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Abstract: In this paper, we propose two models describing the dynamics of heavy and light vehicles
on a road network, taking into account the interactions between the two classes. The models are
tailored for two-lane highways where heavy vehicles cannot overtake. This means that heavy vehicles
cannot saturate the whole road space, while light vehicles can. In these conditions, the creeping
phenomenon can appear, i.e., one class of vehicles can proceed even if the other class has reached
the maximal density. The first model we propose couples two first-order macroscopic LWR models,
while the second model couples a second-order microscopic follow-the-leader model with a first-
order macroscopic LWR model. Numerical results show that both models are able to catch some
second-order (inertial) phenomena such as stop and go waves. Models are calibrated by means
of real data measured by fixed sensors placed along the A4 Italian highway Trieste–Venice and its
branches, provided by Autovie Venete S.p.A.

Keywords: LWR model; follow-the-leader model; phase transition; creeping; seepage; fundamental
diagram; lane discipline; networks

MSC: 35L65; 35F25; 90B20; 76T99

1. Introduction

In this paper, we deal with macroscopic and multi-scale modeling of traffic flow on a
road network, focusing on multi-class dynamics which couple light and heavy vehicles
(in the following, cars and trucks). The proposed models are characterized by the fact that
cars and trucks interact with each other and that trucks are confined to a part of the road
space (slow lane) and cannot overtake. As a consequence, when trucks saturate the space
and form a queue, cars can still move, although at reduced speed.

1.1. State of the Art

The literature about traffic flow is very large and many different aspects of traffic dy-
namics were described through mathematical models. Let us start from classic approaches:
in a single-lane microscopic (agent-based) framework with N vehicles and no overtaking,
each vehicle k ∈ {1, . . . , N} is singularly identified by its position Xk(t) and its velocity
Vk(t). By assumption, the (k + 1)-th vehicle is always in front of the k-th one. Further,
each vehicle is assumed to adjust its acceleration based on the difference in positions and
velocities between the vehicle itself and the vehicle in front of it. This approach leads to the
following system of ordinary differential equations:

{
Ẋk = Vk

V̇k = A(Xk, Xk+1, Vk, Vk+1)
, k = 1, . . . , N − 1 (1)
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where A is a given acceleration function. The first vehicle in the row (k = N), called leader,
has an independent dynamics. Since the whole dynamics is determined by the leader’s
one through a domino effect, these kinds of models are known as follow-the-leader.

Adopting, instead, a macroscopic (fluid dynamics) point of view, we describe the
mass of vehicles by means of their density ρ(x, t) only. The celebrated LWR model [1,2]
is based on the observation that the density ρ evolves in time, ruled by the following
conservation law:

∂tρ + ∂x f (ρ) = 0, x ∈ R, t > 0 (2)

where the function f (ρ), called fundamental diagram, is given and represents the flux of
vehicles as a function of the density itself. The velocity of the vehicles can be recovered
from ρ thanks to the relation

v(ρ) =
f (ρ)

ρ
, (ρ 6= 0). (3)

It is important to note that the microscopic model (1) is second-order, i.e., acceleration-
based, while the macroscopic model (2) is first-order, i.e., velocity-based. The difference
is important because velocity-based models, allowing nonphysical instantaneous acceler-
ations, are not able to catch effects caused by inertia, such as stop and go waves. Due to
this difference, it is plain that the model (2) is not the many-particle limit of the model (1).
We refer the interested reader to [3] for a review of various many-particle limits (i.e.,
micro-to-macro correspondences) and the existing multi-scale models.

The first generalization of the models (1) and (2) of our interest is that of road networks.
While managing junctions in microscopic models is relatively easy, doing the same in a
macroscopic setting is more challenging. The reason is that, in general, the conservation
of the mass alone is not sufficient to characterize a unique solution at junctions. We refer
the reader to the book by Garavello and Piccoli [4] for more details about the ill-posedness
of the problem at junctions. Multiple workarounds for such ill-posedness have been
suggested in the literature: (i) maximization of the flux across junctions and introduction
of priorities among the incoming roads [4–6]; (ii) introduction of a buffer to model the
junctions by means of an additional ordinary differential equation coupled with (2) [7–9];
(iii) reformulation of the problem on all possible paths on the network rather than on
roads and junctions. The last approach has both a global formulation [10–12] and a more
manageable local formulation, described in [13], which is the one we will adopt in this
paper. All these approaches allow determining a unique solution for the traffic evolution
on the network, but the solutions might be different.

The second generalization of our interest is that of multi-class dynamics. “Multi-
class” is a very generic term used in the literature to refer to the case in which the road is
populated by different groups of vehicles/drivers, and tracking each group separately is
desired. Again, doing this in a microscopic framework is easy since it is sufficient to label
each vehicle on the basis of the class it belongs to. In the macroscopic setting, instead, we
need to introduce as many density functions as there are classes and then establish the
interactions between classes. This leads to a system of conservation laws of the form

∂tρc + ∂x fc(ρ1, . . . , ρC) = 0, c = 1, . . . , C, x ∈ R, t > 0 (4)

where C is the number of classes, c ∈ {1, . . . , C}, ρc is the density of class c and fc is the
flux of class c which depends on all densities (usually the dependence is on the sum of all
densities ∑c ρc). Multi-class models are used to describe very different situations, such as
the co-presence of vehicles with

• Different driving modes (e.g., autonomous vs. classic);
• Different origins and destinations;
• Different lengths (i.e., space occupied);
• Different velocities/flux functions;
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• Reserved roads or reserved entry/exit lanes.

A complete review of multi-class models is out of the scope of this paper. We refer
to [14–16] and to the recent books [17,18] for an overview of the most used multi-class models.

Before introducing our contributions, let us introduce the creeping or seepage effect [14,19]
which will be useful to describe the features of the proposed models. This term denotes the
situations where the road space is shared by small and large vehicles, and small vehicles
are able to move (at reduced velocity) even if large vehicles have reached the maximal
density. This is in contrast to classical models such as the one proposed by Benzoni-Gavage
and Colombo [20], in which the saturation of a class of vehicles immediately stops all the
other classes. It is useful to note that the creeping phenomenon is typically considered in a
context of disordered traffic, i.e., traffic with no lane discipline: smaller vehicles (e.g., two
wheels) slip into the empty spaces left by large vehicles, similar to motion through porous
media. This is not the case considered here, since we assume a strict lane discipline.

Finally, let us recall some important contributions about the fundamental diagram
and its properties. It is well known that a single function f = f (ρ) is not able, alone, to
describe real data correctly. Indeed, by (3), we deduce that for any given density value ρ,
only one velocity v(ρ) is possible. This is not what happens in reality, where a scattered
fundamental diagram is observed instead, due to the fact that different drivers respond in
a different way to the same traffic conditions. Many papers investigated this phenomenon
from different points of view, trying to explain its features, including instabilities; see,
e.g., [21–31].

1.2. Case Study

In this paper, we consider the Italian motorway A4 Trieste–Venice and its branches
to/from Udine, Pordenone and Gorizia, managed by Autovie Venete S.p.A., see Figure 1.

Figure 1. The Italian motorway A4 Trieste–Venice and its branches to/from Udine, Pordenone and
Gorizia, managed by Autovie Venete S.p.A.

At the time of the present study (2019), the motorway had two lanes per direction,
except for the leftmost segment near Venice (Venice–San Donà). To avoid heterogeneous
conditions, we dropped the three-lane segment of the road to focus exclusively on the parts
with two lanes per direction. In those segments, cars can use both lanes at any time, while
trucks can use only the slow lane and cannot overtake. Due to the large flow of heavy
vehicles, it happens sometimes that a queue of trucks is formed. In this case, cars move
into the fast lane and keep going, although at moderate speed. When traffic conditions
are sustained, the two classes of vehicles interact with each other: on the one hand, trucks
act as moving bottlenecks for cars (cf. [32]), which are forced to slow down due to the



Axioms 2021, 10, 102 4 of 21

restricted space; on the other hand, trucks must slow down when cars find it convenient to
occupy part of the slow lane.

1.3. Our Contribution

In this paper, we propose two models for describing multi-class traffic flow on net-
works in which vehicles belonging to different classes share the road space only partially.
More precisely, light vehicles can occupy the whole road, while heavy vehicles can occupy
only a part of it. To align with the case study, we will assume that the road has two lanes in
total and trucks can occupy only the slow one, without overtaking.

1. The first model is purely macroscopic. Both cars and truck are described by two
coupled first-order LWR-based models. Fundamental diagrams are shaped in order
to allow cars to move even in the presence of fully congested trucks. Considering
that the fundamental diagram of each class is influenced by the presence of the
other class, in the case of unstable (rapidly varying) traffic conditions of one class, we
observe a scattered behavior in the fundamental diagram of the other class. Numerical
results will show that this feature allows the model to catch, at least in part, some
second-order (inertial) phenomena in traffic behavior, such as stop and go waves.

2. The second model is multi-scale. Cars are described by a first-order LWR-based
model, while trucks are described by a second-order microscopic follow-the-leader
model. For trucks, we consider the microscopic model used in [3], inspired, in turn,
by a model originally proposed in [33] and specifically designed to reproduce stop
and go waves. The choice of second-order model for trucks is crucial, since inertia
effects are not at all negligible for those vehicles, while they are less important in
car dynamics. Finally, note that, since trucks are confined to only one lane and
cannot overtake, their dynamics perfectly matches the constituting assumptions of
the follow-the-leader model.

Let us finally mention that the idea of coupling first- and second-order models was
already exploited in [3] in a single-class scenario.

Remark 1. Both models distinguish classes, but not lanes. The fact that trucks cannot use the
fast lane while cars can occupy both slow and fast lanes is encapsulated in the choice of the
fundamental diagrams.

2. Dataset

Autovie Venete constantly monitors traffic conditions by means of video cameras,
mobile sensors and fixed sensors. In this paper, we focus on the latest kind of data. Fixed
sensors are located along the motorway, on each lane, and measure the flux and velocity
of all vehicles passing in front of them, also distinguishing the class of vehicles. Data are
aggregated per minute and are stored in a database for later analysis. For light vehicles, we
further aggregated data coming from slow and fast lanes. For heavy vehicles, instead, we
considered the slow lane only. In Figures 2–4, we show some flux and velocity data coming
from some fixed sensors, used to conceive and calibrate the models presented in this paper.
For better readability, flux data are plotted as both raw (as is) and smoothed by a Gaussian
filter. Note that the flux data are always a multiple of 60 since they are evaluated every
minute, but they are expressed in terms of vehicles per hour.



Axioms 2021, 10, 102 5 of 21

Mo Tu We Th Fr Sa Su Mo
time (day)

0

500

1000

1500

2000

2500

flu
x 

(v
eh

/h
)

light vehicles

raw
smoothed

(a)

Mo Tu We Th Fr Sa Su Mo
time (day)

0

500

1000

1500

flu
x 

(v
eh

/h
)

heavy vehicles

raw
smoothed

(b)

Figure 2. Typical weekly (from Monday to Sunday) flux data on the A4 motorway of (a) light and
(b) heavy vehicles collected on March 2019 near Redipuglia. Smoothed data are plotted in black.
Note the flux drop of cars in the middle of the day and of trucks on the weekend.
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Figure 3. Typical daily (Thursday) flux and velocity data on the A28 motorway of (a–c) light and
(b–d) heavy vehicles collected in May 2019 near Sesto al Reghena.
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Figure 4. Creeping phenomenon registered in May 2019 near Portogruaro: (a) Light vehicles move in
the fast lane even if (b) heavy vehicles queue in the slow lane. (c) Light vehicles’ velocity drops from
∼140 to ∼60 km/h and then to ∼20 km/h while (d) heavy vehicles are completely stopped.

3. Models

In this section, we present the two models. As already stated in the Introduction, the
models are not meant to provide the same results or to be the many-particle limit of the
other. Nevertheless, they share the most important constitutive assumptions, and for this
reason, they are expected to provide the same qualitative results. The most important
common modeling assumption is that the car dynamics is influenced, at any time, by the
presence of trucks, while the truck dynamics is affected by cars only if the density of cars
exceeds a certain threshold, which corresponds to the fact that cars cannot be confined to
the fast lane any longer and must invade the slow lane where trucks live. This assumption
comes from an important piece of evidence: cars tend to avoid being trapped between two
trucks in the slow lane and prefer moving to the fast lane. Doing this, cars move to the side
of trucks (overtaking them if possible) and do not affect their dynamics, unless the density
of cars is so high that they must necessarily occupy the slow lane too.

3.1. Macroscopic Model

We denote by `L and by `H the average length of light vehicles (cars) and heavy
vehicles (trucks), respectively, and we define

β :=
`L

`H
< 1. (5)

We also denote by ρL the density of cars and by ρH the density of trucks. Similarly, we
denote by ρmax

L and ρmax
H the maximal densities for cars and trucks, respectively. They are

defined as
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ρmax
L =

2
`L

and ρmax
H =

1
`H

, (6)

having assumed that there are two available lanes for cars and only one for trucks. Note
that density values are expressed in terms of number of vehicles per unit of space. Consid-
ering that trucks occupy more space than cars, a direct comparison of the two densities
is not meaningful. For this reason, the two classes are typically compared in terms of
occupied space.

The two-class dynamics is physically admissible if the two densities fall in the set

D :=
{
(ρL, ρH) : 0 ≤ ρL ≤ ρmax

L , 0 ≤ ρH ≤ ρmax
H , 0 ≤ ρL +

ρH

β
≤ ρmax

L

}
, (7)

which is well defined if ρmax
L − ρmax

H
β ≥ 0. In the following, in order to cope with the uneven

space occupancy, we assume that the last condition is verified with the strict inequality

ρmax
L − ρmax

H

β
> 0. (8)

We consider the following two-class model for (ρL, ρH) ∈ D:

{
∂tρL + ∂x fL(ρL, ρH) = 0

∂tρH + ∂x fH(ρL, ρH) = 0
x ∈ R, t > 0, (9)

where
fL(ρL, ρH) := ρLvL(ρL, ρH), fH(ρL, ρH) := ρHvH(ρL, ρH)

define the two fundamental diagrams and vL, vH are the speed functions for light and
heavy vehicles, respectively. We then have a family of flow–density curves ρL 7→ fL(ρL, ρH)
for cars, parameterized by the truck density ρH, and, analogously, a family of flow–density
curves ρH 7→ fH(ρL, ρH) for trucks, parameterized by ρL.

We assume that the flux and speed functions satisfy the following properties:

(L1) vL(ρL, ρH) ≥ 0 for all (ρL, ρH) ∈ D and vL(ρL, ρH) = 0 iff ρL = ρ∗L(ρH), where

ρ∗L(ρH) := ρmax
L − ρH/β (10)

is the maximum admissible car density given the truck density ρH;
(L2) vL(ρL, ρH) is a decreasing function with respect to ρL and ρH;
(L3) fL(0, ρH) = 0 and fL(ρ∗L(ρH), ρH) = 0 for all ρH ∈ [0, ρmax

H ];
(L4) fL(ρL, ρH) is concave with respect to ρL for any ρH. We define

σL(ρH) := arg max
ρL

fL(ρL, ρH) (11)

which represents, as usual, the interface between freeflow and congested regimes;
(L5) fL(ρL, ρH) is a decreasing function with respect to ρH for any ρL.

Similarly,

(H1) vH(ρL, ρH) ≥ 0 for all (ρL, ρH) ∈ D and vH(ρL, ρH) = 0 iff ρH = ρ∗H(ρL), where

ρ∗H(ρL) := min{ρmax
H , β(ρmax

L − ρL)} (12)

is the maximum admissible truck density given the car density ρL;
(H2) vH(ρL, ρH) is a decreasing function with respect to ρL and ρH;
(H3) fH(ρL, 0) = 0 and fH(ρL, ρ∗H(ρL)) = 0 for all ρL ∈ [0, ρmax

L ];
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(H4) fH(ρL, ρH) is concave with respect to ρH for any ρL. We define

σH(ρL) := arg max
ρH

fH(ρL, ρH) (13)

which represents, as usual, the interface between freeflow and congested regimes;
(H5) fH(ρL, ρH) is a decreasing function with respect to ρL for any ρH.

To cope with the peculiarities of the dynamics, we consider a phase transition (cf. [34–36])
caused by the presence of two states of the system:

• The partial coupling phase is in place when

(ρL, ρH) ∈ D1 :=
{

0 ≤ ρH ≤ ρmax
H , 0 ≤ ρL ≤ ρmax

L − ρmax
H /β

}
, (14)

see Figure 5.
In this phase, we assume that cars are mainly in the fast lane and do not affect the
truck dynamics. Trucks are then independent from cars.
For trucks, we choose a triangular fundamental diagram with

vH(ρH) = Vmax
H for all ρH ≤ σH, (15)

where Vmax
H is the maximum speed of trucks, see Figure 6b.

Cars do not interfere with trucks but adapt their dynamics to the presence of them.
Moreover, for cars, we choose (a family of) triangular fundamental diagrams, see
Figure 6a. Specifically, we set

vL(ρL, ρH) =





V∗L (ρH) if ρL ≤ σL(ρH),

V∗L (ρH) σL(ρH)

ρ∗L(ρH)− σL(ρH)

(
ρ∗L(ρH)

ρL
− 1
)

if σL(ρH) < ρL ≤ ρmax
L − ρmax

H /β,
(16)

where V∗L (ρH) is the maximum speed of cars given the truck density. We also define
V∗L (0) = Vmax

L as the maximum speed of cars in the absence of trucks. Then, V∗L (ρH) ≥
0 and σL(ρH) ≥ 0 are continuous linear decreasing functions of ρH.
For (ρL, ρH) ∈ D1, the model (9) then becomes

{
∂tρL + ∂x fL(ρL, ρH) = 0

∂tρH + ∂x fH(ρH) = 0
(17)

where fL(ρL, ρH) = ρLvL(ρL, ρH) and fH(ρH) = ρHvH(ρH), as described in Figure 6.
• The full coupling phase is in place when (ρL, ρH) ∈ D2 := D\D1, see Figure 5. In this

case, we assume that there are too many cars to find it convenient to be confined to the
fast lane. For this reason, they invade the slow lane, thus influencing the dynamics of
trucks. The two equations in system (9) are then fully coupled.
As before, we choose for both classes a family of triangular fundamental diagrams
which extend, by continuity, those defined in D1, as shown in Figure 7.

We define the transition level as the threshold density of light vehicles which acts as an
interface between the two phases, see Figure 5. In our setting, trucks are confined to one of
the two available lanes, and then the transition level is equal to ρmax

L − ρmax
H /β = ρmax

L /2.
Note also that the fundamental diagrams we use in this work verify all the properties

(L1)–(L5) and (H1)–(H5).
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Figure 6. Fundamental diagrams of the macroscopic model in the partial coupling phase, i.e.,
(ρL, ρH) ∈ D1. (a) Light vehicles, (b) heavy vehicles.
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Figure 7. Fundamental diagrams of the macroscopic model in the full coupling phase, i.e.,
(ρL, ρH) ∈ D2. (a) Light vehicles, (b) heavy vehicles.

3.2. Multi-Scale Model

In this section, we describe the multi-scale model. Here, cars are described by a
first-order LWR model of type (2), and trucks are described by a second-order microscopic
follow-the-leader model of type (1). Let us describe the microscopic model first, dropping,
for the moment, the coupling with light vehicles.
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3.2.1. Microscopic Model for Heavy Vehicles

The microscopic model is the one presented in [3], which is, in turn, inspired by the
model originally proposed by Zhao and Zhang in [33].

In the following, we denote by ∆k the gap between truck k and truck k + 1 at any
time t:

∆k(t) := Xk+1(t)− Xk(t).

It is plain that this gap is inversely proportional to the density of heavy vehicles.
We define in (1)

A
(
Xk, Xk+1, Vk, Vk+1

)
=





1
τacc

(
vZZ(∆k)−Vk

)
, if vZZ(∆k) ≥ Vk

1
τdec

(
vZZ(∆k)−Vk

)
, if vZZ(∆k) < Vk

(18)

where the function vZZ represents the equilibrium velocity all drivers tend to and depends
on the gap ∆k. Parameters τacc, τdec > 0 are the relaxation times as usual, differentiated for
the acceleration and the deceleration phase. Diversifying the relaxation times appeared to
be crucial to fit real data.

The velocity function vZZ is defined by

vZZ(∆) :=





0, if ∆ ≤ ∆close

Vmax
H

∆far−∆close
(∆− ∆close), if ∆close < ∆ < ∆far

Vmax
H , if ∆ ≥ ∆far

(19)

where ∆close, ∆far, Vmax
H are positive parameters, see Figure 8.
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crucial for correctly reproducing stop & go waves. Indeed, once the relaxation times τacc,
τdec are fixed, the capability of the model to trigger stop & go waves is ruled precisely by
∆close.

3.2.2. Full model

First of all, given a parameter δ > 0, we assume that cars located at x are influenced
by a truck iff the distance between the truck and x is less than δ. We denote the number of
trucks falling in the road interval [x− δ, x + δ) at any time t by

Nδ
H(x, t) := #{k : Xk(t) ∈ [x− δ, x + δ)}. (20)

Second, we denote by ρL the density of light vehicles and vL their velocity. To couple
the dynamics of the two classes we assume that vL depends on both ρL (as in the classical
LWR model) and Nδ

H. As usual we assume that vL is decreasing with respect to both
arguments.

Finally, we couple the dynamics of heavy vehicles with those of light vehicles. The
interaction is obtained by introducing the dependence on ρL in the parameters ∆close
and ∆far. More precisely, we introduce the increasing functions ∆close = ∆close(ρL) and
∆far = ∆far(ρL) and we denote by AC = AC(Xk, Xk+1, Vk, Vk+1, ρL) the coupled acceleration
defined as A in (18)–(19), with the new dependence on ρL.

We are now ready to present the fully coupled multi-scale model which reads as




{
Ẋk = Vk

V̇k = AC(Xk, Xk+1, Vk, Vk+1, ρL)
, k = 1, . . . , N − 1

∂tρL + ∂x

(
ρLvL(ρL, Nδ

H)
)
= 0, x ∈ R, t > 0.

(21)

To be coherent with our modeling assumptions, the functions ∆close and ∆far are constant
for cars densities below the transition level, i.e. ρL ≤ ρmax

L /2. In this case the dynamics of
trucks is independent from those of cars. Conversely, for ρL > ρmax

L /2, we assume that the
distances ∆close and ∆far increase linearly with respect to the average number of cars which
are positioned between two trucks. This number can be easily computed considering the
average number of cars in a road segment of length ` (equal to ρL`) and the number of

Figure 8. The shape of the velocity function vZZ(∆) defined in (19).

The plateau in ∆ ∈ [0, ∆close] is crucial for correctly reproducing stop and go waves.
Indeed, once the relaxation times τacc, τdec are fixed, the capability of the model to trigger
stop and go waves is ruled precisely by ∆close.

3.2.2. Full Model

First of all, given the parameter δ > 0, we assume that cars located at x are influenced
by a truck iff the distance between the truck and x is less than δ. We denote the number of
trucks falling in the road interval [x− δ, x + δ) at any time t by

Nδ
H(x, t) := #{k : Xk(t) ∈ [x− δ, x + δ)}. (20)

Second, we denote by ρL the density of light vehicles and by vL their velocity. To
couple the dynamics of the two classes, we assume that vL depends on both ρL (as in the
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classical LWR model) and Nδ
H. Following standard assumptions, we assume that vL is

decreasing with respect to both arguments.
Finally, we couple the dynamics of heavy vehicles with those of light vehicles. The

interaction is obtained by introducing the dependence on ρL in the parameters ∆close
and ∆far. More precisely, we introduce the increasing functions ∆close = ∆close(ρL) and
∆far = ∆far(ρL), and we denote by AC = AC(Xk, Xk+1, Vk, Vk+1, ρL) the coupled acceleration
defined as A in (18) and (19), with the new dependence on ρL.

We are now ready to present the fully coupled multi-scale model which reads as




{
Ẋk = Vk

V̇k = AC(Xk, Xk+1, Vk, Vk+1, ρL)
, k = 1, . . . , N − 1

∂tρL + ∂x

(
ρLvL(ρL, Nδ

H)
)
= 0, x ∈ R, t > 0.

(21)

To be coherent with our modeling assumptions, the functions ∆close and ∆far are con-
stant for car densities below the transition level, i.e., ρL ≤ ρmax

L /2. In this case, the dynamics
of trucks is independent from those of cars. Conversely, for ρL > ρmax

L /2, we assume that
the distances ∆close and ∆far increase linearly with respect to the average number of cars
which are positioned between two trucks. This number can be easily computed considering
the average number of cars in a road segment of length ` (equal to ρL`) and the number of
trucks in the same road segment (assuming that all vehicles are uniformly distributed). We
were unable to precisely calibrate the shape of the functions ∆close and ∆far from real data
because it happens rarely that many cars are found between trucks: indeed, trucks tend to
“push” cars into the fast lane rather than reacting to their presence.

3.3. Extension of the Models to General Road Networks

In order to perform a complete simulation on a generic network of highways, some
important generalizations are needed.

3.3.1. Any Number of Lanes

Highways often have more than two lanes. Consider a road with n lanes of which nH

can be occupied by trucks. To allow the creeping phenomenon, we assume that nH < n,
which corresponds to ρmax

L `L − ρmax
H `H > 0 in terms of space occupied, cf. (8).

In the macroscopic approach, the model is easy generalized. Fundamental diagrams
are modified in such a way that trucks start interacting with cars when the density of cars
becomes greater than nH

n ρmax
L .

In the microscopic model, instead, an important modification is needed if nH > 1.
Indeed, in this case, trucks can overtake, and the microscopic model must be able to handle
this. Typically, some new parameters are introduced in order to establish when a truck
decides to overtake and if the truck can actually overtake, considering suitable safety
constraints. From the computational point of view, additional difficulty arises when one
has to find the truck in front of any other truck, since the ordering is lost whenever a truck
overtakes. To make the search for the preceding vehicle computationally feasible, one can
keep track, in a specific list, of all trucks located in each numerical cell and then update the
list whenever a truck leaves or enters the cell.

3.3.2. Junctions

In order to perform a full simulation on a network of highways, both theoretical
and numerical treatments of junctions are needed. Typically, highways do not have
roundabouts, traffic lights or complex junctions; therefore, we can limit ourselves to handle
simple merging (2 incoming roads and 1 outgoing road) and diverging (1 incoming road
and 2 outgoing roads). We adopted the approach detailed in [13], in which the dynamics
reformulated along paths and junctions “disappears”. The price to pay is that the number of
equations is multiplied by the number of possible paths the drivers can follow at junctions.
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In both merging and diverging, we have only two possible paths: for example, in the case
of diverging, one can choose among the first and second outgoing roads, while in merging,
one can decide to come from the first or the second incoming road.

Following this approach in the macroscopic model, the densities of each class of
vehicles are split around every junction, ending up with a system of four conservation
laws (two paths for each of the two classes of vehicles) with a discontinuous flux. After
the junctions, densities are gathered together again, and the two-equation system (9) is
restored.

In the multi-scale model, instead, the path-based approach is applied only for car
dynamics since managing trucks is much simpler. Indeed, in the microscopic model, one
can just move vehicles from one road to another on the basis of their destination, see [37].
Unfortunately, the ordering of trucks is lost every time a change of road takes place. In
order to reduce the computational effort needed for the computation of the preceding truck
of every truck, the same solution proposed in Section 3.3.1 can be applied.

4. Numerical Approximation and Calibration

In this section, we describe how the models introduced above can actually be imple-
mented. First, we briefly recall the numerical methods we have adopted, and then we
describe how we used real data to set the models’ parameters.

4.1. Macroscopic Model

For the numerical approximation of the macroscopic model (9), we employ the exten-
sion of the cell transmission model (CTM) to the heterogeneous multi-class model proposed
in [14]. Let ∆x and ∆t be the space and time steps, respectively, and let (ρn,i

L , ρn,i
H ) be the traf-

fic densities in the ith cell at the nth time step. The finite volume numerical scheme reads




ρn+1,i
L = ρn,i

L +
∆t
∆x

(
Fn,i−1/2

L −Fn,i+1/2
L

)

ρn+1,i
H = ρn,i

H +
∆t
∆x

(
Fn,i−1/2

H −Fn,i+1/2
H

)
(22a)

(22b)

where
Fn,i+1/2

L := min
{

SL(ρ
n,i
L , ρn,i

H ), RL(ρ
n,i+1
L , ρn,i+1

H )
}

, (23)

Fn,i+1/2
H := min

{
SH(ρ

n,i
L , ρn,i

H ), RH(ρ
n,i+1
L , ρn,i+1

H )
}

, (24)

and (SL, RL), (SH, RH) represent the sending and receiving functions of the two vehicle
classes, respectively, defined by

SL(ρL, ρH) :=

{
fL(ρL, ρH), if ρL ≤ σL(ρH),

fL(σL(ρH), ρH), if ρL > σL(ρH),

RL(ρL, ρH) :=

{
fL(σL(ρH), ρH), if ρL ≤ σL(ρH),

fL(ρL, ρH), if ρL > σL(ρH),

(25)

and similarly for (SH, RH).
The numerical grid is chosen as ∆x = 100 m and ∆t = 2.6 s. The choice of the space step

comes from the fact that the company Autovie Venete finds such granularity convenient for
sharing traffic information to drivers, while the time step is dictated by the CFL condition.

Calibration of the fundamental diagrams was performed by fitting real data. We used
all data measured in 2019 by one fixed sensor located near Cessalto, see Figures 9 and 10.
Note that for high densities, the velocities drop rapidly to zero. Since we have no data
for completely stationary vehicles under the sensor, we are not able to reconstruct data on
high traffic density. For this reason, the maximal densities ρmax

L and ρmax
H are estimated by

simply computing the ratio between the number of available lanes for the class and the
average length of vehicles of that class, see Equation (6).
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(a) (b)

Figure 9. (a) Flux–density and (b) velocity–density relationships for cars with real data superimposed.

(a) (b)

Figure 10. (a) Flux–density and (b) velocity–density relationships for trucks with real data superimposed.

Model parameters are summarized in Table 1. All functions which rule the dependence
of ρ, v, f on the density of the other class are linear.

Table 1. Parameters for the macroscopic model.

Light Vehicles Heavy Vehicles

veh. length + safety dist. (km) 7.5× 10−3 18× 10−3

max max density (veh/km) ρ∗L(0) = 267 ρ∗H(0) = 56

min max density (veh/km) ρ∗L(ρmax
H ) = 133 ρ∗H(ρmax

L ) = 0

max max speed (km/h) vL(0, 0) = 130 vH(0, 0) = 90

min max speed (km/h) vL(0, ρmax
H ) = 65 vH(ρmax

L , 0) = 0

max max flux (veh/h) fL(σL(0), 0) = 4200 fH(0, σH(0)) = 1500

min max flux (veh/h) fL(σL(ρmax
H ), ρmax

H ) = 1200 fH(ρmax
L , σH(ρmax

L )) = 0

4.2. Multi-Scale Model

For the numerical approximation of the macroscopic part of the multi-scale model (21),
we again employ scheme (22a), where Nδ

H plays the role of ρH in the obvious manner. The
numerical grid is chosen as ∆x = 100 m and ∆t = 2 s.

The dependence of the flux on Nδ
H can generate some issues. For example, consider

the case of no trucks and a car density ρ̂L close to ρmax
L . When a truck enters the road,

the maximal density allowed in the cell occupied by the truck drops to ρ∗L(Nδ
H) according

to (10). Now, if ρ∗L(Nδ
H) < ρ̂L, the current density ρ̂L is found not to be compatible with the

new maximal density. Although the entering truck perceives the cars, it is not guaranteed
that the compatibility with the maximal density is respected at any time. To avoid this
problem, trucks must be prevented from entering cells if the new maximal density caused
by the presence of the truck itself is not compatible with current traffic conditions.

For the numerical approximation of the microscopic part, we used a standard Euler
scheme with a time step of δt = 0.1 s. Note that this time step is much smaller than the time
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step ∆t used for the Godunov scheme, meaning that the updates of the trucks and cars are
asynchronous.

Regarding the parameters, the macroscopic part of the model is treated as in Section 4.1
(Table 1). For the microscopic model, some parameters are easily calibrated by using real
data and considering physical constraints. For example, Vmax

H was defined as in the
macroscopic model. ∆far was set in order to guarantee that trucks do not collide even in
the event that a truck suddenly brakes with full power until it stops (note that our model
allows, in principle, collisions since deceleration is bounded). ∆close, instead, was set to
a distance which guarantees catching the maximal observed density of trucks. In other
words, when a queue of trucks is formed, the model predicts the correct maximal density.

Parameters τacc and τdec are, instead, more difficult to calibrate since they are not
easily measurable. For those values, we considered a real stop and go wave observed by
the company staff on 12 June 2017, generated by the slowdown of a truck near a bottleneck.
The initial perturbation (slowdown) was amplified and, in a short time, generated a queue
which propagated backwards. We run the microscopic model using real inflow data as left
boundary conditions, and then we fitted the parameters in order to catch the real queue as
measured in the field, see Figure 11.

Figure 11. Simulated trajectories obtained with real inflow data as left boundary conditions (not
all vehicles are plotted for visualization purposes). Horizontal blue lines and vertical black lines
indicate, respectively, the position and the duration of the real queue as measured in the field.

The role of the parameters τacc and τdec is to adjust the points/times of the start and
the end of the queue. We noted a strong sensitivity of the model to those parameters. As a
consequence, it is quite difficult to catch the correct speed of the backward propagation of a
queue when inertia comes into play. We summarize the values of the parameters in Table 2.

Table 2. Parameters for the microscopic model.

δ 50× 10−3 km

∆close 25× 10−3 km

∆far 50× 10−3 km

Vmax
H 90 km/h

τdec 2× 10−4 h

τacc 1.4× 10−2 h

5. Numerical Results

In this section, we present the numerical results obtained with models (9) and (21).
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5.1. Macroscopic Model

Here, we present three tests which highlight how the macroscopic model reproduces
some interesting phenomena arising from the coupled dynamics of cars and trucks. In
particular, we focus on the creeping phenomenon, the shared occupancy and the stop and
go waves.

5.1.1. Test 1A: Creeping

In this simple test, we observe the creeping phenomenon, see Figure 12. The simulation
starts with a constant density (ρL, ρH) = (10, 13) veh/km all along the road. At the end
of the road (right boundary), trucks are stopped by fixing their density at its maximum
value ρmax

H = 56: a queue of trucks propagates backward from the end of the road, while a
constant flux of cars approaches the beginning of the queue. Once cars reach the trucks’
queue, they have to slow down but do not stop completely. More precisely, the cars’ velocity
drops to 65 km/h. Note that the car density remains under the transition level, and then
the dynamics is in the partial coupling phase all the time. Moreover, cars are always in the
freeflow regime and then move at maximal speed, but the maximal speed changes as a
function of the truck density.
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Figure 12. Test 1A: (a) Density and (b) velocity of light and heavy vehicles as a function of space at
final time. (c) Density of light and (d) heavy vehicles in space–time.

5.1.2. Test 2A: Cars’ Congestion Affects Truck Dynamics

In this test, we observe the effect of congestion of cars, see Figure 13. The simulation
starts with a constant density (ρL, ρH) = (10, 8) veh/km all along the road. At the end
of the road (right boundary), the density of cars is fixed to 186 veh/km to create the
slowdown. The car density is larger than the transition level, so cars have to invade the
slow lane. Trucks facing the car congestion slow down but do not just occupy the space left
to them by cars; rather, they conquer some extra space, thus decreasing the car density. As a
result, both cars and trucks proceed slowly without stopping, and the initial car congestion
propagates backward with a density lower than the transition level.
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Figure 13. Test 2A: (a) Density and (b) velocity of light and heavy vehicles as a function of space at
final time. (c) Density of light and (d) heavy vehicles in space–time.

5.1.3. Test 3A: Stop and Go Wave

In this test, we study the evolution of a small perturbation in the truck density, see
Figure 14. At the initial time, the truck density is constant and equal to 12 veh/km, except
for a small perturbation at the end of the road where the density is equal to 30 veh/km.
The car density instead oscillates just above the transition level. It is plain that a single-class
LWR model for trucks only would flatten the perturbation in a short time. Conversely, in
this case, the coupling with car dynamics causes the perturbation to propagate backward
without vanishing. This second-order-type effect is obtained thanks to the fact that the
fundamental diagram of trucks is continuously modified by the oscillating car density.
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Figure 14. Cont.
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Figure 14. Test 3A: (a) Density and (b) velocity of light and heavy vehicles as a function of space at
t = ∆t (i.e., just after the initial time). (c) Density of light and (d) heavy vehicles in space–time. The
evolution of the initial perturbation in the truck density starting at 9 km is perfectly visible, which
creates, in turn, a perturbation in the car density.

5.2. Multi-Scale Model

Here, we replicate, with the multi-scale model, the first two scenarios already inves-
tigated in Section 5.1. The third scenario was already considered in Figure 11, where the
second-order microscopic model is able to reproduce stop and go waves alone, without the
need to couple car dynamics. Finally, we consider the case of a merge.

5.2.1. Test 1B: Creeping Effect

Similar to Test 1A in Section 5.1.1, here, one truck stops completely and creates a long
queue of trucks behind, which saturates the slow lane. When cars reach the truck queue,
they all move to the fast lane staying at the (new, reduced) maximal velocity of 65 km/h,
see Figure 15.
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Figure 15. Test 1B: (a) Trajectories of trucks in space–time (for visualization purposes, not all trucks
are actually plotted). When the first truck stops, a queue is formed behind. (b) Car density, car
velocity and car maximal density given the number of trucks at final time. Creeping is visible between
7 and 9 km.

5.2.2. Test 2B: Cars’ Congestion Affects Truck Dynamics

Similar to Test 2A in Section 5.1.2, congestion of cars at the end of the road slows down
trucks, see Figure 16. The results are similar to those obtained by the macroscopic model,
but here, trucks stop completely, forming a queue.
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Figure 16. Test 2B: (a) Trajectories of trucks in space–time (for visualization purposes, not all trucks
are actually plotted). They stop for a while and then accelerate. (b) Car density, car velocity and car
maximal density given the number of trucks at final time.

5.2.3. Test 3B: Merge

In this test, we consider a merge (two incoming roads and one outgoing road). At
time t = 0, the three roads are empty. A constant inflow of trucks (one every 4 s) comes
from the left boundary of both incoming roads, while a constant density of cars (ρL = 32)
is imposed as a Dirichlet left boundary condition on the second incoming road only. The
first incoming road has no cars. When trucks reach the junction and merge, they suddenly
break and rapidly form a queue which propagates backward along both incoming roads,
see Figure 17a,b.
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Figure 17. Test 3B: (a–c) Trajectories of trucks in space–time on the first incoming road, second
incoming road and outgoing road, respectively (for visualization purposes, not all trucks are actually
plotted). (d,e) Car density on second incoming road and outgoing road, respectively.

Queues are not identical due to the presence of cars along the second incoming road.
One can note that when the trucks downstream of the queue start moving again, their
flux is not maximal: indeed, if the flow were maximum, a queue at the junction would
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immediately reform as it happened in the first place. This is the well-known capacity drop
phenomenon, ruled by τacc, cf. [38]. As a consequence, trucks are able to cross the junction
without spillback. Cars, instead, move at the maximal flux until they encounter the truck
queue. The queue acts as a moving bottleneck and drops the road capacity; therefore, the
car traffic immediately enters the congested state, and the density increases. Downstream,
the density remains in the freeflow state, and cars cross the junction without spillback, see
Figure 17d,e.

6. Conclusions and Future Work

In this paper, we presented two models for two-class traffic flow. Although the models
are tailored for a specific case study, they are sufficiently general to be useful in other
motorways. Moreover, both models can be easily generalized to more than two classes of
vehicles and a different ratio between the number of lanes used by trucks and the number
of lanes used by cars.

We have shown that the models are able to reproduce, both qualitatively and quanti-
tatively, some notable traffic phenomena arising from the interactions of the two classes.
Interestingly, the macroscopic model, although purely first-order, is able to reproduce stop
and go waves thanks to the coupling of the two classes.

After this preliminary analysis, it is possible to sketch some conclusions about the
advantages and drawbacks of the two models: The multi-scale model has a greater potential
since the second-order microscopic part makes it more realistic and then suitable for
quantitative predictions. Nevertheless, the macroscopic model appears to be simpler and
more manageable, thus representing a valid alternative if one wants to avoid tracking all
single vehicles, especially for saving computational time.

In conclusion, we believe that both the proposed models represent the best compro-
mise between accuracy and implementability. In fact, decoupling the dynamics of different
classes excessively simplifies the problem description and does not allow obtaining an
accurate forecast; conversely, moving to second-order macroscopic models or including
multi-lane features in the models notably increases the complexity of the code as well as
the number of parameters to be tuned. These generalizations would allow, in principle,
easily catching inertia-based phenomena in all classes of vehicles and tracking the density
of each class of vehicle in each lane, but, in our opinion, they make that model unfeasible for
practical applications.

In the future, we plan to improve the models including the possibility that they are fed
by both Lagrangian (GPS-like) and Eulerian data coming from mobile and fixed sensors,
respectively, cf. [39]. Moreover, we plan to estimate, in real time, the difference between pre-
dicted and measured densities using the machinery developed in [13], hopefully creating
an algorithm for the auto-calibration of the models in real time.
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