with ρn ∈ (0, 4),

and functions h, l,∇h and ∇l are defined in Section 3. Abbas [12] provided the sequences
generated by the algorithms (12) and (13), which converge strongly to a solution.

Furthermore, currently, fixed point problems of a nonexpansive mapping are still
extensively studied by many research works since they are at the core of several problems in
the real world, such as signal processing and image recovery. One of the famous algorithms
to solve the fixed point problem of a nonexpansive mapping is as follows:{

xn+1 = (1− tn)xn + tnS(xn), ∀n > 0, (14)

where S : C → C is a nonexpansive mapping and the initial point x1 is chosen in C,
{tn} ∈ [0, 1]. The algorithm (14) is known as Mann’s algorithm [13]. It is well known that a
Mann-type algorithm gives strong convergence provided the underlying space is smooth
enough. There are many works in this direction. The reader can refer to [14–16] for details.

Apart from studying all the above problems, speeding up the convergence rate of
algorithms has been often studied by many authors. Polyak [17] introduced a helpful
technique to accelerate the rate of convergence called the heavy ball method. After that,
many researchers have modified the heavy ball method to use with their algorithms.
Nesterov [18] modified the heavy ball method to improve the rate of convergence for the
algorithms. This algorithm is known as the modified heavy ball method:{

wn = zn + θn(zn − zn−1)

zn+1 = wn − τn∇ f (wn), ∀n ≥ 2,
(15)

where z1, z2 ∈ H1 are arbitrarily chosen, τn > 0, 0 ≤ θn < 1 is an extrapolation factor,
and the term θn(zn − xz−1) is called the inertia. For more details, the reader is directed
to [19–21].

Based on the above ideas, the aims of this work were: (1) to construct a new self-
adaptive step size algorithm combine with the proximal algorithm, the modified Mann
method with the inertial extrapolation to solve the split minimization problem (SMP)
(10), and the fixed point problems of a nonexpansive mapping; (2) to establish the strong
convergence results for the SMP and fixed point problems using the proposed algorithm;
(3) to give numerical examples for our algorithm to present its consistency, accuracy, and
performance compared to the existing algorithms in the literature.
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2. Preliminaries

Some notations used throughout this paper are presented in this section. For an
element x in a Hilbert space, xn → x and xn ⇀ x are denoted by a strong convergence and
a weak convergence, respectively.

Lemma 1. For every u and v in a real Hilbert space H, then,

‖v− w‖2 = ‖v‖2 − ‖w‖2 + 2〈w− v, w〉, (16)

‖v + w‖2 ≤ ‖v‖2 + 2〈w, w + v〉, and (17)

‖κv + (1− κ)w‖2 = κ‖v‖2 + (1− κ)‖w‖2 − κ(1− κ)‖v− w‖2, (18)

where κ ∈ [0, 1].

Proposition 1. Let S : C → H1 be a mapping with C ⊂ H1, where u and v are elements in C.
The mapping S is called:

1. monotone if:
〈u− v, Su− Sv〉 ≥ 0;

2. ξ-inverse strongly monotone (ξ-ism) if:

〈u− v, Su− Sv〉 ≥ ξ‖Su− Sv‖2,

for some constants ξ > 0;
3. nonexpansive if:

‖Su− Sv‖ ≤ ‖u− v‖;

4. firmly nonexpansive if:
‖Su− Sv‖2 ≤ 〈Su− Sv, u− v〉.

It is well known that the metric projection PC of H1 onto C is a nonexpansive mapping
where C ⊆ H1 is a nonempty closed convex, and it satisfies ‖PCu− PCv‖2 ≤ 〈u− v, PCu−
PCv〉 for all u, v ∈ H1. Moreover, PCu is characterized by the following properties:

‖u− PCu‖2 + ‖v− PCu‖2 ≤ ‖u− v‖2, (19)

and:

‖u− v‖2 − ‖PCu− PCv‖2 ≤ ‖(u− v)− (PCu− PCv)‖2, (20)

for all u ∈ H1 and v ∈ C. We denote Γ(H2) the collection of proper convex lower semicon-
tinuous functions on H2.

Definition 1. Ref. [22,23]: Let g ∈ Γ(H2) and x ∈ H2. Define the proximal operator of g by:

proxg(x) = arg min
u∈H2

{
g(u) +

1
2
‖u− x‖2

}
.

The proximal of g of order λ (λ > 0) is given by:

proxλg(x) = arg min
u∈H2

{
g(u) +

1
2λ
‖u− x‖2

}
.

Below are some of the valuable properties of the proximal operators.

Property 1. Ref. [24,25]: Let g ∈ Γ(H2), λ ∈ (0, ∞), and Q be a nonempty closed convex subset
of H2.
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1. If g = δQ where δQ is an indicator function of Q, then the proximal operators proxλg = PQ,
for all λ > 0;

2. proxλg is firmly nonexpansive;

3. proxλg = (I + λ∂g)−1 = J∂g
λ , the resolvent of the subdifferential ∂g of g;

4. x = proxg(x + y) if and only if y ∈ ∂g(x).

Let g ∈ Γ(H2). In [26], it was shown that Fix(proxg) = arg minH2 g. Moreover, they
showed that proxg and I − proxg are both firmly nonexpansive.

Lemma 2. Ref. [27]: Any sequence {υn} in a Hilbert space H1 satisfies Opial’s condition if
υn ⇀ v implies the following inequality:

lim inf
n→∞

‖υn − v‖ < lim inf
n→∞

‖υn − z‖,

for every z ∈ H1 with z 6= v.

Lemma 3. Ref. [28]: Any sequence of nonnegative real number {an} can be written in the
following relation:

zn+1 ≤ (1− βn)zn + βnγn + ζn, n ≥ 0,

and the following three conditions hold:

1. {βn} ⊂ [0, 1], ∑ βn = ∞;
2. lim supn→∞ γn ≤ 0;
3. ζn ≥ 0, ∑ ζn < ∞ for all n > 0.

Then, limn→∞ zn = 0.

Lemma 4. Ref. [29]: Let a sequence {Λn} ⊆ R be nondecreasing at infinity in the sense that there
is a subsequence {Λnj} ⊆ {Λn} such that {Λnj} < {Λnj+1} for all j ≥ 0. For an integer m0,
define the integer sequence {η(m)}m≥m0 by:

η(m) = max{k ≤ m | Λk ≤ Λk+1}.

Then, a sequence {η(m)}m≥m0 does not decrease and verifies limm→∞ η(m) = ∞. Furthermore,

max{Λη(m), Λm} ≤ Λη(m)+1,

for all m ≥ m0.

3. Results

This section proposes an iterative algorithm generating a sequence that strongly
converges to a solution of split minimization problems (10) and fixed point problems
of a nonexpansive mapping. We established the convergence theorem of the proposed
algorithm under the statements as follows:

Let S : H1 → H1 be a nonexpansive mapping. Denote the set of all solutions of a
split minimization (10) by Γ and the set of all fixed points of the mapping S by Fix(S). Let
Ω = Γ ∩ Fix(S), and suppose that:

l(u) =
1
2
‖(I − proxλτn f )u‖

2,

h(u) =
1
2
‖(I − proxλg)Au‖2. (21)
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Then, we obtained the gradients of the functions h and l as follows:

∇l(u) = (I − proxλτn f )u,

∇h(u) = A∗(I − proxλg)Au.

Lemma 5. Let h : H2 → R and l : H1 → R be two functions that are defined as (21). Then, the
gradients ∇h and ∇l are Lipschitz continuous.

Proof. By the notation ∇h(u) := A∗(I − proxλg)Au, we find that:

‖∇h(u)−∇h(v)‖2

= 〈A∗((I − proxλg)Au− (I − proxλg)Av), A∗((I − proxλg)Au− (I − proxλg)Av)〉
= 〈(I − proxλg)Au− (I − proxλg)Av, AA∗((I − proxλg)Au− (I − proxλg)Av)〉 (22)

≤ L‖(I − proxλg)Au− (I − proxλg)Av‖2,

where L = ‖A∗A‖. On the other hand,

〈∇h(u)−∇h(v), u− v〉 = 〈A∗((Au− proxλg Au)− (Av− proxλg Av), u− v〉
= 〈(I − proxλg)Au− (I − proxλg)Av, Au− Av〉 (23)

≥ ‖(I − proxλg)Au− (I − proxλg)Av‖2.

By combining (22) with (23), we find that:

〈∇h(u)−∇h(v), u− v〉 ≥ 1
L
‖∇h(u)−∇h(v)‖2.

Therefore, we obtained that ∇h is 1
L -inverse strongly monotone. Moreover:

‖∇h(u)−∇h(v)‖ ≤ L‖u− v‖.

Similarly, one can prove that ∇l is also Lipschitz continuous. This completes the
proof.

A valuable assumption for analyzing our main theorem is given as follows.

Assumption 1. Suppose that {ρn}, {θn} are positive sequences and {αn}, {δn} are sequences in
interval (0, 1) that satisfy the following assumptions:

(A1) inf αn(1− αn) > 0;
(A2) limn→∞ δn = 0 and ∑∞

n=1 δn = ∞;
(A3) inf ρn(4− ρn) > 0 with 0 < ρn < 4;

(A4) θn‖xn − xn−1‖ → 0 and
θn

δn
‖xn − xn−1‖ → 0 as n→ ∞.

Theorem 1. Let H1 and H2 be two real Hilbert spaces and S be a nonexpansive mapping on H1.
Assume that A is a bounded linear operator from H1 to H2 with its adjoint operator A∗, and
f : H1 → R ∪ {+∞} and g : H2 → R ∪ {+∞} are proper lower semicontinuous and convex
functions. Assume that SMP (10) is consistent (that is, Ω 6= ∅), and let x1 and v be in H1. Then,
the sequence {xn} in Algorithm 1 strongly converges to z ∈ Ω, where z = PΩ(v).
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Algorithm 1 A split minimization algorithm.
Initialization: Let λ > 0 and x0, x1 ∈ H1 be arbitrarily chosen. Choose some positive
sequences {ρn}, {δn} and {αn} satisfying Assumption 1. Set n = 1.
Iterative step: Given the current iteration xn, calculate the next iterations as follows:

un = xn + θn(xn − xn−1)

yn = proxλτn f (I − τn A∗(A− proxλg A))un

xn+1 = αnxn + (1− αn)S[δnv + (1− δn)yn],

(24)

where:

τn =

{
ρnh(un)

‖∇h(un)‖2+‖∇l(un)‖2 , ‖∇h(un)‖2 + ‖∇l(un)‖2 6= 0,

0, otherwise.
(25)

Stopping criterion: If xn+1 = yn = un = xn, stop.

Otherwise, put n = n + 1, and go to Iterative step.

Proof. Assume that z = PΩ(v) ∈ Ω. By using the firm non-expansiveness of (I − proxλg)
(see [30,31] for details), we find that:

〈∇h(un), un − z〉 = 〈∇h(un)−∇h(z), un − z〉
= 〈(I − proxλg)Aun − (I − proxλg)Az, Aun − Az〉

≥ ‖(I − proxλg)Az− (I − proxλg)Aun‖2

= 2h(un), (26)

and:

‖yn − z‖2

= ‖proxλτn f (I − τn A∗(I − proxλg)A)un − proxλτn f (I − τn A∗(I − proxλg)A)z‖2

≤ ‖(I − τn A∗(I − proxλg)A)un − (I − τn A∗(I − proxλg)A))z‖2

−‖(I − τn)((I − τn A∗(I − proxλg)A)un − (I − τn A∗(I − proxλg)A)z)‖2

= ‖un − z‖2 − 2τn〈(A∗(I − proxλg)A)(un − z), un − p〉

+τ2
n‖(A∗(I − proxλg)A)(un − z)‖2

−‖(I − τn)((I − τn A∗(I − proxλg)A)un − (I − τn A∗(I − proxλg)A)z)‖2

= ‖un − z‖2 − 2τn〈∇h(un)−∇h(z), un − z〉+ τ2
n‖∇h(un)−∇h(z)‖2

−‖(I − τn)((I − τn A∗(I − proxλg)A)un − (I − τn A∗(I − proxλg)A)z)‖2

≤ ‖un − z‖2 + τ2
n‖∇h(un)‖2 − 4τnh(un)

−‖(I − τn)((I − τn A∗(I − proxλg)A)un − (I − τn A∗(I − proxλg)A)z)‖2

≤ ‖un − z‖2 − ρn(4− ρn)
h2(un)

‖∇h(un)‖2 + ‖∇l(un)‖2

−‖(I − τn)(I − τn A∗(I − proxλg)A)un‖2. (27)

This implies:

‖yn − z‖ ≤ ‖un − z‖. (28)
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Next, we set wn = δnv + (1− δn)yn. For fixed v ∈ C, we obtain that:

‖wn − z‖ = ‖δnv + (1− δn)yn − z + δnz− δnz‖
≤ (1− δn)‖yn − z‖+ δn‖v− z‖
≤ (1− δn)‖un − z‖+ δn‖v− z‖
≤ max{‖un − z‖, ‖v− z‖}, (29)

and

‖un − z‖ ≤ θn‖xn − xn−1‖+ ‖xn − z‖. (30)

Since S is nonexpansive, we find that:

‖xn+1 − z‖ = ‖αnxn + (1− αn)Swn − z + αnz− αnz‖
≤ (1− αn)‖wn − z‖+ αn‖xn − z‖
≤ max{‖wn − z‖, ‖xn − z‖}
≤ max{‖xn − z‖, ‖v− z‖, ‖xn − z‖+ θn‖xn − xn−1‖}

...

≤ max{‖x0 − z‖, ‖v− z‖, ‖x0 − z‖+ θ1‖x1 − x0‖}. (31)

Thus, {xn} is bounded, and this implies that {wn}, {yn}, and {un} are also bounded.
Next, we observe that:

‖yn − un‖ = ‖proxλτn f (I − τn A∗(I − proxλg)A)un − un‖
= ‖proxλτn f (I − τn A∗(I − proxλg)A)un − (I − τn A∗(I − proxλg)A)un

+(I − τn A∗(I − proxλg)A)un − un‖
≤ ‖proxλτn f (I − τn A∗(I − proxλg)A)un − (I − τn A∗(I − proxλg)A)un‖

+‖(I − τn A∗(I − proxλg)A)un − un‖
= ‖(I − proxλτn f )(I − τn A∗(I − proxλg)A)un‖+ τn‖∇h(un)‖. (32)

Next, we claim that ‖xn+1 − xn‖ → 0 and xn → z. Consider:

‖xn+1 − xn‖ = ‖αnxn − xn + (1− αn)Swn‖
= ‖(1− αn)(Swn − xn)‖
= (1− αn)‖Swn − xn‖, (33)

and:

‖un − z‖2 = ‖xn + θn(xn − xn+1)− z‖2

≤ 2θn〈xn − xn−1, un − z〉+ ‖xn − z‖2

≤ 2θn‖un − z‖‖xn − xn−1‖+ ‖xn − z‖2. (34)

Moreover, consider:
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‖xn+1 − z‖2

= ‖(1− αn)(Swn − z) + αn(xn − z)‖2

≤ (1− αn)‖Swn − z‖2 + αn‖xn − z‖2 − (1− αn)αn‖Swn − xn‖2

≤ (1− αn)‖wn − z‖2 + αn‖xn − z‖2 − (1− αn)αn‖Swn − xn‖2

≤ αn‖xn − z‖2 + (1− αn)(1− δn)‖yn − z‖2 + δn‖v− z‖2 − (1− αn)αn‖Swn − xn‖2

≤ αn‖xn − z‖2 + δn‖v− z‖2 − αn(1− αn)‖Swn − xn‖2 + (1− αn)[‖un − z‖2

−ρn(4− ρn)
h2(un)

‖∇h(un)‖2 + ‖∇l(un)‖2 − ‖(I − τn)(I − τn A∗(I − proxλg)A)un‖2] (35)

≤ (αn + (1− αn))‖xn − z‖2 + δn‖v− z‖2 + 2θn‖un − z‖‖xn − xn−1‖

−(1− αn)ρn(4− ρn)
h2(un)

‖∇h(un)‖2 + ‖∇l(un)‖2 − αn(1− αn)‖Swn − xn‖2

−‖(I − τn)(I − τn A∗(I − proxλg)A)un‖2

≤ ‖xn − z‖2 + 2θn‖un − z‖‖xn − xn−1‖+ δn‖v− z‖2 − αn(1− αn)‖Swn − xn‖2

−ρn(4− ρn)
h2(un)

‖∇h(un)‖2 + ‖∇l(un)‖2 − ‖(I − τn)(I − τn A∗(I − proxλg)A)un‖2.

Therefore, we obtain:

ρn(4− ρn)
h2(un)

‖∇h(un)‖2 + ‖∇l(un)‖2 + (1− αn)αn‖xn − Swn‖2

+‖(I − τn)(I − τn A∗(I − proxλg)A)un‖2 (36)

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + 2θn‖un − z‖‖xn − xn−1‖+ δn‖v− z‖2.

We next show the sequence ‖xn − z‖ → 0 by dividing into two possible cases.

Case 1. Assume that {‖xn − z‖2} is the non-increasing sequence. There exists n0 ∈ N such
that ‖xn+1 − z‖2 ≤ ‖xn − z‖2, for each n ≥ n0. Then, the sequence {‖xn − z‖} converges,
and so:

lim
n→∞

(‖xn+1 − z‖2 − ‖xn − z‖2) = 0.

Since limn→∞ δn = 0, we obtain by using (36) that:

lim
n→∞

ρn(4− ρn)
h2(un)

‖∇h(un)‖2 + ‖∇l(un)‖2 = 0,

lim
n→∞

αn(1− αn)‖Swn − xn‖ = 0,

and:
lim

n→∞
‖(I − τn)(I − τn A∗(I − proxλg)A)un‖2 = 0.

We then obtain by using lim αn(1− αn) = 0, inf ρn(4− ρn) > 0, and ‖∇h(un)‖2 +
‖∇l(un)‖2 being bounded that:

lim
n→∞

h(un) = 0, (37)

lim
n→∞

‖Swn − xn‖ = 0, (38)

and:

lim
n→∞

‖(I − τn)(I − τn A∗(I − proxλg)A)un‖2 = 0. (39)
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Thus, we obtain by using (33) that:

lim
n→∞

‖xn+1 − xn‖ = 0. (40)

Moreover, it easy to see that:

lim
n→∞

‖un − xn‖ = 0. (41)

By applying (36) and (39) in the Formula (32), we find that:

lim
n→∞

‖yn − un‖ = 0. (42)

We next observe that:

‖wn − un‖ = ‖un − δnv + (1− δn)yn‖
= δn‖yn − v‖+ (1− δn)‖yn − un‖. (43)

By using the fact that δn → 0, we find that:

lim
n→∞

‖wn − un‖ = 0. (44)

Moreover, we observe that:

‖Swn − wn‖ ≤ ‖Swn − xn‖+ ‖un − xn‖+ ‖wn − un‖. (45)

We then obtain by using (38), (41), and (44) that:

lim
n→∞

‖Swn − wn‖ = 0. (46)

Next, we observe that:

‖yn − proxλτn f yn‖ ≤ ‖un − τn A∗(I − proxλg)Aun − yn‖
≤ ‖un − yn‖+ |τn|‖∇h(un)‖. (47)

Thus, we obtain immediately that:

lim
n→∞

‖yn − proxλτn f yn‖ = 0. (48)

We next show that lim supn→∞〈v− z, z− Swn〉 ≥ 0, where z = PΩ(v). To prove this,
we can choose a subsequence {wni} of {wn} with:

lim sup
n→∞

〈v− z, Swn − z〉 = lim
i→∞
〈v− z, Swni − z〉.

Since {wni} is a bounded sequence, we can take a weakly convergent subsequence
{wni} of {wn} that converges to w ∈ H1, that is wni ⇀ w. By using the fact that ‖Swn −
wn‖ → 0, we find that Swni ⇀ w.

We next show w ∈ Ω in two steps. First, we show that w is a fixed point of S. By
contradiction, we assume that y /∈ Fix(S). Since wni ⇀ w and Sw 6= w, by Opial’s
conditions, we conclude that:

lim inf
i→∞

‖wni − w‖ < lim inf
i→∞

‖wni − Sw‖

≤ lim inf
i→∞

(‖wni − Swni‖+ ‖Swni − Sw‖)

≤ lim inf
i→∞

(‖wni − w‖). (49)
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This is a contradiction. This implies w ∈ Fix(S). Second, we show w ∈ Γ. Since w is
a weak limit point of {wn}, there is a {wni} ⊆ {wn} such that wni ⇀ w. Since h is lower
semicontinuous, we find that:

0 ≤ h(w) ≤ lim inf
i→∞

h(wni ) = lim
n→∞

h(wn) = 0.

This implies:

h(w) =
1
2
‖(I − proxλg)Aw‖2 = 0.

Then, Aw = proxλg Aw, and so, 0 ∈ ∂g(Aw). This means that Aw is a minimizer of
the operator g.

Similarly, since l is lower semicontinuous, we find that:

0 ≤ l(w) ≤ lim inf
i→∞

l(wni ) = lim
n→∞

l(wn) = 0.

This implies:

l(w) =
1
2
‖(I − proxλτn f )w‖

2 = 0.

Thus, w is in a fixed point set of the proximal operator proxλτn f , that is 0 ∈ ∂ f (w).
This means that w is a minimizer of the operator f . This implies w ∈ Γ. Therefore, we can
conclude that w ∈ Ω.

According to the properties of matric projections, since w ∈ Ω and z = PΩ(v), then
〈v− PΩ(v), w− PΩ(v)〉 ≤ 0. Consider,

lim sup
n→∞

〈z− v, z− xn+1〉 = lim sup
n→∞

〈z− v, z− Swn〉

= lim
i→∞
〈z− v, z− Swni 〉

= 〈z− v, z− w〉
≤ 0. (50)

In the final step, we show that the sequence ‖xn − z‖ → 0, as n→ ∞. We observe that:

‖wn − z‖2 = ‖δn(z− v) + (1− δn)(z− yn)‖2

≤ 2δn〈z− v, z− xn+1〉+ (1− δn)‖z− yn‖2, (51)

and:

‖xn+1 − z‖2 = 〈(1− αn)(Swn − z) + αn(xn − z), xn+1 − z〉
= αn〈z− xn, z− xn+1〉+ (1− αn)〈z− Swn, z− xn+1〉 (52)

≤ αn

2
‖z− xn‖2 +

αn

2
‖z− xn+1‖2 +

(1− αn)

2
[‖z− wn‖2 + ‖z− xn+1‖2]

=
αn

2
‖z− xn‖2 +

1
2
‖z− xn+1‖2 +

(1− αn)

2
‖z− wn‖2.

This implies:

‖xn+1 − z‖2 ≤ αn‖z− xn‖2 + (1− αn)‖z− wn‖2. (53)

By combining (27) with (34) and (51), we find that:
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‖xn+1 − z‖2 ≤ αn‖z− xn‖2 + (1− αn)[(1− δn)‖z− yn‖2 + 2δn〈z− v, z− xn+1〉]
≤ αn‖xn − z‖2 + (1− δn)(1− δn)‖z− xn+1‖2

+2θn(1− αn)(1− δn)‖z− un‖‖xn − xn−1‖ (54)

−ρn(4− ρn)
h2(un)

‖∇h(un)‖2 + ‖∇l(un)‖2 + 2δn〈v− z, xn+1 − z〉

≤ [1− (1− αn)δn]‖xn − z‖2 + (1− αn)δn{2〈z− v, z− xn+1〉

+2(1− δn)
θn

δn
‖xn−1 − xn‖‖z− un‖}.

Thus, we obtain by using Lemma 3, Assumption (A4), Inequality (50), and the bound-
edness of {un} that xn → z = PΩ(v).

Case 2. Assume that {‖xn − z‖2} is increasing. By applying Assumptions (A1), (A2), and (A4)
to (36), we find that ‖Swn − xn‖ → 0. Thus, we obtain by using (33) that ‖xn+1 − xn‖ → 0.

Suppose that Λn = ‖xn − z‖2, and for each n ≥ n0 (where n0 large enough), define a
mapping η : N→ N as follows:

η(n) := max{k ∈ N : Λk ≤ Λk+1, k ≤ n}.

Thus, η(n)→ ∞ when n tends to infinity, and for each n ≥ n0,

0 ≤ Λη(n) ≤ Λη(n)+1.

We then obtain by using Inequality (36) that:

δη(n)‖v− z‖2 + 2
θη(n)

δη(n)
‖uη(n) − z‖‖xη(n) − xη(n)−1‖

≥ Λη(n) −Λη(n)+1 + δη(n)‖z− v‖2 + 2
θη(n)

δη(n)
‖uη(n) − z‖‖xη(n) − xη(n)−1‖

≥ Λη(n) −Λη(n)+1 + δη(n)‖v− z‖2 + 2θη(n)‖uη(n) − z‖‖xη(n) − xη(n)−1‖ (55)

≥ ρη(n)(4− ρη(n))
h2(uη(n))

‖∇h(uη(n))‖2 + ‖∇l(uη(n))‖2 + αη(n)(1− αη(n))‖Swη(n) − xη(n)‖2

+‖(I − τη(n))(I − τη(n)A∗(I − proxλg)A)uη(n)‖2.

Since δη(n) → 0 as n → ∞ and also
θη(n)

δη(n)
‖xη(n) − xη(n)−1‖ → 0 when n tends to

infinity, we observe that:

lim
n→∞

h(uη(n)) = 0, (56)

lim
n→∞

‖Swη(n) − xη(n)‖ = 0, (57)

lim
n→∞

‖(I − τη(n))(I − τη(n)A∗(I − proxλg)A)uη(n)‖2 = 0, (58)

and:

lim sup
n→∞

〈v− z, xη(n)+1 − z〉 ≤ 0. (59)
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Moreover, we obtain that:

Λη(n)+1 ≤ [1− (1− αn)δη(n)]Λη(n) + (1− αη(n))δη(n){2〈z− v, z− xη(n)+1〉

+
2θη(n)(1− δη(n))

δη(n)
‖uη(n) − z‖‖xη(n) − xη(n)−1‖}. (60)

This implies that:

Λη(n) ≤ 2〈v− z, xη(n)+1 − z〉+ (1− δη(n))
2θη(n)

δη(n)
‖uη(n) − z‖‖xη(n) − xη(n)−1‖. (61)

Thus, we obtain:

lim sup
n→∞

Λη(n) = lim sup
n→∞

‖xη(n) − z‖ = 0.

We now obtain by using Lemma 4 that:

0 ≤ ‖xn − z‖ ≤ max{‖xη(n) − z‖, ‖xn − z‖} ≤ ‖xη(n)+1 − z‖ → 0,

as n→ ∞. This implies that xn → z and z = PΩ(v). The proof is complete.

Remark 1.

(a) If we put θn = 0, S ≡ I, αn = 0, and δn = 0 for all n ≥ 2 in our proposed algorithm,
we found that the algorithm (11) of Moudafi and Thakur was obtained. Moreover, we ob-
tained a strong convergence theorem, while Moudafi and Thakur [10] only obtained a weak
convergence theorem;

(b) If we put A ≡ I, S ≡ I, f ≡ g ≡ 0, and δn = 0 for all n ≥ 2 in our proposed algorithm, we
found that Algorithm (1.2) in [32] was obtained;

(c) If we put θn = 0, A ≡ I, S ≡ I, f ≡ g ≡ 0, and δn = 0 for all n ≥ 2 in our proposed
algorithm, we found that the Mann iteration algorithm in [13] was obtained. Moreover,
we obtained a strong convergence theorem, while Mann [13] only obtained a weak conver-
gence theorem;

(d) As an extraordinary choice, an extrapolation factor θn in our proposed algorithm can be chosen
as follows: 0 ≤ θn ≤ θ̄n,

θ̄n =

{
min

{
n−1

n+κ−1
εn

‖xn−xn−1

}
, if xn 6= xn−1,

n−1
n+κ−1 , else,

(62)

for each integer n greater than or equal to three and a positive sequence {εn} with εn
δn
→ 0, as

n→ ∞. This choice was recently derived in [33,34] as an inertial extrapolated step.

4. Applications and Numerical Results

This section provides the numerical experiments to illustrate the performance and
compare Algorithm 1 with and without the inertial term. Moreover, we present an exper-
iment to compare our scheme with the Abbas algorithms [12]. All code was written in
MATLAB 2017b and run on a MacBook Pro 2012 with a 2.5 GHz Intel Core i5.

First, we illustrate the performance of our proposed algorithm by comparing the
proposed algorithm with and without the inertial term as the following experiment:
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Example 1. Suppose C = Q = {x ∈ R100 : ‖x‖2 ≤ 1}, and let Ax = x. In problem (10),
assume that f = δC and g = δQ, where δ is the indicator function. Then:

proxλτn f (x) = PC(x) = PQ(x) = proxλg =


x
‖x‖2

, if ‖x‖2 > 1

x, otherwise.

Thus, the problem (10) becomes the SEP (1). We next took the parameters ρn = 2, αn =
1

4000
and δn =

1
n + 1

. Thus, by Algorithm 1, we obtained that:

un = xn + θn(xn − xn−1)

yn = proxλτn f (I − τn A∗(A− proxλg A)un (63)

xn+1 =

(
1

4000

)
xn +

(
1− 1

4000

)[(
1

n + 1

)
v +

(
1− 1

n + 1

)
yn

]
.

We then provide a comparison of the convergence of Algorithm 1 with:

θn =

0.5 if xn − xn−1 = 0,

min
{

0.5,
1

(n + 1)‖xn − xn−1‖2

}
if xn−1 − xn 6= 0,

and Algorithm 1 with θn = 0 in terms of the number of iterations with the stopping criterion
‖A∗(I− PQ)Ax‖2

2 + ‖(I− PC)xn‖2
2 < 10−2. The result of this experiment is reported in Figure 1.

Figure 1. Comparing Algorithm 1 with Algorithm 1 defined without the inertial term.

Remark 2. By observing the result of Example 1, we found that our proposed algorithm with
inertia was faster and more efficient than our proposed algorithm without inertia (θn = 0).

Second, we used the example in Abbas [12] to show the performance of our algorithm
by comparing our proposed algorithm with Algorithms (12) and (13) in terms of CPU time
as the following experiment:
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Example 2. Let H1 = H2 = RN and g = ‖ · ‖2 be the Euclidean norm in RN . The metric
projection onto the Euclidean unit ball B is defined by the following:

PB(x) =


x
‖x‖2

, if ‖x‖2 > 1

x, otherwise.

Thus, the proximal operator (the block soft thresholding) [24] is given by:

proxg(x) =

x− x
‖x‖2

, if ‖x‖2 ≥ 1

0, otherwise.

For i = 1, 2, . . . , N, let xi ∈ R,

hi(xi) := max{|xi| − 1, 0},

and:

f (x) :=
N

∑
i=1

hi(xi).

Then (see [35]),

proxhi
(xi) =


xi, if |xi| < 1
sign(xi), if 1 ≤ |xi| ≤ 2
sign(xi − 1), if |xi| > 2,

and:
prox f (x) = (proxh1

(x1), proxh2
(x2), . . . , proxhN

(xN)),

for all x ∈ RN . Assume that Ax = x, and let us consider the split minimization problem (SMP) (10)
as follows:

z∗ ∈ arg min f and Az∗ ∈ arg min g. (64)

It is easy to check that x = (0, 0, ..., 0) is in the set of solutions of Problem (64). We now took

εn =
1

n + 1
and:

θn =

min

{
1

(n + 1)‖xn − xn−1‖2
2

, 0.5

}
, if xn 6= xn−1,

0.5, otherwise,

for all n ≥ 1. We next took S ≡ I, then we obtained by Algorithm 1 that:

un = xn + θn(xn − xn−1)

xn+1 = proxλτn f (I − τn A∗(I − proxλg)A)un. (65)

The iterative schemes (12) and (13) are:

xn+1 = proxλγn f

((
1− 1

n + 1

)
xn − γn(I − proxλg)xn

)
(66)

and:

xn+1 =

(
1− 1

n + 1

)
proxλγn f

(
(I − γn(I − proxλg))xn

)
, (67)
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respectively, where γn was given in [12].
We now provide a comparison of the convergence of the iterative schemes (12) and (13) in

Abbas’s work [12] with our proposed algorithm with S ≡ I in terms of CPU time, where initial
points x1, x2 were randomly generated vectors in RN . We tested this experiment with different
choices of N as follows: N = 100, 500, 1000, 2000.

We used
‖xn+1 − xn‖
‖x2 − x1‖

< 10−2 as the stopping criterion. The result of this experiment is

reported in Table 1.

Table 1. Computation results for Example 2.

N 100 500 1000 2000

Algorithm (12) CPU (seconds) 0.602975 0.556099 0.603340 0.674949
Algorithm (13) CPU (seconds) 0.222086 0.267980 0.262785 0.270231
Our proposed algorithm CPU (seconds) 0.120814 0.228486 0.238006 0.247131

Remark 3. By observing the result of Example 2, we found that our proposed algorithm was more
efficient than Abbas’s Algorithms (12) and (13) regarding the CPU time.

Finally, we show the average error of our algorithm as the following experiment:

Example 3. Let H1, H2, g, proxg, f , and prox f be defined as in example (2). In this experiment, we
took x1 := x1(i) = (x1

1(i), x2
1(i), . . . , x10

1 (i)), where i = 1, 2, . . . , 20. Let {xn(i)} be a sequence

generated by Algorithm 1 and the parameters ρn = 2, v = 0.0025, αn = 0.00025, and δn =
1

n + 1
.

The mean-error is given by:

Error(xn) :=
1
20

20

∑
i=1
‖xn+1(i)− xn(i)‖. (68)

We used Error(xn) < 10−2 as the stopping criterion of this experiment. We then observed
that the sequence {xn} generated by Algorithm 1 converged to a solution if Error(xn) converged to
zero. Figure 2 shows the average error of our method in three groups of 20 initial points.
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Figure 2. Computation results for Example 3.

Remark 4. By observing the result of Example 3, we found that the choice of the initial value did
not affect the ability of our algorithm to achieve the solutions.
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5. Conclusions

This paper discussed split minimization problems and fixed point problems of a
nonexpansive mapping in the framework of Hilbert spaces. We introduced a new iterative
scheme that combined the proximal algorithm and the modified Mann method with an
inertial extrapolation and a self-adaptive step size. For the proposed algorithm, the main
advantage was that there was no need to compute the operator norm of A. Moreover, we
illustrated the performance of our proposed algorithm by comparing with other existing
methods in terms of CPU time. The obtained results were improved and extended various
existing results in existing pieces of literature.
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