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Abstract: In this paper, we define almost Rg-Geraghty type contractions and utilize the same to
establish some coincidence and common fixed point results in the setting of b2-metric spaces endowed
with binary relations. As consequences of our newly proved results, we deduce some coincidence
and common fixed point results for almost g-α-η Geraghty type contraction mappings in b2-metric
spaces. In addition, we derive some coincidence and common fixed point results in partially ordered
b2-metric spaces. Moreover, to show the utility of our main results, we provide an example and an
application to non-linear integral equations.
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1. Introduction

The extension of fixed point theory to generalized structures, such as cone metric
spaces, partial metric spaces, b-metric spaces and 2-metric spaces has received much
attention. 2-metric space is a generalized metric space which was introduced by Gähler
in [1]. Unlike the ordinary metric, the 2-metric is not a continuous function. The topology
induced by 2-metric space is called 2-metric topology which is generated by the set of all
open spheres with two centers. It is easy to observe that 2-metric space is not topologically
equivalent to an ordinary metric. Hence, there is not any relationship between the results
obtained in 2-metric spaces and the correspondence results in metric spaces. For fixed point
results in the setting of 2-metric spaces, the readers may refer to [2–5] and references therein.

The concept of b-metric spaces was introduced by Czerwik [6,7] which is a generaliza-
tion of the usual metric spaces and 2-metric spaces as well. Several papers have dealt with
fixed point theory for single-valued and multi-valued operators in b-metric spaces have
been obtained (see, e.g., [8–10]).

In 2014, Mustafa et al. [11] introduced the notion of b2-metric spaces, as a generaliza-
tion of both 2-metric and b-metric spaces.

On the other hand, the branch of related metric (metric space endowed with a binary
relation) fixed point theory is a relatively new area was initiated by Turinici [12]. Recently,
this direction of research is undertaken by several researchers such as: Bhaskar and Laksh-
mikantham [13], Samet and Turinici [14], Ben-El-Mechaiekh [15], Imdad et al. [16,17] and
some others.

The aims of this paper are as follows:

• to define almostRg-Geraghty type contractions;
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• to establish some coincidence and common fixed point results in the setting of b2-
metric spaces endowed with binary relations;

• to deduce some fixed point and common fixed point results in partially ordered
b2-metric spaces;

• to provide an example which shows the utility of our main results;
• to apply our newly proven results to non-linear integral equations.

2. Preliminaries

Definition 1 ([11]). Let X be a non-empty set, s ≥ 1 a given real number and d : X3 → R be a
map satisfying the following conditions:

(i) for every pair of distinct points x, y ∈ X, there exists a point z ∈ X such that d(x, y, z) 6= 0;
(ii) if at least two of three points x, y, z are the same, then d(x, y, z) = 0;
(iii) d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x), for all x, y, z ∈ X;
(iv) d(x, y, z) ≤ s[d(x, y, w) + d(y, z, w) + d(z, x, w)], for all x, y, z, w ∈ X.

Then d is called a b2-metric on X and (X, d) is called a b2-metric space with parameter s.

Obviously, for s = 1, b2-metric reduces to 2-metric.

Example 1. Let (X, d) be a 2-metric space and ρ(x, y, w) = (d(x, y, w))p, where p ≥ 1 is a real
number. We see that ρ is a b2-metric with s = 3p−1. In view of the convexity of f (x) = xp, on
[0, ∞) for p ≥ 1 and Jensen inequality, we have

(a + b + c)p ≤ 3p−1(ap + bp + cp).

Therefore, condition (iv) of Definition 1 is satisfied and ρ is a b2-metric on X.

Definition 2 ([11]). Let {xn} be a sequence in a b2-metric space (X, d). Then

(i) {xn} is said to be b2-convergent and converges to x ∈ X, written lim
n→∞

xn = x, if for all

a ∈ X, lim
n→∞

d(xn, x, a) = 0.

(ii) {xn} is said to be b2-Cauchy in X if for all a ∈ X, lim
m,n→∞

d(xm, xn, a) = 0.

(iii) (X, d) is said to be b2-complete if every b2-Cauchy sequence is a b2-convergent sequence.

Definition 3 ([11]). Let (X, d) and (X̄, d̄) be two b2-metric spaces and let f : X → X̄ be a
mapping. Then f is said to be b2-continuous at a point z ∈ X if for a given ε > 0, there exists
δ > 0 such that x ∈ X and d(z, x, a) < δ for all a ∈ X imply that d̄( f z, f x, a) < ε. The mapping
f is b2-continuous on X if it is b2-continuous at all z ∈ X.

Proposition 1 ([11]). Let (X, d) and (X̄, d̄) be two b2-metric spaces. Then a mapping f : X → X̄
is b2-continuous at a point x ∈ X if it is b2-sequentially continuous at x, that is, whenever {xn} is
b2-convergent to x, { f (xn)} is b2-convergent to f (x).

Lemma 1 ([11]). Let (X, d) be a b2-metric space. Suppose that {xn} and {yn} are b2-converge to
x and y, respectively. Then, we have

1
s2 d(x, y, a) ≤ lim inf

n→∞
d(xn, yn, a) ≤ lim sup

n→∞
d(xn, yn, a) ≤ s2d(x, y, a) for all a ∈ X.

In particular, if yn = y, is constant, then

1
s

d(x, y, a) ≤ lim inf
n→∞

d(xn, y, a) ≤ lim sup
n→∞

d(xn, y, a) ≤ sd(x, y, a) for all a ∈ X.
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Definition 4. Let f and g be two self mappings on a non-empty set X. If w = f x = gx for some
x ∈ X, then x is called a coincidence point of f and g and w is called a point of coincidence of f
and g.

Definition 5 ([18]). Two self mappings f and g are said to be weakly compatible if they commute
at their coincidence points, that is, f x = gx implies that f gx = g f x.

Lemma 2 ([19]). Let f and g be weakly compatible self mappings of a non-empty set X. If f and g
have a unique point of coincidence w = f x = gx, then w is the unique common fixed point of f
and g.

A non-empty subsetR of X× X is said to be a binary relation on X. Trivially, X× X
is a binary relation on X known as the universal relation. For simplicity, we will write xRy
whenever (x, y) ∈ R and write xR/y whenever xRy and x 6= y. Observe thatR/ is also a
binary relation on X andR/ ⊆ R. The elements x and y of X are said to beR-comparable
if xRy or yRx, this is denoted by [x, y] ∈ R.

Definition 6. A binary relationR on X is said to be:

(i) reflexive if xRx for all x ∈ X;
(ii) transitive if, for any x, y, z ∈ X, xRy and yRz imply xRz; antisymmetric if, for any x, y ∈ X,

xRy and yRx imply x = y;
(iii) preorder if it is reflexive and transitive;
(iv) partial order if it is reflexive, transitive and antisymmetric.

Let X be a nonempty set,R a binary relation on X and Y ⊆ X. Then the restriction of
R to Y is denoted by R|Y and is defined by R∩Y2. The inverse of R is denoted byR−1

and is defined byR−1 = {(x, y) ∈ X× X : (y, x) ∈ R} andRs = R∪R−1.

Definition 7 ([20]). Let X be a non-empty set andR a binary relation on X. A sequence {xn} ⊆ X
is said to be anR-preserving sequence if xnRxn+1 for all n ∈ N0.

Definition 8 ([20]). Let X be a non-empty set and f : X → X. A binary relationR on X is said
to be f -closed if for all x, y ∈ X, xRy implies f xR f y.

Definition 9 ([20]). Let X be a non-empty set and f , g : X → X. A binary relation R on X is
said to be ( f , g)-closed if for all x, y ∈ X, gxRgy implies f xR f y.

Definition 10 ([20]). Let (X, d) be a metric space andR a binary relation on X. We say that X is
R-complete if everyR-preserving Cauchy sequence in X converges to a limit in X.

Remark 1. Every complete metric space isR-complete, whatever the binary relationR. Particularly,
under the universal relation, the notion ofR-completeness coincides with the usual completeness.

Definition 11 ([21]). Let (X, d) be a metric space, R a binary relation on X, f : X → X and
x ∈ X. We say that f isR-continuous at x if, for anyR-preserving sequence {xn} ⊆ X such that
xn → x, we have f xn → f x. Moreover, f is called R-continuous if it is R-continuous at each
point of X.

Remark 2. Every continuous mapping isR-continuous, whatever the binary relationR. Particu-
larly, under the universal relation, the notion ofR-continuity coincides with the usual continuity.

Definition 12 ([21]). Let (X, d) be a metric space, R a binary relation on X, f , g : X → X and
x ∈ X. We say that f is (g,R)-continuous at x if, for any sequence {xn} ⊆ M such that {gxn} is
R-preserving and gxn → gx, we have f xn → f x. Moreover, f is called (g,R)-continuous if it is
(g,R)-continuous at each point of X.
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Observe that on setting g = I, Definition 12 reduces to Definition 11.

Remark 3. Every g-continuous mapping is (g,R)-continuous, whatever the binary relation
R. Particularly, under the universal relation, the notion of (g,R)-continuity coincides with the
usual g-continuity.

Definition 13 ([21]). Let (X, d) be a metric space, R be a binary relation on X and f , g :
X → X. We say that the pair ( f , g) is R-compatible if for any sequence {xn} ⊆ X such
that { f xn} and {gxn} are R-preserving and limn→∞ gxn = limn→∞ f xn = x ∈ X, we have
limn→∞ d(g f xn, f gxn) = 0.

Remark 4. Every compatible pair isR-compatible, whatever the binary relationR. Particularly,
under the universal relation, the notion ofR-compatibility coincides with the usual compatibility.

Definition 14 ([20]). Let (X, d) be a metric space. A binary relationR on X is said to be d-self-
closed if for any R-preserving sequence {xn} ⊆ X such that xn → x, there exists a subsequence
{xnk} of {xn} such that [xnk , x] ∈ R for all k ∈ N0.

3. Common Fixed Point Results for Almost Rg-Geraghty Type Contraction Mappings

Lemma 3. Let (X, d) be a b2-metric space endowed with a binary relation R and f , g : X → X
such that f (X) ⊆ g(X), withR is ( f , g)-closed andR|g(X) is transitive. Assume that there exists
x0 ∈ X such that gx0R f x0. Define a sequence {xn} in X by f xn = gxn+1 for n ≥ 0. Then

gxmRgxn and f xmR f xn for all m, n ∈ N0 with m < n.

Proof. Since there exists x0 ∈ X such that gx0R f x0, f xn = gxn+1, and R is ( f , g)-closed,
we deduce that gx0Rgx1, then gx1 = f x0R f x1 = gx2. By continuing this process, we get
gxnRgxn+1 for all n ∈ N. Suppose that m < n, so gxmRgxm+1 and gxm+1Rgxm+2, by R
is g-transitive we have gxmRgxm+2. Again, since gxmRgxm+2 and gxm+2Rgxm+3, we get
that gxmRgxm+3. By continuing this process, we obtain gxmRgxn. for all m, n ∈ N with
m < n. In similar way and since f (X) ⊆ g(X), we conclude f xmR f xn for all m, n ∈ N with
m < n.

In 1973, Geraghty [22] introduced the class z of all functions β : [0, ∞)→ [0, 1) which
satisfy that lim

n→∞
β(tn) = 1 implies lim

n→∞
tn = 0. In addition, the author proved a fixed point

result, generalizing the Banach contraction principle. Afterwards, there are many results
about fixed point theorems by using such functions in this class. Ðukić et al. [23] obtained
fixed point results of this kind in b-metric and from [23] we denote Ω to the family of all
functions βs : [0, ∞)→ [0, 1

s ) for a real number s ≥ 1, which satisfy the condition

lim
n→∞

βs(tn) =
1
s

implies lim
n→∞

tn = 0.

Definition 15. Let (X, d) be a b2-metric space and f , g : X → X. Suppose for all x, y, a ∈ X,

M(x, y, a) = max
{

d(gx, gy, a), d(gx, f x, a), d(gy, f y, a),
d(gx, f y, a) + d(gy, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(gx, f x, a), d(gy, f y, a), d(gx, f y, a), d(gy, f x, a)

}
.

We say that f is almostRg-Geraghty type contraction mapping if there exist L ≥ 0 and βs ∈ Ω
such that

d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (1)

for all x, y, a ∈ X, with gxRgy, f xR / f y.
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Definition 16. Let (X, d) be a b2-metric space and f : X → X. Suppose for all x, y, a ∈ X,

M(x, y, a) = max
{

d(x, y, a), d(x, f x, a), d(y, f y, a),
d(x, f y, a) + d(y, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(x, f x, a), d(y, f y, a), d(x, f y, a), d(y, f x, a)

}
.

We say that f is almost R-Geraghty type contraction mapping if there exist L ≥ 0 and βs ∈ Ω
such that

d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (2)

for all x, y, a ∈ X, with xRy, f xR / f y.

Now, we present our main result as follows:

Theorem 1. Let (X, d) be a b2-metric space endowed with a binary relationR and f , g : X → X
such that f (X) ⊆ g(X), g(X) is a b2-complete subspace of X. Assume that f is almost Rg-
Geraghty type contraction mapping and the following conditions hold:

(i) there exists x0 in X such that gx0R f x0;
(ii) R is ( f , g)-closed andR|g(X) is transitive;
(iii) R|g(X) is d-self closed provided (1) holds for all x, y, a ∈ X with gxRgy and f xR/ f y.

Then f and g have a coincidence point in X.

Proof. Let x0 ∈ X such that gx0R f x0. The proof is finished if gx0 = f x0 and x0 is a
coincidence point of f and g. Let us take gx0 6= f x0, then since f (X) ⊆ g(X) we can choose
x1 ∈ X such that f x0 = gx1. Continuing this process, we can define a sequence {gxn} in X
by f xn = gxn+1, for all n ∈ N0.

We divide the proof into three steps as follows.
Step 1: We claim that lim

n→∞
d(gxn, gxn+1, a) = 0. From Lemma 3, we have {gxn} is R-

preserving sequence that is gxnRgxn+1 and f xnR f xn+1, for all n ∈ N0. If f xn0 = f xn0+1,
for some n0 ∈ N0, then xn0+1 is a coincidence point of f and g. Suppose that f xn 6= f xn+1,
for all n ∈ N0. Therefore, from (1), we obtain

d(gxn+1, gxn+2, gxn) = d( f xn, f xn+1, gxn)

≤ βs(M(xn, xn+1, gxn))M(xn, xn+1, gxn) + LN(xn, xn+1, gxn)→ (∗)

where

M(xn, xn+1, gxn) = max
{

d(gxn, gxn+1, gxn), d(gxn, f xn, gxn), d(gxn+1, f xn+1, gxn),

d(gxn, f xn+1, gxn) + d(gxn+1, f xn, gxn)

2s

}
= max{d(gxn, gxn+1, gxn), d(gxn, gxn+1, gxn), d(gxn+1, gxn+2, gxn),

d(gxn, gxn+2, gxn) + d(gxn+1, gxn+1, gxn)

2s
}

= d(gxn+1, gxn+2, gxn),

and

N(xn, xn+1, gxn) = min
{

d(gxn, f xn, gxn), d(gxn+1, f xn+1, gxn), d(gxn, f xn+1, gxn),

d(gxn+1, f xn, gxn)
}
= 0.
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If d(gxn+1, gxn+2, gxn) 6= 0 for some n ∈ N0, then we have (due to (*))

d(gxn+1, gxn+2, gxn) ≤ βs(d(gxn+1, gxn+2, gxn))d(gxn+1, gxn+2, gxn),

yielding that

d(gxn+1, gxn+2, gxn)− βs(d(gxn+1, gxn+2, gxn))d(gxn+1, gxn+2, gxn) ≤ 0,

or
d(gxn+1, gxn+2, gxn)[1− βs(d(gxn+1, gxn+2, gxn))] ≤ 0→ (∗∗).

Divide both sides in (**) by d(gxn+1, gxn+2, gxn) 6= 0, we obtain

1− βs(d(gxn+1, gxn+2, gxn)) ≤ 0,

or
βs(d(gxn+1, gxn+2, gxn)) ≥ 1,

a contradiction [as βs : [0, ∞)→ [0, 1
s ) and s ≥ 1 so βs(c) < 1

s ≤ 1, that is βs(c) < 1 for all
c ∈ [0, ∞)]. Therefore, we must have

d(gxn+1, gxn+2, gxn) = 0, for all n ∈ N0. (3)

Thus, by the rectangle inequality and (3) we get

d(gxn, gxn+2, a) ≤ s[d(gxn, gxn+1, a) + d(gxn+1, gxn+2, a)], (4)

for all n ∈ N0, a ∈ X. Using (4), Lemma 3 and (1) we have

d(gxn+1, gxn+2, a) = d( f xn, f xn+1, a)

≤ βs(M(xn, xn+1, a))M(xn, xn+1, a) + LN(xn, xn+1, a). (5)

Observe that

M(xn, xn+1, a) = max
{

d(gxn, gxn+1, a), d(gxn+1, gxn+2, a)
}

,

and

N(xn, xn+1, a) = min
{

d(gxn, f xn, a), d(gxn+1, f xn+1, a), d(gxn, f xn+1, a), d(gxn+1, f xn, a)
}

= min{d(gxn, gxn+1, a), d(gxn+1, gxn+2, a), d(gxn, gxn+2, a), d(gxn+1, gxn+1, a)}
= 0.

Now, if M(xn, xn+1, a) = d(gxn+1, gxn+2, a), then from (5) we have

d(gxn+1, gxn+2, a) ≤ βs(d(gxn+1, gxn+2, a))d(gxn+1, gxn+2, a) < d(gxn+1, gxn+2, a),

a contradiction. Hence, M(xn, xn+1, a) = d(gxn, gxn+1, a), and

d(gxn+1, gxn+2, a) ≤ βs(d(gxn, gxn+1, a))d(gxn, gxn+1, a) < d(gxn, gxn+1, a), (6)

for all n ∈ N0 and a ∈ X, which implies that the sequence {d(gxn, gxn+1, a)} is strictly de-
creasing of positive numbers. Hence, there exists δ ≥ 0 such that lim

n→∞
d(gxn, gxn+1, a) = δ.

Suppose that δ > 0. So, taking the limit as n→ ∞, from (6) we obtain

1
s

δ ≤ δ ≤ lim
n→∞

βs(d(gxn, gxn+1, a))δ ≤ 1
s

δ.
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Hence,

lim
n→∞

βs(d(gxn, gxn+1, a)) =
1
s

.

From the property of βs, we conclude that lim
n→∞

d(gxn, gxn+1, a) = 0 a contradiction, hence,

δ = 0 and
lim

n→∞
d(gxn, gxn+1, a) = 0. (7)

Step 2: We claim that d(gxi, gxj, gxk) = 0 for all i, j, k ∈ N0. Since {d(gxn, gxn+1, a)} is
strictly decreasing and d(gx0, gx1, gx0) = 0, we conclude that d(gxn, gxn+1, gx0) = 0, for
all n ∈ N0.

Since d(gxm−1, gxm, gxm) = 0 for all m ∈ N0 and {d(gxn, gxn+1, a)} is strictly decreas-
ing we obtain that

d(gxn, gxn+1, gxm) = 0, for all n ≥ m− 1. (8)

For 0 ≤ n < m− 1, we have m− 1 ≥ n + 1, so from (8) we have

d(gxm−1, gxm, gxn+1) = d(gxm−1, gxm, gxn) = 0. (9)

Thus, by the rectangle inequality, d(gxn, gxn+1, gxn+1) = 0, and using (9) we obtain

d(gxn, gxn+1, gxm) ≤ s[d(gxn, gxn+1, gxm−1) + d(gxn+1, gxm, gxm−1) + d(gxm, gxn, gxm−1)]

= sd(gxn, gxn+1, gxm−1)

≤ sd(gxn, gxn+1, gxn+1) = 0.

Therefore, we get

d(gxn, gxn+1, gxm) = 0, for all 0 ≤ n < m− 1. (10)

Hence, from (8) and (10) we have

d(gxn, gxn+1, gxm) = 0, for all n, m ∈ N0.

Now, for all i, j, k ∈ N0, i < j and d(gxi, gxj, gxj−1) = d(gxk, gxj, gxj−1) = 0, applying the
rectangle inequality we get

d(gxi, gxj, gxk) ≤ s[d(gxi, gxj, gxj−1) + d(gxj, gxk, gxj−1) + d(gxk, gxi, gxj−1)]

= sd(gxk, gxi, gxj−1)

≤ s2d(gxk, gxi, gxj−2) ≤ . . . ≤ sj−id(gxk, gxi, gxi) = 0.

Therefore, for all i, j, k ∈ N0, we have

d(gxi, gxj, gxk) = 0. (11)

Step 3: We show that {gxn} is a b2-Cauchy sequence. Suppose to the contrary that {gxn} is
not a b2-Cauchy sequence. Then there is ε > 0 such that for an integer k there exist integers
n(k), m(k) with n(k) > m(k) > k such that

d(gxm(k), gxn(k), a) ≥ ε, (12)

for every integer k, let n(k) be the least positive integer with n(k) > m(k), satisfying (12)
and such that

d(gxm(k), gxn(k)−1, a) < ε. (13)

Using the rectangle inequality, (11) and (12) we have

ε ≤ d(gxm(k), gxn(k), a) ≤ s[d(gxm(k), gxn(k)−1, a) + d(gxn(k), gxn(k)−1, a)].
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Again, using the rectangle inequality and (11) in the above inequality, it follows that

ε ≤ s2[d(gxm(k), gxm(k)−1, a) + d(gxm(k)−1, gxn(k)−1, a)] + sd(gxn(k), gxn(k)−1, a)].

In addition,

d(gxm(k)−1, gxn(k)−1, a) ≤ s[d(gxm(k)−1, gxm(k), a) + d(gxn(k)−1, gxm(k), a)].

Taking the upper limit as k → ∞, in the above three inequalities and from (7) and (13) it
follows that

ε ≤ lim sup
k→∞

d(gxm(k), gxn(k), a) < sε, (14)

ε

s2 ≤ lim sup
k→∞

d(gxm(k)−1, gxn(k)−1, a) < sε, (15)

ε

s3 ≤ lim sup
k→∞

d(gxm(k), gxn(k)−1, a) < ε. (16)

Again, using the rectangle inequality, (11) and (12) we get

d(gxm(k)−1, gxn(k), a) ≤ s[d(gxm(k)−1, gxn(k)−1, a) + d(gxn(k), gxn(k)−1, a)],

ε ≤ d(gxm(k), gxn(k), a) ≤ s[d(gxm(k), gxm(k)−1, a) + d(gxn(k), gxm(k)−1, a)].

Taking the upper limit as k→ ∞, in the above two inequalities and from (7) and (15), we get

ε

s
≤ lim sup

k→∞
d(gxm(k)−1, gxn(k), a) < s2ε. (17)

Now, from Lemma 3 we have f xm(k)−1R/ f xn(k)−1 for all m(k), n(k) ∈ N0 with m(k) < n(k).
Hence, from (1) we conclude that

d(gxm(k), gxn(k), a) = d( f xm(k)−1, f xn(k)−1, a)

≤ βs(M(xm(k)−1, xn(k)−1, a))M(xm(k)−1, xn(k)−1, a) + LN(xm(k)−1, xn(k)−1, a), (18)

where

M(xm(k)−1, xn(k)−1, a) = max{d(gxm(k)−1, gxn(k)−1, a), d(gxm(k)−1, f xm(k)−1, a),

d(gxn(k)−1, f xn(k)−1, a),
d(gxm(k)−1, f xn(k)−1, a) + d(gxn(k)−1, f xm(k)−1, a)

2s
},

= max
{

d(gxm(k)−1, gxn(k)−1, a), d(gxm(k)−1, gxm(k), a), d(gxn(k)−1, gxn(k), a),

d(gxm(k)−1, gxn(k), a) + d(gxn(k)−1, gxm(k), a)
2s

}
, (19)

and

N(xm(k)−1, xn(k)−1, a) = min
{

d(gxm(k)−1, gxm(k), a), d(gxn(k)−1, gxn(k), a), d(gxm(k)−1, gxn(k), a),

d(gxn(k)−1, gxm(k), a)
}

. (20)

Taking the upper limit as k→ ∞, in (19), (20) and using (7), (15)–(17) it follows that

ε

s2 ≤ lim sup
k→∞

M(xm(k)−1, xn(k)−1, a) < sε, (21)

and
lim sup

k→∞
N(xm(k)−1, xn(k)−1, a) = 0. (22)
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Now, taking the upper limit as k→ ∞ in (18) and using (14), (21) and (22), we conclude that

1
s
=

ε

sε
≤

lim sup
k→∞

d(gxm(k), gxn(k), a)

lim sup
k→∞

M(xm(k)−1, xn(k)−1, a)
≤ lim sup

k→∞
βs(M(xm(k)−1, xn(k)−1, a)) ≤ 1

s
.

Thus, lim sup
k→∞

βs(M(xm(k)−1, xn(k)−1, a)) = 1
s . Hence, lim sup

k→∞
M(xm(k)−1, xn(k)−1, a) = 0,

which is a contradiction. Therefore, {gxn} is a b2-Cauchy sequence. As g(X) is b2-complete
subspace of X, then there exist z ∈ X such that

lim
n→∞

gxn = lim
n→∞

f xn = gz. (23)

Now, we show that z is a point of coincidence of f and g. From condition (iii), we
have R|g(X) is d-self closed and (1) holds for all x, y, a ∈ X with gxRgy and f xR/ f y. As
{gxn} ⊆ g(X), {gxn} is R|g(X)-preserving and gxn → gz so there exists a subsequence
{gxn(k)} ⊆ {gxn} such that gxn(k)R|g(X)gz for all k ∈ N0 and sinceR is ( f , g)-closed then
f xn(k)R|g(X) f z for all k ∈ N0.

If f xn(k) = f z for all k > k0, and k0, k ∈ N0, then lim
k→∞

f xn(k) = f z, and since

lim
n→∞

f xn = gz, we have f z = gz, that is z is a coincidence point of f and g.

On other hand, if f xn(k) 6= f z for all k > k0, and k0, k ∈ N0, then f xn(k)R|g(X) f z and
f xn(k) 6= f z for all k > k0, and k0, k ∈ N0. Thus, gxn(k)R|g(X)gz and f xn(k)R/|g(X) f z, and
from (1), we have

d(gxn(k)+1, f z, a) = d( f xn(k), f z, a) ≤ βs(M(xn(k), z, a))M(xn(k), z, a) + LN(xn(k), z, a), (24)

where

M(xn(k), z, a) = max
{

d(gxn(k), gz, a), d(gxn(k), gxn(k)+1, a), d(gz, f z, a),

d(gxn(k), f z, a) + d(gz, gxn(k)+1, a)
2s

}
, (25)

and

N(xn(k), z, a) = min
{

d(gxn(k), gxn(k)+1, a), d(gz, f z, a), d(gxn(k), f z, a), d(gz, gxn(k)+1, a)
}

. (26)

Letting k→ ∞ in (25), (26), we get

lim sup
k→∞

M(xn(k), z, a) = max
{

d(gz, f z, a),
lim sup

k→∞
d(gxn(k), f z, a)

2s

}
,

and
lim sup

k→∞
N(xn(k), z, a) = 0. (27)

From Lemma 1, we have

d(gz, f z, a)
s

≤ lim sup
k→∞

d(gxn(k), f z, a) ≤ sd(gz, f z, a). (28)

Thus,

max{d(gz, f z, a),
d(gz, f z, a)

2s2 } ≤ lim sup
k→∞

M(xn(k), z, a) ≤ max{d(gz, f z, a),
d(gz, f z, a)

2
},
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yields,

lim sup
k→∞

M(xn(k), z, a) = d(gz, f z, a), (29)

Again, taking the upper limit as k→ ∞, in (24) and using Lemma 1, (27) and (29), we get

d(gz, f z, a)
s

≤ lim sup
k→∞

d(gxn(k)+1, f z, a)

≤ lim sup
k→∞

βs(M(xn(k), z, a)) lim sup
k→∞

M(xn(k), z, a)

≤ lim sup
k→∞

βs(M(xn(k), z, a))d(gz, f z, a)

≤ 1
s

d(gz, f z, a).

Hence, lim sup
k→∞

βs(M(xn(k), z, a)) = 1
s , so from the property of βs we conclude that

lim sup
k→∞

M(xn(k), z, a) = 0 implies d(gz, f z, a) = 0 for all a ∈ X. That is, gz = f z. This

shows that f and g have a coincidence point.

The next theorem shows that under some additional hypotheses we can deduce the
existence and uniqueness of a common fixed point.

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that f and g are weakly compatible
and for all coincidence points u, v of f and g, there exists w ∈ X such that guRgw and gvRgw.
Then f and g have a unique common fixed point.

Proof. The set of coincidence points of f and g is not empty due to Theorem 1. Suppose
that u and v are two coincidence points of f and g, that is, f u = gu and f v = gv. We will
show that gu = gv. By our assumption, there exists w ∈ X such that

guRgw and gvRgw. (30)

Now, proceeding similarly to the proof of Theorem 1, we can define a sequence {wn}
in X as f wn = gwn+1 for all n ∈ N0 and w0 = w, with lim

n→∞
d(gwn, gwn+1, a) = 0. Since

guRgw0 (gvRgw0) and R is ( f , g)-closed, we conclude that f uR f w0( f vR f w0). Hence,
guRgw1(gvRgw1). By induction, we have

guRgwn and gvRgwn, ∀n ∈ N0. (31)

From (1) and using (31), we obtain

d(gu, gwn+1, a) = d( f u, f wn, a) ≤ βs(M(u, wn, a))M(u, wn, a) + LN(u, wn, a), (32)

where

M(u, wn, a) = max
{

d(gu, gwn, a), d(gu, f u, a), d(gwn, f wn, a),
d(gu, f wn, a) + d(gwn, f u, a)

2s

}
,

= max
{

d(gu, gwn, a), d(gwn, gwn+1, a),
d(gu, gwn+1, a) + d(gwn, gu, a)

2s

}
,

and

N(u, wn, a) = min
{

d(gu, f u, a), d(gwn, f wn, a), d(gu, f wn, a), d(gwn, f u, a)
}

= min{d(gu, gu, a), d(gwn, gwn+1, a), d(gu, gwn+1, a), d(gwn, gu, a)} = 0.
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Hence,

d(gu, gwn+1, a) ≤ βs(M(u, wn, a))M(u, wn, a)

<
1
s

M(u, wn, a) ≤ M(u, wn, a).

Since,

d(gu, gwn+1, a) < M(u, wn, a)

= max
{

d(gu, gwn, a), d(gwn, gwn+1, a),
d(gu, gwn+1, a) + d(gwn, gu, a)

2s

}
= max

{
d(gu, gwn, a), d(gwn, gwn+1, a)

}
.

Thus,

M(u, wn, a) = max
{

d(gu, gwn, a), d(gwn, gwn+1, a)
}

.

(Case1): if M(u, wn, a) = d(gu, gwn, a), then

d(gu, gwn+1, a) ≤ βs(d(gu, gwn, a))d(gu, gwn, a) <
1
s

d(gu, gwn, a) ≤ d(gu, gwn, a), (33)

it follows that d(gu, gwn+1, a) < d(gu, gwn, a). Thus, {d(gu, gwn, a)} is strictly decreasing.
Hence, there exists γ ≥ 0 such that lim

n→∞
d(gu, gwn, a) = γ. Letting n→ ∞ in (33), we obtain

γ

s
≤ γ = lim

n→∞
d(gu, gwn+1, a) ≤ lim

n→∞
βs(d(gu, gwn, a)) lim

n→∞
d(gu, gwn, a)

≤ lim
n→∞

βs(d(gu, gwn, a))γ

≤ γ

s
,

this implies
1
s
≤ lim

n→∞
βs(d(gu, gwn, a)) <

1
s

.

Thus,

lim
n→∞

βs(d(gu, gwn, a)) =
1
s

.

From the property of βs, we conclude that lim
n→∞

d(gu, gwn, a) = 0.

(Case2): If M(u, wn, a) = d(gwn, gwn+1, a), then

d(gu, gwn+1, a) ≤ βs(d(gwn, gwn+1, a))d(gwn, gwn+1, a).

Therefore,

lim
n→∞

d(gu, gwn+1, a) ≤ lim
n→∞

βs(d(gwn, gwn+1, a)) lim
n→∞

d(gwn, gwn+1, a) = 0.

This yields lim
n→∞

d(gu, gwn+1, a) = 0. Therefore, from all cases we conclude that

lim
n→∞

d(gu, gwn, a) = 0. (34)

Similarly, we can show that
lim

n→∞
d(gv, gwn, a) = 0. (35)
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Hence, from (34) and (35), we obtain gu = gv. That is, f and g have a unique point of
coincidence. From Lemma 2 f and g have a unique common fixed point.

Now, we give an example to justify the hypotheses of Theorem 1.

Example 2. Let X = {p, q, r, t} be a set with b2-metric d : X3 → R defined by

d(p, q, r) = 0, d(p, q, t) = 4, d(p, r, t) = 1, d(q, r, t) = 6,

with symmetry in all variables and if at least two of the arguments are equal then d(x, y, a) = 0.
Then (X, d) is a complete b2-metric space with s = 6

5 . Define a binary relationR on X by

R = {(p, p), (q, q), (r, r), (p, q), (q, r), (p, r), (r, p), (r, q)}.

Define f , g : X → X and β : (0, ∞)→ [0, 1) as follows:

f =

(
p q r t
p p r t

)
, g =

(
p q r t
p r q t

)
, βs(t) =

1 + t
s(1 + 2t)

We show that all the hypotheses of Theorem 1 are satisfied. Clearly, (X, d) is a complete b2-metric
space and f (X) ⊆ g(X), g(X) is a b2-complete subspace of X.R = R|g(X) is transitive. There is
r ∈ X such that q = grR f r = r. SinceR|g(X) is finite, then it is d-self closed. We show thatR is
( f , g)-closed, we study the nontrivial cases:

• gpRgr = pRq⇒ f pR f r = pRr ∈ R, grRgq = qRr ⇒ f rR f q = rRp,
• gpRgq = pRr ⇒ f pR f q = pRp, gqRgp = rRp⇒ f qR f p = pRp,
• gqRgr = rRq⇒ f qR f r = pRr.

Now, we check the contractive condition 2. The nontrivial cases are when a = t,
(

gpRgr and
f pR f r

)
,
(

grRgq and f rR f q
)

and
(

gqRgr and f qR f r
)
.

In all three cases, we get M(p, r, t) = M(r, q, t) = M(q, r, t) = 6, N(p, r, a) = N(r, q, t) =
N(q, r, t) = 0, and then

1 = d( f p, f r, t) = d(p, r, t) ≤ 35
13

= βs(6)6 = βs(M(p, r, a))M(p, r, a) + LN(p, r, a),

1 = d( f r, f q, t) = d(r, p, t) ≤ 35
13

= βs(6)6 = βs(M(r, q, a))M(r, q, a) + LN(r, q, a),

1 = d( f q, f r, t) = d(p, r, t) ≤ 35
13

= βs(6)6 = βs(M(q, r, a))M(q, r, a) + LN(q, r, a),

Therefore, all the hypotheses of Theorem 1 are satisfied. Then f and g have two coincidence fixed
points p and t. Noting that p, t are not R-comparable so the uniqueness of coincidence point is
not fulfilled.

By taking g = I in Theorems 1 and 2 we deduce the following result.

Corollary 1. Let (X, d) be a complete b2-metric space endowed with a transitive binary relation
R : X → X and f : X → X. Assume that f is almostR-Geraghty type contraction mapping and
the following conditions hold:

(i) there exists x0 in X such that x0R f x0;
(ii) R is f -closed;
(iii) R is d-self closed provided (2) holds for all x, y, a ∈ X with f xR/ f y.

Then f has a fixed point. Moreover, if for u, v ∈ Fix( f ), there exists w ∈ X such that uRw and
vRw, then f has a unique fixed point.
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4. Results for Almost g-α-η Geraghty Type Contraction Mappings in b2-Metric Spaces

Fathollahi et al. [4] introduced the concepts of triangular 2-α-η-admissible mappings
as follows.

Definition 17 ([4]). Let (X, d) be a 2-metric space, f : X → X and α, η : X3 → [0, ∞). We say
that f is a triangular 2-α-η-admissible mapping if for all a ∈ X,

(i) α(x, y, a) ≥ η(x, y, a) implies α( f x, f y, a) ≥ η( f x, f y, a), x, y ∈ X,

(ii)
{

α(x, y, a) ≥ η(x, y, a),
α(y, z, a) ≥ η(y, z, a),

implies α(x, z, a) ≥ η(x, z, a).

If we take η(x, y, a) = 1, then we say that f is a triangular 2-α-admissible mapping. In addition, if
we take α(x, y, a) = 1, then we say that f is a triangular 2-η-subadmissible mapping.

Motivated by Fathollahi [4], we define the following concepts.

Definition 18. Let (X, d) be a b2-metric space, f , g : X → X and α, η : X3 → [0, ∞). We say
that f is a triangular g-b2-α-η-admissible mapping if for all a ∈ X,

(i) α(gx, gy, a) ≥ η(gx, gy, a) implies α( f x, f y, a) ≥ η( f x, f y, a), x, y ∈ X,

(ii)
{

α(gx, gy, a) ≥ η(gx, gy, a),
α(gy, gz, a) ≥ η(gy, gz, a),

implies α(gx, gz, a) ≥ η(gx, gz, a), x, y, z ∈ X.

When η(gx, gy, a) = 1, we say that f is a triangular g-b2-α-admissible mapping. In addition,
when α(gx, gy, a) = 1, we say that f is a triangular g-b2-η-subadmissible mapping.

Definition 19. Let (X, d) be a b2-metric space with s ≥ 1 and f , g : X → X, α, η : X3 → [0, ∞).
Suppose for all x, y, a ∈ X,

M(x, y, a) = max
{

d(gx, gy, a), d(gx, f x, a), d(gy, f y, a),
d(gx, f y, a) + d(gy, f x, a)

2s

}
,

and
N(x, y, a) = min{d(gx, f x, a), d(gy, f y, a), d(gx, f y, a), d(gy, f x, a)}.

We say that f is almost g-α-η Geraghty type contraction mapping if there exist L ≥ 0 and βs ∈ Ω
such that

∀x, y ∈ X, α(gx, gy, a) ≥ η(gx, gy, a)

⇒ d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (36)

for all a ∈ X.

Now, we state the following corollaries

Corollary 2. Let (X, d) be a complete b2-metric space and f , g : X → X, such that f (X) ⊆ g(X),
g(X) is a b2-complete subspace of X. Assume that f is almost g-α-η Geraghty type contraction
mapping and the following conditions hold:

(i) there exists x0 in X such that α(gx0, f x0, a) ≥ η(gx0, f x0, a) for all a ∈ X;
(ii) f is a triangular g-b2-α-η-admissible mapping;
(iii) if {gxn} is a sequence in X such that α(gxn, gxn+1, a) ≥ η(gxn, gxn+1, a) for all a ∈ X,

n ∈ N0 and gxn → gz as n → ∞, then there exists a subsequence {gxn(k)} of {gxn} such
that α(gxn(k), gz, a) ≥ η(gxn(k), gz, a) for all k ∈ N0 and all a ∈ X.

Then f and g have a coincidence point in X. Moreover, suppose that for all coincidence points u, v of f
and g, there exists w ∈ X such that α(gu, gw, a) ≥ η(gu, gw, a) and α(gv, gw, a) ≥ η(gv, gw, a)
for all a ∈ X and f , g are weakly compatible. Then f and g have a unique common fixed point.
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Proof. DefineR on X as

xRy⇐⇒ α(x, y, a) ≥ η(x, y, a).

We note the following:

• since there exists x0 ∈ X such that α(gx0, f x0, a) ≥ η(gx0, f x0, a) for all a ∈ X then
gx0R f x0;

• if gxRgy then α(gx, gy, a) ≥ η(gx, gy, a). As f is a triangular g-b2-α-η-admissible
mapping, α( f x, f y, a) ≥ η( f x, f y, a) and so f xR f y. Thus,R is ( f , g)-closed;

• if gxRgy and gyRgz, then α(gx, gy, a) ≥ η(gx, gy, a) and α(gy, gz, a) ≥ η(gy, gz, a).
As f is a triangular g-b2-α-η-admissible mapping, α(gx, gz, a) ≥ η(gx, gz, a), that is,
gxRgz. Therefore,R|g(X) is transitive;

• if gxRgy, f xR / f y, then α(gx, gy, a) ≥ η(gx, gy, a), α( f x, f y, a) ≥ η( f x, f y, a). Since
f is almost g-α-η Geraghty type contraction, so (1) holds;

• from (iii), we have gxnRgxn+1 for all n ∈ N0 and gxn → gz as n → ∞, then there
exists a subsequence {gxn(k)} of {gxn} such that gxn(k)Rgz for all k ∈ N0. Hence, all
conditions of Theorem 1 are satisfied. Thus, f and g have a point of coincidence in X.

Finally, if for all coincidence points u, v of f and g, there exists w ∈ X such that α(gu, gw, a) ≥
η(gu, gw, a) and α(gv, gw, a) ≥ η(gv, gw, a), then guRgw and gvRgw. That is, all hypothe-
ses of Theorem 1 are satisfied. Therefore, f and g have a unique common fixed point.

By taking g = I in Definitions 18 and 19, we say that f is a triangular b2-α-η-admissible
mapping and f is almost α-η Geraghty type contraction mapping.

Now, we have the following corollary.

Corollary 3. Let (X, d) be a complete b2-metric space and f : X → X. Assume that f is almost
α-η Geraghty type contraction mapping and the following conditions hold:

(i) there exists x0 in X such that α(x0, f x0, a) ≥ η(x0, f x0, a) for all a ∈ X;
(ii) f is a triangular b2-α-η-admissible mapping;
(iii) if {xn} is a sequence in X such that α(xn, xn+1, a) ≥ η(xn, xn+1, a) for all a ∈ X, n ∈

N0 and xn → z as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), z, a) ≥ η(xn(k), z, a) for all k ∈ N0 and all a ∈ X.

Then f has a fixed point in X. Moreover, if for u, v ∈ Fix( f ) there exists w ∈ X such that
α(u, w, a) ≥ η(u, w, a) and α(v, w, a) ≥ η(v, w, a) for all a ∈ X, then f has a unique fixed point.

5. Fixed Point Results in Partially Ordered b2-Metric Spaces

Fixed point theorems for monotone operators in ordered metric spaces are widely
investigated and have found various applications in differential and integral equations.
This trend was started by Turinici [12] in 1986. Ran and Reurings in [24] extended the
Banach contraction principle in partially ordered sets with some applications to matrix
equations. The obtained result in [24] was extended and refined by many authors (see,
e.g., [25–27] and references therein). The aim of this section is to deduce our results in the
context of partially ordered b2-metric spaces. At first, we need to recall some concepts. Let
X be a nonempty set. Then (X,�, d) is called a partially ordered b2-metric space with s ≥ 1
if (X, d) is a b2-metric space and (X,�) is a partially ordered set.

Definition 20. Let (X,�) be a partially ordered set and x, y ∈ X. Then x and y are called
comparable if x � y or y � x holds.

Definition 21. Let (X,�) be a partially ordered set. A mapping f on X is said to be monotone
non-decreasing if for all x, y ∈ X, x � y implies f x � f y.
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Definition 22. Let (X,�) be a partially ordered set and f , g : X → X. One says f is g-non-
decreasing if for x, y ∈ X,

g(x) � g(y) implies f (x) � f (y).

By puttingR =� in Theorems 1 and 2, we get the following results.

Corollary 4. Let (X, d,�) be a complete partially ordered b2-metric space. Assume that f , g :
X → X, are two mappings such that f (X) ⊆ g(X), g(X) is a b2-complete subspace of X and f is
a g-non-decreasing mapping. Suppose that there exists a function βs ∈ Ω and L ≥ 0 such that

d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (37)

where

M(x, y, a) = max
{

d(gx, gy, a), d(gx, f x, a), d(gy, f y, a),
d(gx, f y, a) + d(gy, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(gx, f x, a), d(gy, f y, a), d(gx, f y, a), d(gy, f x, a)

}
,

for all x, y, a ∈ X with gx � gy. In addition, suppose that the following conditions hold:

(i) there exists x0 in X such that gx0 � f x0,
(ii) if {gxn} is a non-decreasing sequence in X with gxn → gz as n→ ∞, then gxn � gz for all

n ∈ N0.

Then f and g have a coincidence point in X. Moreover, suppose that for all coincidence points u, v of
f and g, there exists w ∈ X such that gu � gw or gv � gw and f , g are weakly compatible. Then
f and g have a unique common fixed point.

By taking g = I in Corollary 4, we obtain the following corollary.

Corollary 5. Let (X, d,�) be a complete partially ordered b2-metric space. Assume that f : X →
X is a mapping satisfying the following conditions

(i) f is non-decreasing mapping;
(ii) there exist a function βs ∈ Ω and L ≥ 0 such that

d( f x, f y, a) ≤ βs(M(x, y, a))M(x, y, a) + LN(x, y, a), (38)

where

M(x, y, a) = max
{

d(x, y, a), d(x, f x, a), d(y, f y, a),
d(x, f y, a) + d(y, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(x, f x, a), d(y, f y, a), d(x, f y, a), d(y, f x, a)

}
,

for all x, y, a ∈ X with x � y;
(iii) there exists x0 in X such that x0 � f x0;
(iv) if {xn} is a non-decreasing sequence in X with xn → z as n → ∞, then xn � z for all

n ∈ N0.

Then f has a fixed point. Moreover, if u, v ∈ Fix( f ) such that there exists w ∈ X with u � w
and v � w, then f has a unique fixed point. Then f has a fixed point. Moreover, if for every pair
(u, v) of fixed points of f such that there exists w ∈ X with u � w and v � w, then f has a unique
fixed point.



Axioms 2021, 10, 101 16 of 19

6. Application to Integral Equations

In this section, we study the existence of a solution for an integral equation using the
results proved in Section 3. Let X = (C[a, b], R) be the space of all real continuous functions
on [a, b] and ρ : X× X → R+ defined by

ρ(x, y) = max
t∈[a,b]

|x(t)− y(t)|, ∀x, y ∈ X.

Equip X with the 2-metric given by σ : X3 → R+ which is defined by

σ(x, y, a) = min{ρ(x, y), ρ(y, a), ρ(a, x)}, ∀x, y, a ∈ X.

As (X, ρ) is a complete metric space, (X, σ) is a complete 2-metric space, according to
Example 1, we define a b2-metric on X by

d(x, y, a) = (σ(x, y, a))2, ∀x, y, a ∈ X.

It follows that (X, d) is a complete b2-metric space with s = 3. Define a binary relationR
on X by

R = {(x, y) ∈ X2 : x(t) ≤ y(t) for all t ∈ [a, ∞)}. (39)

Now, consider the integral equation:

x(t) = q(t) +
b∫

a

h(t, s)A
(
s, x(s)

)
ds, (40)

where t ∈ [a, b] ⊆ R+. A solution of the Equation (40) is a function x ∈ X = C[a, b].
Assume that

(i) h : [a, b] × [a, b] → [0, ∞), q : [a, b] → R and A : [a, b] × R → R are continuous
functions on [a, b];

(ii)
b∫
a

h(t, s)dt ≤ r ≤ 1;

(iii) there exists x0 ∈ X such that

x0(t) ≤ q(t) +
b∫

a

h(t, s)A
(
s, x0(s)

)
ds.

(iv) A is nondecreasing in the second variable and for all x, y, a ∈ X, s ∈ [a, b] there exists
0 < k < 1√

3
such that

min {|A
(
s, x(s)

)
− A

(
s, y(s)

)
|, |A

(
s, x(s)

)
− a(s)|, |A

(
s, y(s)

)
− a(s)|}

≤ |A
(
s, x(s)

)
− A

(
s, y(s)

)
|

≤ ke−M(x,y,a) min{|x(s)− y(s)|, |x(s)− a(s)|, |y(s)− a(s)|},

where

M(x, y, a) = max
{

d(x, y, a), d(x, f x, a), d(y, f y, a),
d(x, f y, a) + d(y, f x, a)

2s

}
.

Now, we are equipped to state and prove our main result in this section.

Theorem 3. Under the assumptions (i)–(iv), the integral Equation (40) has a solution in X.



Axioms 2021, 10, 101 17 of 19

Proof. Define f : X → X by

f x(t) = q(t) +
b∫

a

h(t, s)A
(
s, x(s)

)
ds.

Observe that x is a solution for (40) if and only if x is a fixed point of f . Let x, y, a ∈ X such
that xRy for all t ∈ [a, b]. Since A is nondecreasing in the second variable, we have

f x(t) = q(t) +
b∫

a

h(t, s)A
(
s, x(s)

)
ds

≤ q(t) +
b∫

a

h(t, s)A
(
s, y(s)

)
ds

= f y(t)

Hence, f xR f y andR is f -closed. From Condition (iii), we conclude that x0 ≤ f x0 for all
t ∈ [a, b], then x0R f x0. Now, for any x, y, a ∈ X such that f xR/ f y we get

| f x(t)− f y(t)| = |
b∫

a

h(t, s)
(

A
(
s, x(s)

)
− A

(
s, y(s)

))
ds|

≤
b∫

a

|h(t, s)||A
(
s, x(s)

)
− A

(
s, y(s)

)
|ds

≤ ke−M(x,y,a)
b∫

a

|h(t, s)|min{|x(s)− y(s)|, |x(s)− a(s)|, |y(s)− a(s)|}ds

≤ ke−M(x,y,a)
b∫

a

|h(t, s)|min{max
s∈[a,b]

|x(s)− y(s)|, max
s∈[a,b]

|x(s)− a(s)|,

max
s∈[a,b]

|y(s)− a(s)|}ds

≤ ke−M(x,y,a)
b∫

a

|h(t, s)|min{ρ(x(s), y(s)), ρ(x(s), a(s)), ρ(y(s), a(s))}ds

≤ ke−M(x,y,a)
b∫

a

|h(t, s)|σ(x, y, a)ds ≤ rke−M(x,y,a)σ(x, y, a).

Therefore,

σ( f x, f y, a) ≤ max
t∈[a,b]

| f x(t)− f y(t)| ≤ rke−M(x,y,a)σ(x, y, a).

It follows that

d( f x, f y, a) ≤ r2k2e−2M(x,y,a)d(x, y, a) ≤ r2k2e−2M(x,y,a)M(x, y, a) ≤ e−2M(x,y,a)

3
M(x, y, a).

Thus,

d( f x, f y, a) ≤ e−2M(x,y,a)

3
M(x, y, a) + LN(x, y, a),
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where

M(x, y, a) = max
{

d(x, y, a), d(x, f x, a), d(y, f y, a),
d(x, f y, a) + d(y, f x, a)

2s

}
,

and
N(x, y, a) = min

{
d(x, f x, a), d(y, f y, a), d(x, f y, a), d(y, f x, a)

}
,

with βs(t) = e−2t

3 and L ≥ 0. Then f is almost aR-Geraghty type contraction. In addition,
if {xn} ∈ X is anR-preserving sequence such that limn→∞ xn = x ∈ X, then xn ≤ x for all
n. Hence, xnRx, for all n. Therefore, all the hypotheses of Corollary 1 are satisfied. Hence,
f has a fixed point which is a solution for the integral Equation (40) in X = C([a, b], R).
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