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Abstract: Given a quasi-definite linear functional u in the linear space of polynomials with complex
coefficients, let us consider the corresponding sequence of monic orthogonal polynomials (SMOP
in short) (Pn)n≥0. For a canonical Christoffel transformation ũ = (x− c)u with SMOP (P̃n)n≥0, we

are interested to study the relation between ũ and ũ(1), where u(1) is the linear functional for the

associated orthogonal polynomials of the first kind (P(1)
n )n≥0, and ũ(1) = (x− c)u(1) is its Christoffel

transformation. This problem is also studied for canonical Geronimus transformations.

Keywords: spectral transformation; Darboux transformations; first kind orthogonal polynomials;
Laguerre-Hahn linear functional

MSC: 42C05; 15A23

1. Introduction and Preliminaries

The theory of orthogonal polynomials constitutes a basic topic in the framework
of special functions and approximation theory. From the classical monograph by Szegő,
with an analytic approach to properties of those orthogonal polynomials as the location
of their zeros or their asymptotic behavior, the theory has raised great interest (see Ref-
erences [1–3] as excellent monographs) due to the variety of scientific fields where it
constitutes a useful tool (from Numerical Analysis to Fourier series, from Mathematical
Physics to Probability theory, from Coding theory to Discrete Mathematics, among oth-
ers), as well as by the different approaches from the point of view of spectral problems
for differential and difference operators (see Reference [4]), where classical orthogonal
polynomials are studied according to their hypergeometric character and the statement
of a hierarchy (Askey tableau) allowing a description of the different levels as limit cases
from a level to the lower one. Another approach is based on the algebraic analysis of
linear functionals and the corresponding sequences of orthogonal polynomials constituting
a structural approach where the Stieltjes function associated with the linear functional
play a central role. When they satisfy first order linear differential equations with poly-
nomial coefficients, a new hierarchy (semiclassical linear functionals) is stated and you
obtain a classification following a different characterization according to the degree of the
polynomial coefficients involved in the above differential equation (see References [5,6]).
The description of each class level constitutes an interesting problem completely solved
in the lowest levels of the hierarchy (see References [6,7]). The ways to generate a level
from the lowest one involves perturbations of the linear functionals which are not related
to the hypergeometric approach. Indeed, the multiplication by a polynomial, the divi-
sion by a polynomial, the addition of Dirac delta linear functionals and their derivatives,
the symmetrization and cubic decomposition of orthogonal polynomials, the truncation of
linear polynomials, among others, appear in a natural way. On the other hand, beyond the
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semiclassical families, Laguerre-Hahn linear functionals (see Reference [8]) are introduced
assuming the Stieltjes function satisfies a Riccati equation with polynomial coefficients.
They constitute a wide class where a new hierarchy is stated following the consideration of
the concept of class related, as in the semiclassical case, to the degree of the polynomial
coefficients involved in the Riccati equation. Again, you go from a level to the upper one
by using perturbations of linear functionals described as above, as well as new ones related
to associated and anti-associated transformations. A complete classification of the lowest
level has been done in Reference [8]. Examples of Laguerre-Hahn in other levels have been
analyzed in References [9–12], among others.

Taking into account the sequences of orthogonal polynomials with respect to a linear
functional satisfy a three-term recurrence relation, you can represent the multiplication
operator in terms of such polynomial basis by using a tridiagonal matrix (known in the
literature as Jacobi matrix). The eigenvalues of their principal leading submatrices are the
zeros of the orthogonal polynomials; thus, you can deal with quadrature rules where the
Christoffel constants are related to the norms of the eigenvectors associated with the zeros.
Jacobi matrices play a central role in the analysis of perturbations of linear functionals and
their consequences in quadrature formulas (see Reference [13]). In particular, LU, UL, and
QR factorizations of Jacobi matrices lead to new Jacobi matrices associated with spectral
linear transformation of linear functionals which show the interplay between the theory of
orthogonal polynomials and matrix analysis (see References [14–16]).

In the present contribution, we deal with perturbations of linear functionals and their
relevance in the Jacobi matrices and Stieltjes functions associated with them by consider-
ing two kind of transformations: the so-called Darboux transformations Tc (in particular,
Christoffel and Geronimus transformations) and first kind associated transformations,
denoted by T(1). An intertwining problem between such transformations will by ana-
lyzed as the main novelty of our contribution. Thus, we present an approach involving
Darboux and first associated transformations in order to generate families of rational spec-
tral transformations which are new in the literature. Indeed, the previous contributions
(References [14–16]) focus the attention on individual Darboux transformations and their
relation with factorizations of the corresponding Jacobi matrices, as well as the connection
between the sequences of orthogonal polynomials with respect to such linear functionals.
In our work, we deal with an unified approach based on the three basic elements (Stieltjes
functions, orthogonal polynomials, and Jacobi matrices) taking into account they are inti-
mately related. As an application, such transformations are considered for Laguerre-Hahn
linear functionals in order to prove that the new linear functional is again a Laguerre-Hahn
linear functional, and we discuss its class. Our approach is based on the analysis of the
Stieltjes function that seems to be more natural that one recently done in Reference [10], only
for the Christoffel transformation, by using the functional equation that the Laguerre-Hahn
linear functional satisfies.

First of all, we will provide a basic background in order to have a self-contained
presentation.

Let u be a complex-valued linear functional defined on the linear space of polynomials
with complex coefficients P, i.e., u : P → C, p(x) → 〈u, p(x)〉. The linear functional
u is said to be quasi-definite (respectively, positive definite) if every leading principal
submatrix of the Hankel matrix H = (ui+j)

∞
i,j=0 is nonsingular (respectively, positive-

definite) where, by definition, uk =:
〈

u, xk
〉

, k ∈ N. In this case, there exists a sequence
of monic polynomials (Pn)n≥0 such that deg Pn = n and 〈u, Pn(x)Pm(x)〉 = Knδn,m, where
δn,m is the Kronecker symbol, and Kn 6= 0 (see Reference [2]). The sequence (Pn)n≥0 is said
to be the sequence of monic orthogonal polynomials (SMOP) with respect to u.

Definition 1. Let u be a linear functional and q(x) a polynomial. Then, the linear functionals
q(x)u and (x− c)−mu are defined, respectively, as

〈q(x)u, p(x)〉 = 〈u, p(x)q(x)〉, p ∈ P,
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and

〈
(x− c)−mu, p(x)

〉
=

〈
u,

p(x)−
m−1
∑

k=0

Dk p(c)
k!

(x− c)k

(x− c)m

〉
, p ∈ P,

where D denotes the usual derivative operator.

The derivative u′ of a linear functional u is the linear functional defined as〈
u′, p(x)

〉
= −

〈
u, p′(x)

〉
.

Sometimes, we also use the notation Du to denote the derivative of u.

Definition 2. Given the linear map θc : P→ P defined by θc p(x) =
p(x)− p(c)

x− c
, we introduce

the linear functional 〈
(x− c)−1u, p(x)

〉
= 〈u, θc p(x)〉.

From the above Definition, we get〈
(x− c)−mu, p(x)

〉
= 〈u, θm

c p(x)〉,

understanding that θm
c p(x) = θc(θm−1

c p(x)).

Definition 3. Let u be a linear functional and p(x) = ∑m
k=0 akxk be a polynomial, and then we

define the polynomial (u ∗ p)(x) as

(u ∗ p)(x) =:
〈

uy,
xp(x)− yp(y)

x− y

〉
=

m

∑
k=0

(
m

∑
n=k

anun−k

)
xk.

Here, uy means that the linear functional u acts on the variable y.

Definition 4 (Reference [6]). The product of two linear functionals u and v is defined from their
moments as follows:

(uv)n = 〈uv, xn〉 =
n

∑
k=0

ukvn−k, n ≥ 0.

The above product is commutative, associative, and distributive with respect to the sum of
linear functionals.

Let c be a complex number and let δc be the linear functional defined by

〈δc, xn〉 = cn, n ∈ N.

Notice that, for any linear functional, u, uδ0 = u. Moreover, if the first moment
of u is nonzero, then there exists a unique linear functional u−1 such that uu−1 = δ0.
The moments of u−1 are defined recursively by

(u−1)n = − 1
u0

n−1

∑
k=0

un−k(u
−1)k, n ≥ 1, (u−1)0 = u−1

0 .

Proposition 1 (Reference [6]). Let u, v be linear functionals and p(x) and q(x) polynomials.
The following properties hold.

(i) 〈uv, p(x)〉 = 〈v, (u ∗ p)(x)〉.
(ii) θc(pq)(x) = q(x)θc p(x) + p(c)(θcq(x)).
(iii) p2(x)u2 = (pu)2 + 2xp(x)(u ∗ θ0 p)(x)u.



Axioms 2021, 10, 107 4 of 23

(iv) p(x)(uv) = (p(x)v)u + x(v ∗ θ0 p)(x)u.

From Favard’s Theorem [2], we know that there exists a unique quasi-definite linear
functional u, with (Pn)n≥0 its corresponding SMOP, if and only if there exist two sequences
of complex numbers (an)n≥1 and (bn)n≥0, with an 6= 0, n ≥ 1, such that

x Pn(x) = Pn+1(x) + bn Pn(x) + an Pn−1(x), n ≥ 0,

P−1(x) = 0, P0(x) = 1.
(1)

The above recurrence relation can be expressed in matrix form as follows. If P =
(P0, P1, · · · )>, then xP = JP, where A> denotes the transposed of the matrix A, and J is
the following tridiagonal semi-infinite matrix (monic Jacobi matrix; see Reference [2])

J =


b0 1
a1 b1 1

a2 b2
. . .

. . . . . .

.

Definition 5. For k ∈ N, we define the associated polynomials of the k-th kind (P(k)
n )n≥0, (also

called k-th associated polynomials; see Reference [2]) as the sequence of monic polynomials satisfying
the recurrence relation

xP(k)
n (x) = P(k)

n+1(x) + bn+kP(k)
n (x) + an+kP(k)

n−1(x), n ≥ 0,

P(k)
−1 (x) = 0, P(k)

0 (x) = 1.

This means that a shift is introduced in the coefficients of the three term recurrence relation (1).
According to Favard’s Theorem, there exists a quasi-definite linear functional u(k), called the
k-associated transformation of u, such that (P(k)

n )n≥0 is its corresponding SMOP.

There is a direct representation of such polynomials as (see References [17,18])

P(k)
n−k(x) =

1〈
u, P2

k−1

〉〈Pk−1(y)uy,
Pn(x)− Pn(y)

x− y

〉
, n ≥ k.

Since (Pn(x))n≥0 and (P(1)
n−1(x))n≥0 are two linearly independent solutions of the

difference equation [18]

xwn = wn+1 + bnwn + anwn−1, n ≥ 1,

every solution can be represented as a linear combination of (Pn(x))n≥0 and (P(1)
n−1(x))n≥0.

In particular (see References [18,19]),

P(k)
n−k(x) = A(x, k)Pn(x) + B(x, k)P(1)

n−1(x), n ≥ k, (2)

where

A(x, k) = −
P(1)

k−2(x)

∏k−1
m=1 am

and B(x, k) =
Pk−1(x)

∏k−1
m=1 am

.

Definition 6. Let (Pn)n≥0 be a SMOP with respect to u satisfying the recurrence relation (1).
The sequence of monic polynomials (Pn(x; a))n≥0 is said to be co-recursive of parameter a with
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respect to the linear functional u, if they also satisfy (1) but with initial conditions P0(x; a) = 1
and P1(x; a) = P1(x)− a. Notice that

Pn(x; a) = Pn(x)− aP(1)
n−1(x), n ≥ 0.

For co-recursive polynomials Pn(x, a), the following three-term recurrence relation holds:

x Pn(x; a) = Pn+1(x; a) + bn Pn(x; a) + an Pn−1(x; a), n ≥ 1,

x P0(x; a) = P1(x; a) + (b0 + a) P0(x; a).
(3)

Definition 7. Given a quasi-definite linear functional u, we can define the formal series

Su(z) =:
∞

∑
n=0

un

zn+1 .

It is said to be the Stieltjes function associated with u.

Definition 8 (Reference [20]). Let ũ be a quasi-definite linear functional and S̃(z) its Stieltjes
function. ũ is said to be a rational spectral transformed of u if there exist polynomials A(z), B(z),
C(z), and D(z) such that

S̃(z) =
A(z)Su(z) + B(z)
C(z)Su(z) + D(z)

, A(z)D(z)− B(z)C(z) 6= 0.

The above mapping between two linear functionals is called rational spectral transformation.
In particular, if C(z) ≡ 0, then ũ is said to be a linear spectral transformed of the linear functional u.
In such a case, the mapping between two linear functionals is called linear spectral transformation.

Theorem 1 (References [2,5,6,21,22]). Let Su(z), Su−1(z), Su(1)(z), and Sua(z) be the Stieltjes
functions associated with u, u−1, u(1), and ua, respectively. Then, the following relations hold:

(i)
Su(z)Su−1(z) = 1/z2.

(ii)

Su(1)(z) = −
u0u(1)

0
a1

z2Su−1(z) +
u(1)

0
a1

(z− b0).

(iii)

Sua(z)

[
−a

(ua)0z2 +
u0

(ua)0
Su−1(z)

]
=

1
z2 .

(iv)

Su(z) =
u0

(z− b0)−
a1

u(1)
0

Su(1)(z)
. (4)

Moreover, from the above equations, we can deduce the following relations between the corre-
sponding linear functionals.

u(1) = −
u(1)

0 u0

a1
x2u−1, ua =

ua
0

u0

(
u−1 +

a

u0
δ′0

)−1
. (5)

As we have stated before, the analysis of perturbations of linear functionals constitutes
an interesting topic in the theory of orthogonal polynomials on the real line (scalar OPRL)
(References [14,15,20,23,24] and references therein). Among the perturbations of linear
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functionals, spectral linear perturbations have attracted the interest of researchers (see
Reference [20]). Such perturbations are generated by two particular families, the so-called
Christoffel and Geronimus transformations.

Christoffel perturbations, that appear when considering orthogonality with respect
to a new linear functional ũ = p(x)u, where p(x) is a polynomial, were studied in 1858
by E. B. Christoffel (see References [25,26]) when u is the linear functional associated
with the Lebesgue measure dµ supported on the interval (−1, 1) and dµ̂(x) = p(x)dµ(x),
with p(x) = (x− q1) · · · (x− qN), a signed polynomial in the support of dµ. Connection
formulas between the corresponding SMOP are obtained therein. The location of their
zeros as nodes of the quadrature rules is also deduced. More recently, from a numeri-
cal point of view, in Reference [27], the authors focus the attention on the sensitivity of
Gauss–Christoffel quadrature with respect to small perturbations of the probability mea-
sure. On the other hand, the relations between the coefficients of the three term recurrence
relations of the corresponding SMOP have been extensively studied (see Reference [28]),
as well as the relation between the Jacobi matrices in the framework of the so-called discrete
Darboux transformations. They are based on the LU factorization of such matrices (see
References [14,29], among others).

Notice that the zeros of orthogonal polynomials with respect to a canonical Christoffel
transformation (a perturbation by a linear polynomial p(x) = (x − c)) of a nontrivial
probability measure) are the nodes in the Gauss-Radau quadrature formula. In the case
of a perturbation of the measure by a positive quadratic polynomial on the support of
the measure, the zeros of the corresponding orthogonal polynomials are the nodes of the
Gauss-Lobatto quadrature rule (see Reference [13]).

Geronimus transformations appear when you deal with perturbed functionals û de-
fined by p(x)û = u, where p(x) is a polynomial, and u is a quasi-definite linear functional.
Such a kind of transformations were used by J. L. Geronimus (see Reference [30]), in order
to provide an alternative proof of a result given by W. Hahn [31] concerning the charac-
terization of classical orthogonal polynomials (Hermite, Laguerre, Jacobi, and Bessel) as
the unique families of orthogonal polynomials whose first derivatives are also orthogo-
nal polynomials. Examples of such transformations have been done by P. Maroni [32]
for a perturbation of the type p(x) = x − c, also known as a canonical Geronimus trans-
formation. In a similar way, examples for the quadratic and cubic case can be found in
References [16,33–35], respectively.

In Reference [22], we study the following problem:

Problem 1. (Figure 1) Let u be a quasi-definite functional and let ũ = (x− c)u and (x− c)û = u
be a canonical Christoffel and Geronimus transformation of u, respectively. What is the relation
between u(1) and ũ(1) (resp. û(1))? There, ũ(1) (resp. û(1)) is the associated linear functional of the
first kind of ũ (resp. û).

u u(1)

ũ ũ(1)

Associated
transformation

Darboux
transformation

?

Figure 1. Structure of Problem 1.

To give a solution of the above problem, we use the LU and UL factorization of the
monic Jacobi matrix associated with u as well as the co-recursive polynomials.

In the present contribution, we are interested to study the following problem.
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Problem 2. (Figure 2) Let u be a quasi-definite functional, and let ũ = (x− c)u and (x− c)û = u
be a canonical Christoffel and Geronimus transformation of u, respectively. What is the relation
between ũ and ũ(1) (resp. û(1))? There, ũ(1) (resp. û(1)) is the Christoffel (resp. Geronimus)
transformation of u(1).

u ũ

u(1) ũ(1)

Darboux
transformation

Associated
transformation

?

Figure 2. Structure of Problem 2.

With this in mind, the structure of the manuscript is as follows. In Section 2, for a
canonical Christoffel transformation, we study the connection between the linear func-

tionals ũ and ũ(1). As a consequence, we deduce the relation between the corresponding
Stieltjes functions, as well as the sequences of monic orthogonal polynomials. In a second
step, we study the same problem when a canonical Geronimus transformation is consid-

ered, i.e., the relation between û and û(1). In Section 3, we analyze a general family of
linear functionals (the so-called Laguerre-Hahn) whose Stieltjes function satisfies a Riccati
equation. Once we introduce the definition of the class of such a linear functional, we
study the class of a Laguerre-Hahn linear functional when either a canonical Christoffel or
a Geronimus transformation is implemented. Finally, two illustrative examples about the
above questions are discussed.

2. Darboux Transformation and Associated Polynomials of the First Kind
2.1. Christoffel Transformation and Its Associated Polynomials of First Kind

Let u be a quasi-definite linear functional, and let (Pn(x))n≥0 be its corresponding
SMOP. If c is a complex number, the linear functional ũ = (x− c)u is said to be a canonical
Christoffel transformation of the functional u. Let us assume that the linear functional ũ
is also quasi-definite which is equivalent to Pn(c) 6= 0 for all n ∈ N, and let (P̃n)n≥0 be its
SMOP. It is well known that (Pn)n≥0 and (P̃n)n≥0 are related by

(x− c)P̃n(x) = Pn+1(x)− Pn+1(c)
Pn(c)

Pn(x), n ≥ 0.

We have the following relation between their Jacobi matrices.

Theorem 2 (References [14,29]). Let J and J̃ be the Jacobi matrices associated with u and
ũ = (x− c) u, respectively. If Pn(c) 6= 0, for all n ∈ N, then J − cI has a LU factorization, i.e.,

J − cI := LU :=


1
`1 1

`2 1
. . . . . .




β0 1
β1 1

β2
. . .
. . . . . .

,

where L is a lower bidiagonal matrix with 1’s in the main diagonal, and U is an upper bidiagonal
matrix with βn = −Pn+1(c)/Pn(c).{

bn − c = `n + βn, b0 − c = β0,
an = `nβn−1, n = 1, 2 . . .
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Moreover, J̃ − cI = UL, where{
b̃n − c = `n+1 + βn,
ãn = `nβn,

n = 0, 1, 2 . . .

Proposition 2 (Reference [20]). Let Su(z) and Sũ(z) be the Stieltjes functions associated with u
and ũ, respectively. Then, Sũ(z) is a linear spectral transformation of Su(z). Indeed, the moments
of ũ and u satisfy the following relation

ũn = 〈ũ, xn〉 = 〈u, (x− c) xn〉 = un+1 − c un.

From here,

Sũ(z) = (z− c) Su(z)− u0. (6)

Since u is a quasi-definite linear functional, then u(1) is quasi-definite, Let (Pn(x))n≥0
be the SMOP with respect to u, and assume that Pn(c) 6= 0 for every n ∈ N. We are

interested to analyze the relation between the linear functionals ũ and ũ(1) given by

ũ(1) := (x− c)u(1) and ũ := (x− c)u, respectively.

Proposition 3. The linear functionals ũ and ũ(1) are related as follows:

ũ(1) = s(x− c)(x− t)
(
(ũ)−1 − 1

u0
δ′0

)−1
, (7)

with t = ã1
P1(c)
P2(c)

+ b̃0 −
ũ0

u0
and s = −P2(c)

P1(c)
u(1)

0
ã1ũ0

.

Proof. In (Reference [22], Proposition 16), the following relation was proven.

P̃n(x) +
ũ0

u0
P̃(1)

n−1(x) = P(1)
n (x)− Pn+1(c)

Pn(c)
P(1)

n−1(x), n ≥ 0, (8)

where (P̃(1)
n )n≥0 is the SMOP of the first kind associated transformation of the linear

functional ũ (see Definition 5). Notice that the polynomials in the left-hand side of (8) are
co-recursive of parameter a = − ũ0

u0
with respect to the linear functional ũ. Let us denote

Vn(x) = P̃n(x) +
ũ0

u0
P̃(1)

n−1(x), n ≥ 0,

such a monic polynomial sequence, and let w be the linear functional such that (Vn)n≥0 is
the corresponding SMOP. Then, from (5),

w =
w0

ũ0

(
(ũ)−1 − 1

u0
δ′0

)−1
. (9)

If we expand the linear functional u(1) in the dual basis(
Vn(x)w
〈w, V2

n (x)〉

)
n≥0

of the polynomials (Vn(x))n≥0 [6] and using the fact that
〈

u(1), Vn(x)
〉
= 0 for all n ≥ 2,

we get
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u(1) = α0
w
w0

+ α1
V1(x)w〈

w, V2
1 (x)

〉 .

From the orthogonal relations, we obtain α0 = u(1)
0 , α1 = −P2(c)

P1(c)
u(1)

0 . Thus,

u(1) = −P2(c)
P1(c)

u(1)
0

〈w, V1(x)〉

(
V1(x)− P1(c)

P2(c)
〈w, V1(x)〉

w0

)
w.

Taking into account that 〈w, V1(x)〉 = ã1w0 and (9), we obtain the result.

Let us assume that P(1)
n (c) 6= 0 for all n ∈ N. Then, the SMOP (P̃(1)

n (x))n≥0 with

respect to ũ(1) satisfies

(x− c)P̃(1)
n (x) = P(1)

n+1(x)−
P(1)

n+1(c)

P(1)
n (c)

P(1)
n (x), n ≥ 0.

An equivalent condition is given in terms of the co-recursive polynomials (Vn(x))n≥0
defined in the above Proposition. Indeed:

Corollary 1. ũ(1) is quasi-definite if and only if dn 6= 0 for every n ∈ N, where

dn =


det

(
Vn+1(c) Vn(c)
Vn+1(t) Vn(t)

)
, if t 6= c,

det

(
Vn+1(c) Vn(c)
V′n+1(c) V′n(c)

)
, if t = c,

with Vn(x) = P̃n(x) +
ũ0

u0
P̃(1)

n−1(x).

Moreover,

(x− c)(x− t)P̃(1)
n (x) =



1
dn

det

Vn+2(x) Vn+1(x) Vn(x)
Vn+2(c) Vn+1(c) Vn(c)
Vn+2(t) Vn+1(t) Vn(t)

, if t 6= c,

1
dn

det

Vn+2(x) Vn+1(x) Vn(x)
Vn+2(c) Vn+1(c) Vn(c)
V′n+2(c) V′n+1(c) V′n(c)

, if t = c,

n ≥ 0,

where t is as in Proposition 3.

Proof. The proof is a consequence of (7).

Proposition 4. The Stieltjes functions Sũ(z) and S
ũ(1)(z) are related as follows.

S
ũ(1)(z) =

A(z) Sũ(z) + B(z)
Sũ(z) + u0

,

where

A(z) =
u(1)

0
a1

[(z− c)(z− b0)− a1], B(z) =
u0u(1)

0
a1

[(c− b0)(z− c)− a1].
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Proof. From (4) and (6),

S
ũ(1)(z) = (z− c)Su(1)(z)− u(1)

0

= (z− c)
u(1)

0
a1

[
(z− b0)− u0

(z− c)
Sũ(z) + u0

]
− u(1)

0

=
(z− c)

u(1)
0
a1

[(z− b0)Sũ(z) + (z− b0)u0 − u0(z− c)]− u(1)
0 (Sũ(z) + u0)

Sũ(z) + u0

=
A(z) Sũ(z) + B(z)

Sũ(z) + u0
.

2.2. Geronimus Transformation and Its Associated Polynomials of the First Kind

Let v be a quasi-definite linear functional, and let (Pn)n≥0 be its corresponding SMOP.

Definition 9. Given a complex number c, a linear functional v̂ defined by (x− c)v̂ = v is said to
be a canonical Geronimus transformation of the linear functional v.

It is important to emphasize that v̂ is not uniquely defined since its first moment is
arbitrary. The explicit expression of v̂ is [29]

v̂ = (x− c)−1v + v̂0δc.

If we assume that v̂ is also quasi-definite, and (P̂n)n≥0 is its corresponding SMOP, then
it is well known that (Pn)n≥0 and (P̂n)n≥0 are related by [14,29]

P̂n(x) = Pn(x) + `nPn−1(x), n ≥ 1,

where

`n = −
v0P(1)

n−1(c) + v̂0Pn(c)

v0P(1)
n−2(c) + v̂0Pn−1(c)

, n ≥ 1. (10)

Thus, a necessary and sufficient condition on v̂ to be a quasi-definite linear functional is

v̂0Pn(c) + v0P(1)
n−1(c) 6= 0, for all n ≥ 1. (11)

A second relation between (Pn)n≥0 and (P̂n)n≥0 is (see Reference [29])

(x− c)Pn(x) = P̂n+1(x) + βn P̂n(x), n ≥ 0, (12)

where βn = −P̂n+1(c)/P̂n(c).

Theorem 3 (Reference [20]). If Sv(z) and Sv̂(z) are the Stieltjes functions for v and v̂, respec-
tively, then Sv̂(z) is a linear spectral transformation of Sv(z). Indeed, taking into account that the
moments of v̂ and v satisfy

vn = 〈v, xn〉 = 〈v̂, (x− a) xn〉 = v̂n+1 − c v̂n,

then

Sv̂(z) =
Sv(z) + v̂0

(z− c)
.

Returning to the previous discussion, (10) and (12) imply the following relation
between the corresponding monic Jacobi matrices associated with v and v̂.
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Theorem 4 (References [14,23,24,29]). Let J and Ĵ be the monic Jacobi matrices associated with
v and v̂, respectively. If v̂0 satisfies (11), then J − cI has an UL factorization. Indeed,

J − cI := UL :=


β0 1

β1 1

β2
. . .
. . . . . .




1
`1 1

`2 1
. . . . . .

, (13)

or, equivalently, {
bn − c = `n+1 + βn, n = 0, 1, . . .
an = `nβn, n = 1, 2 . . .

where L is a lower bidiagonal matrix with 1’s as diagonal entries, and U is an upper bidiagonal
matrix with βn = −P̂n+1(c)/P̂n(c). Moreover,

Ĵ − cI = LU.

If we assume that `0 := 0, then the corresponding entries satisfy{
b̂n − c = `n + βn, n = 0, 1, . . .
ân = `nβn−1, n = 1, 2 . . .

Observe that the UL factorization depends on the choice of v̂0 since β0 = v0/v̂0.

The matrices U and L given in (13) can be written

U =


β0 1 0 · · ·
0
0
...

U1

, L =


1 0 0 · · ·
`1

0
...

L1

,

where U1 and L1 are upper and lower bidiagonal matrices, respectively. From here, we
deduce that the semi infinite matrix J(1) − cI, with J(1) the Jacobi matrix associated with
v(1), has also an UL factorization, i.e.,

J(1) − cI := U1L1 :=


β1 1

β2 1

β3
. . .
. . . . . .




1
`2 1

`3 1
. . . . . .

.

Moreover, since β1 =
a1

b0 − c− β0
, then β1 also depends on the choice of v̂0. Now,

if we define

Ĵ(1) − cI := L1U1 =


β1 1
â2 b̂2 − c 1

â3 b̂3 − c
. . .

. . . . . .

, (14)

then Ĵ(1) is the Jacobi matrix associated with the linear functional û(1) defined by

û(1) = (x− c)−1u(1) + û(1)
0 δc, where û(1)

0 = u(1)
0 /β1. (15)
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Let (P̂(1)
n )n≥0 be the SMOP with respect to û(1). Then, from (14), we can deduce

the following.

Proposition 5. Let (P̂n
(1)

)n≥0 be the SMOP with respect to the first kind associated transfor-

mation of the linear functional v̂ that will be denoted by w. Then, the polynomials (P̂(1)
n )n≥0 are

co-recursive of parameter a = `1 with respect to w, i.e.,

P̂(1)
n (x) = P̂n

(1)
(x)− `1P̂n−1

(2)
(x), n ≥ 0. (16)

Moreover, the linear functional v̂(1) such that (P̂(1)
n )n≥0 is the corresponding SMOP can be

written as

v̂(1) =
v̂(1)

0
w0

(
w−1 − `1

w0
δ′0

)−1
. (17)

Proof. In Reference [22], Proposition 24, it is proved that, if the Jacobi matrix J − cI has a
LU factorization as in (13), then the Jacobi matrix Jw associated with w satisfies

Jw − cI =


`1 + β1 1
`2β1 `2 + β2 1

`3β2 `3 + β3 1
. . . . . . . . .

 =


b̂1 − c 1

â2 b̂2 − c 1

â3 b̂3 − c
. . .

. . . . . .

. (18)

A comparison between the entries of the matrices (18) and (14) and taking into ac-
count (3), yield (16). (17) is a direct consequence of (5).

Corollary 2. Under the hypothesis of Proposition 5, we get the following relations:

(i). P̂(1)
n (x) =

[
1− `1

â1
(x− b̂0)

]
(P̂n)(1)(x) +

`1

â1
P̂n+1(x), n ≥ 2.

(ii). (x− c)−1v(1) + v̂(1)
0 δc =

v̂(1)
0

w0

(
w−1 − `1

w0
δ′0

)−1
.

Proposition 6. The Stieltjes functions Sv̂ and S
v̂(1) are related as follows:

S
v̂(1)(z) =

A(z)Sv̂(z) + B(z)
(z− c)2Sv̂(z) + (z− c)v̂0

,

where

A(z) = (z− c)

[
v(1)

0
a1

(z− b0) + v̂(1)
0

]
, B(z) =

v(1)
0
a1

[v̂0(z− b0)− v0]− v̂0v̂(1)
0 .

Proof. It follows the guidelines of the proof of Proposition 4.

3. Laguerre-Hahn Linear Functional

Definition 10 (References [8,9,11]). A linear functional u is said to be of the Laguerre-Hahn
class if its Stieltjes function satisfies a Riccati equation

φ(z)S′u(z) = A(z)S2
u(z) + B(z)Su(z) + C(z), (19)

where φ(z) 6= 0, A(z), B(z), C(z) are polynomials with

C(z) = (Du ∗ θ0φ)(z)− (u ∗ θ0B)(z)− (u2 ∗ θ2
0 A)(z). (20)
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Recall that θ0 was given in Definition 2. In particular, if A(z) ≡ 0, then the linear functional
is said to be semi-classical.

Proposition 7 (References [8,9,11]). Let u be a quasi-definite and normalized linear functional,
i.e., u0 = 1, and let (Pn)n≥0 be its corresponding SMOP. The following statements are equivalent

(i) u is a Laguerre-Hahn functional.
(ii) u satisfies the functional equation

D(φ(x)u) + ψ(x)u− A(x)(x−1u2) = 0, (21)

where φ(x), A(x), B(x), C(x) are the polynomials in (19) and

ψ(x) = −[φ′(x) + B(x)].

(iii) Each polynomial Pn(x) verifies the so-called structure relation

φ(x)P′n+1(x) + A(x)P(1)
n (x) =

n+d

∑
k=n−s

λn,kPk(x), n ≥ s + 1.

Here, φ(x) and A(x) are the polynomials given in (19), s = max{t − 1, d − 2} and
d = max{r, m}, where r = deg φ, t = deg ψ, and m = deg A.

Remark 1. We notice that there are changes of signs in the previous characterizations compared to
the works of Maroni [5,6], Belmehdi [7], Marcellán and Prianes [11,12], and many other authors.
This is because, in these articles, the Stieltjes function was multiplied by a negative sign.

In characterization (ii), we must notice that you have not uniqueness in the represen-
tation. Indeed, if u is Laguerre-Hahn, and q(x) is a polynomial, then u also satisfies the
functional equation

D(q(x)φ(x)u) + (q(x)ψ(x)− q′(x)φ(x))u− q(x)A(x)(x−1u2) = 0.

Notice that the above implies that, if u is a Laguerre-Hahn functional, then the Ricatti
Equation (19) is not unique. With this in mind, we give the following definition:

Definition 11 (References [8,9,11]). The class of a Laguerre-Hahn functional u is the nonnega-
tive integer number defined as

s := min max{deg ψ(x)− 1, max{deg φ(x), deg A(x)} − 2},

where the minimum is taken among all polynomials φ(x), ψ(x), and A(x) such that u satisfies (21).

Taking into account that the class of a Laguerre-Hahn linear functional is very useful
in order to state a hierarchy of such families, we need to give a simple way to characterize it.

Proposition 8 (References [9,11]). Let u be a Laguerre-Hahn linear functional, and let φ(x)
and ψ(x) be non-zero polynomials with deg φ(x) =: r, deg ψ(x) =: t and deg A(x) =: m, such
that (21) holds. Let s := max{t− 1, d− 2} with d = max{r, m}. Then, s is the class of u (s = s)
if and only if

∏
a: φ(a)=0

(
|ψ(a) + φ′(a)|+ |A(a)|+

∣∣∣〈u, θaψ(x) + θ2
a φ(x)− (u ∗ θ0[θa A(x)])〉

∣∣∣) > 0.

From the above Theorem, there is an alternative way to find the class in terms of the
polynomials involved in the Riccati Equation (19). Indeed:
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Corollary 3 (References [9,11]). Let u be a Laguerre-Hahn functional satisfying (19) such
that deg φ(x) = r, deg A(x) = m and deg ψ = t with ψ(x) = −[φ′(x) + B(x)]. Let s =
max{t− 1, d− 2} with d = max{r, m}. Then, s = s if and only if the polynomials φ(x), A(x),
B(x) and C(x) are coprime or, equivalently,

∏
a: φ(a)=0

(
|A(a)|+ |B(a)|+ |C(a)|

)
> 0.

Theorem 5. Let u(1) be the first associated transformation of u and assume without lost of
generality that u0 = u(1)

0 = 1. If u is a Laguerre-Hahn functional of class s satisfying (19), then so
is u(1). In this case, we have that

φ1(z)S′u(1)(z) = A1(z)S2
u(1)(z) + B1(z)Su(1)(z) + C1(z), (22)

where

φ1(z) = φ(z),

A1(z) = a1 C(z),

B1(z) = −2(z− b0)C(z)− B(z),

C1(z) =
1
a1

[
φ(z) + A(z) + (z− b0)B(z) + (z− b0)

2C(z)
]
.

The above polynomials are coprime. Moreover, if s1 is the class of u(1), then s− 2 ≤ s1 ≤ s.

Proof. Let a be a zero of φ1(x). If A1(a) 6= 0, we get the result. If A1(a) = 0, then
B1(a) = −B(a). If B(a) 6= 0, we stop the analysis. If B1(a) = 0, then C1(a) = A(a) 6= 0
necessarily, since, in other cases, we would have a contradiction with the class of u. Thus,
we have that φ1, A1, B1, and C1 are coprime.

Now, since u is of class s, then deg φ ≤ s+ 2, deg A ≤ s+ 2 and deg ψ ≤ s+ 1. Denote

φ(x) =
s+2

∑
k=0

λkxk, B(x) =
s+1

∑
k=0

βkxk, A(x) =
s+2

∑
k=0

αkxk. (23)

Using (20), we have deg C ≤ s. Moreover,

C(x) :=
s

∑
k=0

ckxk = −(λs+2 + βs+1 + αs+2)xs

− (λs+1 + 2b0λs+2 + βs + βs+1b0 + αs+1 + 2b0αs+2)xs−1 + · · · .

On the other hand, taking into account that

ψ1(x) = −[φ′(x)− 2(x− b0)C(x)− B(x)]

= −[(s+ 2)λs+2 − 2cs − βs+1]xs+1 − [(s+ 1)λs+1 − 2cs−1 + 2b0cs − βs]xs + · · · ,

then, we can distinguish the following cases:

(1) If λs+2 6= 0, then s1 = s.
(2) If λs+2 = 0 and 2cs + βs+1 6= 0, then s1 = s.
(3) If λs+2 = 0 and 2cs + βs+1 = 0, we have the subcases:

(3-1) If λs+1 6= 0, then s1 = s− 1.
(3-2) If λs+1 = 0 and 2cs−1 − 2b0cs + βs 6= 0, then s1 = s− 1.
(3-3) If λs+1 = 0 and 2cs−1 − 2b0cs + βs = 0.

(3-3-1) In this case, the leading coefficient of A1(x) reduces to a1cs = a1(βs+1 +
αs+2). If zero, then, from item (3), βs+1 = 0. In conclusion, we would
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have ((s+ 2)λs+1 + βs+1) = λs+2 = αs+2 = 0, which is contradictory
with the class of u. Thus, a1cs 6= 0 and s1 = s− 2.

Corollary 4. With the notation of (23), if s and s1 are the classes of u and u(1), respectively,
we get:

• If |βs+1 + αs+2|+ |λs+2| 6= 0, then s1 = s.
• If |βs+1 + αs+2|+ |λs+2| = 0 and |βs + 2(b0αs+2 + αs+1)|+ |λs+1| 6= 0, then s1 = s− 1.
• If |βs+1 + αs+2|+ |λs+2|+ |βs + 2(b0αs+2 + αs+1)|+ |λs+1| = 0, then s1 = s− 2.

3.1. Linear Spectral Transformation on Laguerre-Hahn Functional

Now, we will deduce some results concerning the Christoffel and Geronimus transfor-
mation when the original linear functional u is Laguerre-Hahn.

3.1.1. Christoffel Transformation

Theorem 6. Let ũ = (x− c)u. If u is Laguerre-Hahn functional of class s with u0 = ũ0 = 1
satisfying (19), then ũ is also a Laguerre-Hahn functional satisfying the equation

φ̃(z)S′ũ(z) = Ã(z)S2
ũ(z) + B̃(z)Sũ(z) + C̃(z), (24)

where

φ̃(z) = (z− c)φ(z),

Ã(z) = A(z),

B̃(z) = φ(z) + 2A(z) + (z− c)B(z),

C̃(z) = φ(z) + 2A(z) + (z− c)B(z) + (z− c)2C(z).

Moreover, the class of ũ, denoted by s̃, satisfies s− 2 ≤ s̃ ≤ s+ 1.

Proof. (24) is a direct consequence from the fact that you can write, by using (6), Su(z) in
terms of Sũ(z) and then you replace it in (19). Moreover, the linear functional ũ satisfies
the distributional equation

D(φ̃(x)ũ) + ψ̃(x)ũ− Ã(x)(x−1ũ2) = 0,

with ψ̃(x) = (x− c)ψ(x)− 2[φ(x) + A(x)] and ψ(x) = −[φ′(x) + B(x)]. Thus, if s̃ is the
class of ũ, it follows from above that

deg(φ̃) =: r̃ ≤ s+ 3, deg(ψ̃) =: t̃ ≤ s+ 2,

d̃ = max{r̃, m̃} ≤ s+ 3, s̃ ≤ max{t̃− 1, d̃− 2} ≤ s+ 1,

where deg B̃(x) = m̃.
On the other hand, since ũ is a Laguerre-Hahn functional of class s̃, then there exist

polynomials φ(x), ψ(x) and A(x) such that

D(φ(x)ũ) + ψ(x)ũ + A(x)(x−1ũ2) = 0, (25)

and s̃ := max
{

deg ψ(x)− 1, max{deg φ(x), deg A(x)} − 2
}

. Using (6) again, and taking
into account (25), we have that u also satisfies the distributional equation

D((x− c)φ(x)u) + (x− c)
[
ψ(x) + 2A(x)

]
u + (x− c)2 A(x)(x−1u2) = 0.

With this in mind,

deg(φ) = r ≤ s̃+ 3, deg(ψ) = t ≤ s̃+ 2,
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d = max{r, m} ≤ s̃+ 4, s ≤ max{t− 1, d− 2} ≤ s̃+ 2.

As a conclusion, s− 2 ≤ s̃ ≤ s+ 1.

The above gives bounds for the class of ũ. However, the following result show that
the class only depends on the value c and never take the value s− 2.

Theorem 7 (Reference [10]). Let ũ = (x− c)u be a linear functional such that u0 = ũ0 = 1
and where u is of class s. If s̃ is the class of ũ, then

• s̃ = s+ 1, if φ(c) 6= 0 and A(c) 6= 0.
• s̃ = s, if φ(c) = A(c) = 0, ψ(c) 6= 0 and A′(c) 6= 0.
• s̃ = s− 1, if φ(c) = A(c) = ψ(c) = A′(c) = 0.

3.1.2. Geronimus Transformation

Theorem 8. Let û be the linear functional defined by (x− c)û = u. Assume that u0 = û0 = 1.
If u is a Laguerre-Hahn functional of class s satisfying (19), then so is û. In this case

φ̂(z)S′û(z) = Â(z)S2
û(z) + B̂(z)Sû(z) + Ĉ(z), (26)

where

φ̂(z) = (z− c)φ(z), (27)

Â(z) = (z− c)2 A(z), (28)

B̂(z) = −[φ(z) + 2(z− c)A(z)] + (z− c)B(z),

Ĉ(z) = A(z)− B(z) + C(z).

The class ŝ of û depends only on the zero x = c. Moreover, s− 1 ≤ ŝ ≤ s+ 2.

Proof. Let a be a zero of φ(x), and then

φ̂′(a) + ψ̂(a) = (a− c)(φ′(a) + ψ(a) + 2A(a)), Â(a) = (a− c)2 A(a) (29)

and

〈u, θaψ̂(x) + θ2
a φ̂(x)− (u ∗ θ0θa Â)(x)〉

= 〈u, θaψ(x) + θ2
a φ(x)− (u ∗ θ0θa A)(x)〉+ ψ(a) + φ′(a) + A(a), (30)

where
ψ̂(x) = (x− c)[ψ(x) + 2A(x)]. (31)

Observe that, from (27), (28), and (31), we get (29) in a straightforward way. Now,
to find (30), let us notice that

θaψ̂(x) = (x− c)θaψ(x) + 2û0θa A(x) + ψ(a) + 2û0 A(a), (32)

θ2
a φ̂(x) = (x− c)θ2

a φ(x) + φ′(a). (33)

On the other hand, using (28) and Proposition 1 (ii), we get

(θ0θa A)(x) = θ0((x− c)2θa A(x)) + A(a)

= (x− c)2(θ0θa A)(x) + (x− 2c)(θa A)(0) + A(a).

Thus, from the above and Proposition 1 (iii) and (iv),〈
û2, (x− c)2θ0θa A(x)

〉
=
〈

u2, (θ0θa A)(x)
〉
+ 2û0〈xu, θ0θa A(x)〉,
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〈
û2, (x− 2c)(θ0 A)(0)

〉
= û0((2− c) + xû0)(θa A)(0),〈

û2, A(a)
〉
= û0 A(a).

Taking into account (32), (33), and the fact that (θa A)(x)− (θa A)(0) = xθ0θa A(x), we
get (30). Using the above, we obtain that, for any zero a 6= c of φ(x),

|ψ̂(a) + φ̂′(a)|+ |Â(a)|+
∣∣∣〈u, θaψ̂(x) + θ2

a φ̂(x)− (u ∗ θ0[θa Â(x)])〉
∣∣∣ 6= 0.

The proof of the second part is essentially the same as the one given in Theorem 6,
and, as a consequence, we do not deal with. However, we point out that û satisfies the
distributional equation

D((x− c)φ(x)û) + (x− c)[ψ(x) + 2û0 A(x)]û + (x− c)2 A(x)(x−1û2) = 0.

Proposition 9. Let (x − c)û = u, and let s and ŝ be the class of u and û, respectively. Let
us define

g =

{
s+ 2, deg A = s+ 2,
s+ 1, deg A < s+ 2.

Then,

φ(c) 6= 0⇒ ŝ = g

φ(c) = 0⇒

 A(c)− B(c) + C(c) 6= 0⇒ ŝ = g,

A(c)− B(c) + C(c) = 0⇒ [1],

[1]⇒


−[φ′(a) + 2A(c)] + B(c) 6= 0⇒ ŝ = g− 1,

−[φ′(a) + 2A(c)] + B(c) = 0⇒

 A′(c)− B′(c) + C′(c) 6= 0⇒ ŝ = g− 1,

A′(c)− B′(c) + C′(c) = 0⇒ [2],

[2]⇒


φ′(c) 6= 0⇒ ŝ = g− 2,

φ′(c) = 0⇒

 A(c) 6= 0⇒ ŝ = g− 2,

A(c) = 0 is not possible.

Proof. Notice that deg φ̂(x) ≤ s+ 3, deg Â(x) ≤ s+ 4, and deg ψ̂(x) ≤ max{s+ 1, s+ 2},
where φ̂(x) = (x− c)φ(x), Â(x) = (x− c)2 A(x), and ψ̂(x) = (x− c)(ψ(x)+ 2A(x)). Since

ŝ = max
{

deg ψ̂(x)− 1, max{deg φ̂(x), deg Â(x)} − 2
}

,

if φ(c) 6= 0, then there are two possibilities. If deg(A) = s+ 2, then ŝ = s+ 2. If deg(A) <
s+ 2, then ŝ = s+ 1. Now, if φ(c) = 0 and A(c)− B(c) + C(c) = 0, then we can divide
both sides in (26) by (z− c)

φ(z)S′û(z)

= (z− c)A(z)S2
û(z) +

(
−
[

φ(z)
(z− c)

+ 2A(z)
]
+ B(z)

)
Sû(z) +

A(z)− B(z) + C(z)
(z− c)

.
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If −[φ′(a) + 2A(c)] + B(c) 6= 0, then ŝ = g− 1. On the other hand, if

− [φ′(a) + 2A(c)] + B(c) = 0 (34)

and A′(c)− B′(c) + C′(c) = 0, then, in (26), we can divide both sides by (z− c)2, and, as a
consequence,

φ(z)
z− c

S′û(z) = A(z)S2
û(z) +

(
− φ(z)
(z− c)2 +

[2A(z) + B(z)]
(z− c)

)
Sû(z) +

A(z)− B(z) + C(z)
(z− c)2 .

If φ′(c) 6= 0, then ŝ = g − 2. Finally, if φ′(c) = 0, then A(c) 6= 0 since, otherwise,
B(c) = 0 by (34). This yields the Equation (21) is reducible contradicting the class of u.

4. Examples

Example 1. Let (P(α,β)
n (x))n≥0 be the monic Jacobi polynomials of parameters (α, β). For α, β >

−1, these polynomials are orthogonal with respect to the positive definite linear functional u(α,β)

defined by 〈
u(α,β), p(x)

〉
=
∫ 1

−1
p(x)(1− x)α(1 + x)βdx, p(x) ∈ P.

The explicit expression for these polynomials is

P(α,β)
n (x) =

1
Sn(α, β)

n

∑
k=0

(
n + α

n− k

)(
n + β

k

)
(x− 1)k(x + 1)n−k, n ≥ 0,

where

Sn(α, β) =

(
2n + α + β

n

)
.

Here, (r
k) =

Γ(r+1)
Γ(k+1)Γ(r−k) and Γ(z) =

∫ ∞
0 tz−1e−tdt is the Gamma function. The orthogonal-

ity relation reads〈
u(α,β), P(α,β)

n (x)P(α,β)
m (x)

〉
= 22 n+α+β+1 Γ(n + α + 1)Γ(n + β + 1)Γ(n + α + β + 1)n!

(2 n + α + β + 1)(Γ(2 n + α + β + 1))2 δn,m.

The monic Jacobi polynomials satisfy the three term recurrence relation (see Reference [2])

xP(α,β)
n (x) = P(α,β)

n+1 (x) + bn P(α,β)
n (x) + an P(α,β)

n−1 (x), n ≥ 0,

P(α,β)
0 (x) = 1 P(α,β)

−1 (x) = 0,

where

bn =
β2 − α2

(2 n + 2 + α + β)(2 n + α + β)
, n ≥ 0,

an =
4(n + β)(n + α + β)(n + α)n

(2 n− 1 + α + β)(2 n + α + β)2(2 n + α + β + 1)
, n ≥ 1,

except that when α = −β, b0 = β and bn = 0, n ≥ 1. In particular, if α = β = −1/2,

the polynomials P(− 1
2 ,− 1

2 )
n =: T̂n(x) are said to be the monic Chebyshev polynomials of the first

kind. If α = β = 1/2, the polynomials P( 1
2 , 1

2 )
n =: Ûn(x) are said to be the monic Chebyshev

polynomials of the second kind. Let u =: u(− 1
2 ,− 1

2 ), and then it is clear that, for c = −1,
ũ = (x + 1)u = u(− 1

2 , 1
2 ).
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Taking into account that T̂(1)
n (x) = Ûn(x) for all n ≥ 0 and ũ(1) = (x + 1)u(1) = u( 1

2 , 3
2 )

(see Figure 3), then, from Theorem 3, we have the functional relation

u( 1
2 , 3

2 ) = (x + 1)2
((

u(− 1
2 , 1

2 )
)−1
− 1

π
δ′0

)−1
.

Notice also u( 1
2 , 3

2 ) = (x + 1)2u( 1
2 ,− 1

2 ); therefore,

u( 1
2 ,− 1

2 ) =

((
u(− 1

2 , 1
2 )
)−1
− 1

π
δ′0

)−1
+ c1δ−1 + c2δ′−1.

Using (3) with a = −1 and the fact that
∫ 1
−1 x(1− x)1/2(1 + x)−1/2dx = −π/2, we get

that c1 = c2 = 0. Thus, we conclude that

P( 1
2 ,− 1

2 )
n (x) = P(− 1

2 , 1
2 )

n (x)−
(

P(− 1
2 , 1

2 )
n−1

)(1)
(x),

as well as

(x + 1)2P( 1
2 , 3

2 )
n (x) =

1
2(n + 1)3 det


P( 1

2 ,− 1
2 )

n+2 (x) P( 1
2 ,− 1

2 )
n+1 (x) P( 1

2 ,− 1
2 )

n (x)

1/4 −1/2 1

1/4(n + 2)2(n + 3)2 −1/2(n + 1)2(n + 2)2 n2(n + 1)2

.

T̂n(x) P(− 1
2 , 1

2 )
n (x)

Ûn(x) P( 1
2 , 3

2 )
n (x)

Christoffel
transformation

(x+1)

Associated
Polynomials

Figure 3. Perturbation of Jacobi polynomials by a canonical Christoffel transformation with (x + 1).

Example 2. Let (Lα+1
n )n≥0 be the monic Laguerre polynomials of parameter α + 1 with α > −1,

which are orthogonal with respect to the positive definite linear functional v

〈v, p(x)〉 = 1
Γ(α + 2)

∫ ∞

0
p(x)xα+1e−xdx, p(x) ∈ P.

The following properties are very well known in the literature (Reference [2]):

(i) Recurrence relation.

xLα+1
n (x) = Lα+1

n+1(x) + (2n + α + 2)Lα+1
n (x) + n(n + α + 1)Lα+1

n−1(x), n ≥ 0,

Lα+1
0 (x) = 1, Lα+1

−1 (x) = 0.

(ii) Explicit formula as an hypergeometric function:

Lα
n(x) =

n!
(−1)n

n

∑
k=0

(α)n+1

(n− k)!(α)k+1

(−x)k

k!
,

where (a)n := (a)(a + 1) · · · (a + n− 1), (a)0 = 1 is the Pochhammer symbol.

(iii)
(

di

xi Lα+1
n

)
(0) = (−1)n+i n!

(n− i)!
(α + i + 2)n−i.
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(iv)
〈
v, Lα+1

n (x)Lα+1
m (x)

〉
= n!(α + 2)nδn,m.

The linear functional v satisfies the distributional equation [25] D(xv) + (x− α− 2)v = 0,
and, as a consequence, it is a Laguerre-Hahn functional of class s(v) = 0. Its Stieltjes function
satisfies the first order linear differential equation

zS′v(z) = (−z + α + 1)Sv(z) + 1. (35)

In Reference [36], the authors studied the first kind associated Laguerre polynomials which
are denoted by (Lα+1

n (x, 1))n≥0. In particular, it was proven that these polynomials are orthogonal
with respect to the positive definite functional v(1) defined by〈

v(1), p(x)
〉
=

1
Γ(α + 3)

∫ ∞

0
p(x)

xα+1e−x∣∣Ψ(1,−α, xe−πi)
∣∣2 dx,

where

Ψ(c, a, x) =
1

Γ(c)

∫ ∞e(3π/4)i

0
tc−1(1 + t)a−c−1e−xtdt,

Re(c) > 0, −π/2 < 3π/4 + arg x < π/2.
The associated monic orthogonal polynomials of the first kind (Lα+1

n (x, 1))n≥0 satisfy the
following properties:

(i) Explicit formula.

Lα+1
n (x, 1) = (−1)n(n + 1)(α + 3)n×

n

∑
k=0

(−n)kxk

(k + 1)!(α + 3)k
× 3F2

(
k− n, 1, α + 2
α + k + 3, k + 2

; 1
)

.

(ii) Lα+1
n (0, 1) =

(−1)n

α + 1
[(α + 2)n+1 − (n + 1)!].

(iii)
〈

v(1), Lα+1
n (x, 1)Lα+1

m (x, 1)
〉
= (.n + 1)!(α + 3)nδn,m.

Using Theorem 5 and (35), we get that the functional v(1) is Laguerre-Hahn of class zero
satisfying the distributional equation

D(xv(1)) + (x− α− 4)v(1) − (α + 2)
(

x−1
[
v(1)

]2
)
= 0.

From Proposition 7, we have the structure relation

x
d

dx
Lα+1

n+1(x, 1) + (α + 2)Lα+1
n (x, 2) =

n+1

∑
k=n

λn,kLα+1
k (x, 1); n ≥ 1.

Using (2) and comparing the coefficients on both sides, we get

λn,n+1 = (n + 1), λn,n = (n + α + 3)(n + 2),

as well as the relation

x
d

dx
Lα+1

n+1(x, 1)− Lα+1
n+2(x) = (−x + α + n + 3)Lα+1

n+1(x, 1)+

(n + α + 3)(n + 2)Lα+1
n (x, 1), n ≥ 1.

Besides, from (22), its Stieltjes function satisfies the differential equation

zS′v(1)(z) = (α + 2)S2
v(1)(z) + (−z + α + 3)Sv(1)(z) + 1.
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Next, let v̂ be the linear functional defined by the Geronimus transformation xv̂ = v with

v̂0 =
1

(α + 1)
. Then, from Section 2.2 with c = 0, we get

〈v̂, p(x)〉 = 1
Γ(α + 2)

∫ ∞

0
(p(x)− p(0))xαe−x dx +

p(0)
Γ(α + 2)

∫ ∞

0
xαe−x dx

=
1

Γ(α + 2)

∫ ∞

0
p(x)xαe−xdx, p(x) ∈ P.

If Jα+1 is the monic Jacobi matrix associated with v, then Jα+1 has UL factorization as in (13)
with βn = α + n + 1, n ≥ 0, `n = n, n ≥ 1. Therefore,

Jα+1 = UL 7−→ Ĵα+1 =: LU = Jα.

Notice that L̂α+1
n (x) = Lα

n(x) for all n ∈ N. Now, let v̂(1) be the Geronimus transformation
of v(1) obtained from (15), and then

〈
v̂(1), p(x)

〉
=

1
Γ(α + 3)

∫ ∞

0
(p(x)− p(0))

xαe−x∣∣Ψ(1,−α, xe−πi)
∣∣2 dx +

p(0)
(α + 2)

.

Let (Pn(x, 1))n≥0 be the SMOP with respect to v̂(1). Then, from Corollary 2, we get the three
term recurrence relation

xPn(x, 1) = Pn+1(x, 1)(x) + (2n + α + 1)Pn(x, 1) + (n + 1)(n + α + 1)Pn−1(x, 1), n ≥ 1,

P0(x, 1) = 1 P1(x, 1) = x− (α + 2),

as well as the following connection formula:

Pn(x, 1) =
1

α + 1
(
xLα

n(x, 1)− Lα
n+1(x)

)
n ≥ 2.

Using Theorem 8, we get that the linear functional w := (α + 2)v̂(1) is a Laguerre-Hahn
functional, and

z2S′w(z) = (α + 2)z2S2
w(z)− z(z + α + 2)Sw(z) + z.

Note that its equation is reducible to

zS′w(z) = (α + 2)zS2
w(z)− (z + α + 2)Sw(z) + 1.

Taking into account that the polynomials are coprime, then the class of w is also zero. Since
ψ̂1(x) = x + (α + 1), then w satisfies the distributional equation

D(xw) + (x + α + 1)w− (α + 2)x
(

x−1[w]2
)
= 0.

5. Concluding Remarks

In this contribution, we have focused our attention on linear and rational spectral
transformations of linear functionals and the corresponding action both on the Jacobi
matrices and Stieltjes functions associated with them. In particular, in such a framework,
we have solved the following intertwining problem. Given a linear spectral transformation Tc,
we dealt with the analysis of the transformation R such that Tc T(1) = R Tc, where T(1) denotes
the associated transformation of the first kind. We have applied this fact to the analysis of
corresponding polynomials. The behavior of the Laguerre-Hahn linear functionals when
one deals with the above transformations has been analyzed, and the class of the resulting
linear functional has been discussed. Finally, some illustrative examples concerning Jacobi
and Laguerre polynomials have been presented.
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