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Abstract

:

We introduce a new class of almost 3-contact metric manifolds, called 3-  ( 0 , δ )  -Sasaki manifolds. We show fundamental geometric properties of these manifolds, analyzing analogies and differences with the known classes of 3-  ( α , δ )  -Sasaki (  α ≠ 0  ) and 3- δ -cosymplectic manifolds.
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1. Introduction


An almost 3-contact metric manifold is a   ( 4 n + 3 )  -dimensional differentiable manifold M endowed with three almost contact metric structures   (  φ ,   ξ i  ,  η i  , g )  ,   i = 1 , 2 , 3  , sharing the same Riemannian metric g and satisfying suitable compatibility conditions, equivalent to the existence of a sphere of almost contact metric structures. In the recent paper [1], new classes of almost 3-contact metric manifolds were introduced and studied. The first remarkable class is given by 3-  ( α , δ )  -Sasaki manifolds defined as almost 3-contact metric manifolds   ( M ,  φ i  ,  ξ i  ,  η i  , g )   such that


  d  η i  = 2 α  Φ i  + 2  ( α − δ )   η j  ∧  η k  ,  α ∈  R *  , δ ∈ R ,  



(1)




for every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  . This is a generalization of 3-Sasaki manifolds, which correspond to the values   α = δ = 1  . A second class introduced in [1] is given by 3-δ-cosymplectic manifolds defined by the conditions


  d  η i  = − 2 δ  η j  ∧  η k  ,  d  Φ i  = 0 ,  δ ∈ R ,  








generalizing 3-cosymplectic manifolds which correspond to the value   δ = 0  .



In the present paper we will introduce a third class of almost 3-contact metric manifolds, which is in fact a second (and alternative) generalization of 3-cosymplectic manifolds. We will consider almost 3-contact metric manifolds whose structure tensor fields satisfy


  d  η i  = − 2 δ  η j  ∧  η k  ,  d  Φ i  = − 2 δ  (  η j  ∧  Φ k  −  η k  ∧  Φ j  )  ,  δ ∈ R  



(2)




for every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  . When   δ = 0   we recover a 3-cosymplectic manifold. We will call these manifolds 3-  ( 0 , δ )  -Sasaki manifolds. The choice of name is due to the fact that for a 3-  ( α , δ )  -Sasaki manifold, Equation (1) implies


  d  Φ i  = 2  ( α − δ )   (  η j  ∧  Φ k  −  η k  ∧  Φ j  )  ,  



(3)




so that the two equations in (2) formally correspond to (1) and (3) with   α = 0  , although in this case the second equation is no more a consequence of the first one. In fact the two conditions in (2) are not completely independent (see Remark 1). Examples of 3-  ( 0 , δ )  -Sasaki structures can be defined on the semidirect products   SO  ( 3 )  ⋉  R  4 n    . The structure on these Lie groups was introduced in [2] as an example of canonical abelian almost 3-contact metric structure. It is also shown in [2] that the Lie group   SO  ( 3 )  ⋉  R  4 n     admits co-compact discrete subgroups, so that the corresponding compact quotients admit almost 3-contact metric structures of the same type.



One can show that for all the above three classes of manifolds, 3-  ( α , δ )  -Sasaki, 3- δ -cosymplectic, and 3-  ( 0 , δ )  -Sasaki manifolds, the structure is hypernormal, the characteristic vector fields   ξ i  ,   i = 1 , 2 , 3  , are Killing and they span an integrable distribution, called vertical, with totally geodesic leaves. Nevertheless, there are remarkable geometric differences between the three classes. In the 3-  ( α , δ )  -Sasaki case the 1-forms   η i   are all contact forms, i.e.,    η i  ∧   ( d  η i  )  n  ≠ 0   everywhere on M, while for the other two classes, the horizontal distribution defined by    η i  = 0  ,   i = 1 , 2 , 3  , is integrable. Both 3- δ -cosymplectic manifolds and 3-  ( 0 , δ )  -Sasaki manifolds are locally isometric to the Riemannian product of a 3-dimensional Lie group, tangent to the vertical distribution, and a   4 n  -dimensional manifold tangent to the horizontal distribution. The Lie group is either isomorphic to   SO ( 3 )   or flat depending on wether   δ ≠ 0   or   δ = 0  . Each horizontal leaf is endowed with a hyper-Kähler structure. The difference between 3- δ -cosymplectic and 3-  ( 0 , δ )  -Sasaki manifolds lies in the projectability of the structure tensor fields   φ i  ,   i = 1 , 2 , 3  , with respect to the vertical foliation. They are always projectable for 3- δ -cosymplectic manifolds, but not for 3-  ( 0 , δ )  -Sasaki manifolds with   δ ≠ 0  . In this case one can project a transverse quaternionic structure, as it happens for 3-  ( α , δ )  -Sasaki manifolds. Finally, for the three classes of manifolds, we analyze the existence of a canonical metric connection with totally skew-symmetric torsion.




2. Almost Contact and Almost 3-Contact Metric Manifolds


An almost contact manifold is a smooth manifold M of dimension   2 n + 1  , endowed with a structure   ( φ , ξ , η )  , where  φ  is a   ( 1 , 1 )  -tensor field,  ξ  a vector field, and  η  a 1-form such that


   φ 2  = − I + η ⊗ ξ ,   η  ( ξ )  = 1 ,  








implying that   φ ξ = 0  ,   η ∘ φ = 0  , and  φ  has rank   2 n  . The tangent bundle of M splits as   T M = H ⊕ 〈 ξ 〉  , where ℋ is the   2 n  -dimensional distribution defined by ℋ   = Im ( φ ) = Ker ( η )  . The vector field  ξ  is called the characteristic or Reeb vector field.



On the product manifold   M × R   one can define an almost complex structure J by   J  X , f  d  d t    =  φ X − f ξ , η  ( X )   d  d t     , where X is a vector field tangent to M, t is the coordinate of  R  and f is a    C  ∞   function on   M × R  . If J is integrable, the almost contact structure is said to be normal and this is equivalent to the vanishing of the tensor field    N φ  : =  [ φ , φ ]  + d η ⊗ ξ  , where   [ φ , φ ]   is the Nijenhuis torsion of  φ  [3]. More precisely, for any vector fields X and Y,   N φ   is given by


   N φ   ( X , Y )  =  [ φ X , φ Y ]  +  φ 2   [ X , Y ]  − φ  [ φ X , Y ]  − φ  [ X , φ Y ]  + d η  ( X , Y )  ξ .  



(4)







It is known that any almost contact manifold admits a compatible metric, that is a Riemannian metric g such that   g ( φ X , φ Y ) = g ( X , Y ) − η ( X ) η ( Y )   for every   X , Y ∈ X ( M )  . Then   η = g ( · , ξ )   and   H =   〈 ξ 〉  ⊥   . The manifold   ( M , φ , ξ , η , g )   is called an almost contact metric manifold. The associated fundamental 2-form is defined by   Φ ( X , Y ) = g ( X , φ Y )  .



We recall some remarkable classes of almost contact metric manifolds.




	
An α-contact metric manifold is defined as an almost contact metric manifold such that


  d η  =  2 α Φ ,  α ∈  R *  ,  











When   α = 1  , it is called a contact metric manifold; the 1-form  η  is a contact form, that is   η ∧   ( d η )  n  ≠ 0   everywhere on M. An α-Sasaki manifold is a normal  α -contact metric manifold, and again such a manifold with   α = 1   is called a Sasaki manifold.



	
An almost cosymplectic manifold is defined as an almost contact metric manifold such that


  d η  =  0 ,  d Φ = 0 ;  








if furhermore the structure is normal, M is called a cosymplectic manifold. It is worth remarking that some authors call these manifolds almost coKähler and coKähler, respectively ([4]).



	
A quasi-Sasaki manifold is a normal almost contact metric manifold with closed 2-form  Φ . This class includes both  α -Sasaki and cosymplectic manifolds. The Reeb vector field of a quasi-Sasaki manifold is always Killing.








Both  α -Sasaki manifolds and cosymplectic manifolds can be characterized by means of the Levi-Civita connection   ∇ g  . Indeed, one can show that an almost contact metric manifold   ( M , φ , ξ , η , g )   is  α -Sasaki if and only if


   (  ∇ X g  φ )  Y = α  ( g  ( X , Y )  ξ − η  ( X )  Y )   ∀ X , Y ∈ X  ( M )  .  











An almost contact metric manifold is cosymplectic if and only if    ∇ g  φ = 0  ; further, this is equivalent to requiring the manifold to be locally isometric to the Riemannian product of a real line (tangent to the Reeb vector field) and a Kähler manifold.



For a comprehensive introduction to almost contact metric manifolds we refer to [3]. For Sasaki geometry, we also recommend the monograph [5]; the survey [4] covers fundamental properties and recent results on cosymplectic geometry.



An almost 3-contact manifold is a differentiable manifold M of dimension   4 n + 3   endowed with three almost contact structures   (  φ i  ,  ξ i  ,  η i  )  ,   i = 1 , 2 , 3  , satisfying the following relations,


      φ k  =  φ i   φ j  −  η j  ⊗  ξ i  = −  φ j   φ i  +  η i  ⊗  ξ j  ,         ξ k  =  φ i   ξ j  = −  φ j   ξ i  ,   η k  =  η i  ∘  φ j  = −  η j  ∘  φ i  ,     








for any even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )   ([3]). The tangent bundle of M splits as   T M = H ⊕ V  , where


  H  : =   ⋂  i = 1  3  Ker  (  η i  )  ,  V  : =   〈  ξ 1  ,  ξ 2  ,  ξ 3  〉  .  











In particular, ℋ has rank   4 n  . We call any vector belonging to the distribution ℋ horizontal and any vector belonging to the distribution  V  vertical. The manifold is said to be hypernormal if each almost contact structure   (  ϕ i  ,  ξ i  ,  η i  )   is normal. In [6] it was proved that if two of the almost contact structures are normal, then so is the third.



The existence of an almost 3-contact structure is equivalent to the existence of a sphere    {  (  φ x  ,  ξ x  ,  η x  )  }   x ∈  S 2     of almost contact structures such that


   φ x  ∘  φ y  −  η y  ⊗  ξ x  =  φ  x × y   −  ( x · y )   I ,   φ x   ξ y  =  ξ  x × y   ,   η x  ∘  φ y  =  η  x × y   ,  








for every   x , y ∈  S 2   , where · and × denote the standard inner product and cross product on   R 3  . In fact, if the structure is hypernormal, then every structure in the sphere is normal ([7]).



Any almost 3-contact manifold admits a Riemannian metric g which is compatible with each of the three structures. Then M is said to be an almost 3-contact metric manifold with structure   (  φ i  ,  ξ i  ,  η i  , g )  ,   i = 1 , 2 , 3  . For ease of notation, we will denote an almost 3-contact metric manifold by   ( M ,  φ i  ,  ξ i  ,  η i  , g )  , omitting   i = 1 , 2 , 3  . The subbundles ℋ and  V  are orthogonal with respect to g and the three Reeb vector fields    ξ 1  ,  ξ 2  ,  ξ 3    are orthonormal. In fact, the structure group of the tangent bundle is reducible to   Sp ( n ) × { 1 }   [8].



Given an almost 3-contact metric structure   (  φ i  ,  ξ i  ,  η i  , g )  , an ℋ-homothetic deformation is defined by


   η i ′  = c  η i  ,   ξ i ′  =  1 c   ξ i  ,   φ i ′  =  φ i  ,   g ′  = a g + b  ∑  i = 1  3   η i  ⊗  η i  ,  



(5)




where   a , b , c   are real numbers such that   a > 0  ,    c 2  = a + b > 0  , ensuring that   (  φ i ′  ,  ξ i ′  ,  η i ′  ,  g ′  )   is an almost 3-contact metric structure. In particular, the fundamental 2-forms   Φ i   and   Φ i ′   associated to the structures are related by


   Φ i ′  = a  Φ i  − b  η j  ∧  η k  ,  



(6)




where   ( i , j , k )   is an even permutation of   ( 1 , 2 , 3 )  .



An almost 3-contact metric manifold is called




	
3-α-Sasaki, with   α ∈  R *   , if   (  φ i  ,  ξ i  ,  η i  , g )   is  α -Sasaki for all   i = 1 , 2 , 3  , i.e., the structure is hypernormal and


  d  η i  = 2 α  Φ i  ,  i = 1 , 2 , 3 ;  



(7)




when   α = 1  , it is a 3-Sasaki manifold;



	
3-cosymplectic if   (  φ i  ,  ξ i  ,  η i  , g )   is cosymplectic for all   i = 1 , 2 , 3  , i.e., the structure is hypernormal and


  d  η i  = 0 ,  d  Φ i  = 0 ,  i = 1 , 2 , 3 ;  



(8)







	
3-quasi-Sasaki manifold if each structure   (  φ i  ,  ξ i  ,  η i  , g )   is quasi-Sasaki; this class includes both 3- α -Sasaki and 3-cosymplectic manifolds.








These classes were deeply investigated by various authors. See [5,9,10] and references therein for 3-Sasakian geometry, the papers [7,11,12] for 3-cosymplectic manifolds, and [13,14] for 3-quasi-Sasaki manifolds.



In fact, both for 3-Sasaki and 3-cosymplectic manifolds, the hypernormality is consequence of the structure Equations (7) and (8) respectively. This was proved by Kashiwada in [15] for 3-Sasaki manifolds, and in ([16], Theorem 4.13) for 3-cosymplectic manifolds.



In [1] the new classes of 3-  ( α , δ )  -Sasaki manifolds and 3- δ -cosymplectic manifolds were introduced, generalizing the classes of 3- α -Sasaki and 3-cosymplectic manifolds, respectively. We will review the definitions and the basic properties of these manifolds in the next section. For both these two classes the hypernormality is a consequence of the defining structure equations for the manifolds, thus generalizing the analogous results for 3-Sasaki and 3-cosymplectic manifolds. This is obtained by using the following Lemma:



Lemma 1

([1]). Let   ( M ,  φ i  ,  ξ i  ,  η i  , g )   be an almost 3-contact metric manifold. Then the following formula holds   ∀ X , Y , Z ∈ X ( M )  :


      g (  N  φ i    ( X , Y )  , Z )  =        = − d  Φ j   ( X , Y ,  φ j  Z )  + d  Φ j   (  φ i  X ,  φ i  Y ,  φ j  Z )  + d  Φ k   ( X ,  φ i  Y ,  φ j  Z )  + d  Φ k   (  φ i  X , Y ,  φ j  Z )         −  η i   ( X )   [ d  η j   (  φ i  Y ,  φ j  Z )  + d  η k   ( Y ,  φ j  Z )  ]  +  η i   ( Y )   [ d  η j   (  φ i  X ,  φ j  Z )  + d  η k   ( X ,  φ j  Z )  ]         +  η j   ( Z )   [ d  η j   ( X , Y )  − d  η j   (  φ i  X ,  φ i  Y )  ]  −  η j   ( Z )   [ d  η k   ( X ,  φ i  Y )  + d  η k   (  φ i  X , Y )  ]  .     



(9)









In the following we will be concerned with various classes of almost 3-contact metric manifolds where the three Reeb vector fields are all Killing. In this case one can show that there exists a function   δ ∈  C ∞   ( M )    such that


   η r   (  [  ξ s  ,  ξ t  ]  )  = 2 δ  ϵ  r s t   ,  r , s , t = 1 , 2 , 3  








where   ϵ  r s t    is the totally skew-symmetric symbol, or equivalently   d  η r   (  ξ s  ,  ξ t  )  = − 2 δ  ϵ  r s t    . We call  δ  a Reeb commutator function, we refer to [1] for more information on this notion.




3. 3-  ( α , δ )  -Sasaki Manifolds and 3- δ -Cosymplectic Manifolds


This section is a short review of 3-  ( α , δ )  -Sasaki manifolds and 3- δ -cosymplectic manifolds. These were discussed in detail in [1,17].



Definition 1.

An almost 3-contact metric manifold   ( M ,  φ i  ,  ξ i  ,  η i  , g )   is called a 3-  ( α , δ )  -Sasaki manifold if it satisfies


  d  η i  = 2 α  Φ i  + 2  ( α − δ )   η j  ∧  η k   








for every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  , where   α ≠ 0   and δ are real constants.





When   α = δ = 1  , we have a 3-contact metric manifold, and hence a 3-Sasaki manifold by Kashiwada’s theorem [15]. In the following, when considering 3-  ( α , δ )  -Sasaki manifolds we will always mean   α ≠ 0  . As an immediate consequences of the definition one obtains the following properties:




	
Each   ξ i   is an infinitesimal automorphism of the distribution ℋ, i.e.,


  d  η r   ( X ,  ξ s  )  = 0  X ∈ Γ  ( H )  ,  r , s = 1 , 2 , 3 ;  











	
The constant  δ  is the Reeb commutator function;



	
The differentials   d  Φ i    are given by


  d  Φ i  = 2  ( δ − α )   (  η k  ∧  Φ j  −  η j  ∧  Φ k  )  .  
















Applying Lemma 1 one shows the following



Theorem 1

([1], Theorem 2.2.1). Any 3-  ( α , δ )  -Sasaki manifold is hypernormal.





In particular, a 3-  ( α , δ )  -Sasaki manifold with   α = δ   is 3- α -Sasaki. It can be also shown that the vertical distribution of any 3-  ( α , δ )  -Sasaki manifold is integrable with totally geodesic leaves and each Reeb vector field   ξ i   is Killing.



We can distinguish three main classes of 3-  ( α , δ )  -Sasaki manifolds. A 3-  ( α , δ )  -Sasaki manifold is called degenerate if   δ = 0   and non-degenerate otherwise. Quaternionic Heisenberg groups are examples of degenerate 3-  ( α , δ )  -Sasaki manifolds (see ([1], Example 2.3.2)). Considering an ℋ-homothetic deformation of a 3-  ( α , δ )  -Sasaki structure, as in (5), one can verify that the obtained structure   (  φ ′  ,  ξ ′  ,  η ′  ,  g ′  )   is a 3-  (  α ′  ,  δ ′  )  -Sasaki with


   α ′  = α  c a  ,   δ ′  =  δ c  .  











In particular, ℋ-homothetic deformations preserve the class of degenerate manifolds. In the nondegenerate case, one sees immediately that    α ′   δ ′    has the same sign as   α δ  . This justifies the distinction between positive 3-  ( α , δ )  -Sasaki manifolds, with   α δ > 0  , and negative 3-  ( α , δ )  -Sasaki manifolds, with   α δ < 0  . In fact, it can be shown that a 3-  ( α , δ )  -Sasaki manifold is positive if and only if it is ℋ-homothetic to a 3-Sasaki manifold, and negative if and only if it is ℋ-homothetic to a 3-  (  α ′  ,  δ ′  )  -Sasaki manifold with    α ′  = − 1  ,    δ ′  = 1  .



Examples of negative 3-  ( α , δ )  -Sasaki manifolds can be obtained in the following way. It is known that quaternionic Kähler (not hyper-Kähler) manifolds with negative scalar curvature admit a canonically associated principal   SO ( 3 )  -bundle   P ( M )   which is endowed with a negative 3-Sasaki structure [18,19]. This is a 3-structure   (  φ i  ,  ξ i  ,  η i  ,  g ˜  )  ,   i = 1 , 2 , 3  , where   (  φ i  ,  ξ i  ,  η i  )   is a normal almost 3-contact structure, and   g ˜   is a compatible semi-Riemannian metric, with signature   ( 3 , 4 n )  , where   4 n   is the dimension of the base space, and   d  η i   ( X , Y )  = 2  g ˜   ( X ,  φ i  Y )   . Then, one can define the Riemannian metric


  g = −  g ˜  + 2  ∑  i = 1  3   η i  ⊗  η i  ,  








which is compatible with the structure   (  φ i  ,  ξ i  ,  η i  )  , and satisfies   d  η i  = − 2  Φ i  − 4  η j  ∧  η k   , where    Φ i   ( X , Y )  = g  ( X ,  φ i  Y )    (see also [19]). Therefore   (  φ i  ,  ξ i  ,  η i  , g )   is a 3-  ( α , δ )  -Sasaki structure with   α = − 1   and   δ = 1  .



The following Theorem regarding the transverse geometry with respect to the vertical foliation of a 3-  ( α , δ )  -Sasaki manifold is proved in [17]:



Theorem 2.

Any 3-  ( α , δ )  -Sasaki manifold M admits a locally defined Riemannian submersion   π : M → N   along its horizontal distribution  H  such that N carries a quaternionic Kähler structure given by


     φ i  ˇ  =  π *  ∘  φ i  ∘  s *  ,  i = 1 , 2 , 3 ,   








where   s : U → M   is any local smooth section of the Riemannian submersion. The covariant derivatives of the almost complex structures    φ ˇ  i   are given by


    ∇ X  g N     φ ˇ  i  = 2 δ  (   η ˇ  k   ( X )    φ ˇ  j  −   η ˇ  j   ( X )    φ ˇ  k  )    








where     η ˇ  i   ( X )  =  η i   (  s *  X )  ∘ s   for   i = 1 , 2 , 3  . The scalar curvature of the base space N is   16 n ( n + 2 ) α δ  .





The Riemannian Ricci tensor of any 3-  ( α , δ )  -Sasaki manifold is computed in [1]:


   Ric g   =  2 α  2 δ ( n + 2 ) − 3 α  g + 2  ( α − δ )   ( 2 n + 3 ) α − δ   ∑  i = 1  3   η i  ⊗  η i  .  



(10)







In particular, a 3-  ( α , δ )  -Sasaki manifold is Riemannian Einstein if and only if   δ = α  , in which case the structure is 3- α -Sasaki, or   δ = ( 2 n + 3 ) α  .



Notice that, by Theorem 2, a non-degenerate 3-  ( α , δ )  -Sasaki manifold locally fibers over a quaternionic Kähler space of positive or negative scalar curvature, according to   α δ > 0   or   α δ < 0  , respectively. In [17] a systematic study of homogeneous non-degenerate 3-  ( α , δ )  -Sasaki manifolds has been carried out, obtaining a complete classification in the positive case, where the base space of the homogeneous fibration turns out to be a symmetric Wolf space. In the case   α δ < 0  , one can provide a general construction of homogeneous 3-  ( α , δ )  -Sasaki manifolds fibering over nonsymmetric Alekseevsky spaces.



We recall now the definition and some basic facts on 3- δ -cosymplectic manifolds.



Definition 2.

A 3- δ -cosymplectic manifold is an almost 3-contact metric manifold satisfying


  d  η i  = − 2 δ  η j  ∧  η k  ,  d  Φ i  = 0 ,  








for some   δ ∈ R   and for every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  .





When   δ = 0  , the fact that the forms   η i   and   Φ i   are all closed implies that the structure is hypernormal ([16], Theorem 4.13). In fact this immediately follows from (9). Therefore, a 3- δ -cosymplectic manifold with   δ = 0   is 3-cosymplectic. In particular, it is 3-quasi-Sasaki and the Reeb vector fields are all Killing. The local structure of these manifolds is described by the following:



Proposition 1

([12]). Any 3-cosymplectic manifold of dimension   4 n + 3   is locally the Riemannian product of a hyper-Kähler manifold of dimension   4 n   and a 3-dimensional flat abelian Lie group.





As a consequence, since every hyper-Kähler manifold is Ricci flat, even the Riemannian Ricci tensor of any 3-cosymplectic manifold vanishes.



As regards 3- δ -cosymplectic manifolds with   δ ≠ 0  , even in this case one can show that the structure is hypernormal, the Reeb vector fields are Killing, and the manifold locally decomposes as a Riemannian product [1]. In particular,



Proposition 2.

Any 3-δ-cosymplectic manifold with   δ ≠ 0   is locally the Riemannian product of a hyper-Kähler manifold and a 3-dimensional Lie group isomorphic to   SO ( 3 )  , with constant curvature   δ 2  . Consequently, the Riemannian Ricci tensor is    Ric g  = 2  δ 2   ∑  i = 1  3   η i  ⊗  η i   .





In both cases, i.e.,   δ = 0   or   δ ≠ 0  , the hyper-Kähler manifold is tangent to the horizontal distribution, while the 3-dimensional Lie group is tangent to the vertical distribution. In fact, examples of these manifolds can be obtained taking Riemannian products   N × G  , where   ( N ,  J i  , h )  ,   i = 1 , 2 , 3  , is a hyper-Kähler manifold, and G is a 3-dimensional Lie group, which is either abelian, or isomorphic to   SO ( 3 )  . If    ξ 1  ,  ξ 2  ,  ξ 3    are generators of the Lie algebra  g  of G, satisfying    [  ξ i  ,  ξ j  ]  = 2 δ  ξ k   ,   δ ∈ R  , then one can define in a natural manner an almost 3-contact metric structure   (  φ i  ,  ξ i  ,  η i  , g )   on the product   N × G  , setting


   φ i    |   T N   =  J i  ,   φ i   ξ i  = 0 ,   φ i   ξ j  =  ξ k  ,   φ i   ξ k  = −  ξ j  ,  










   η i    |   T N   = 0 ,   η i   (  ξ i  )  = 1 ,   η i   (  ξ j  )  =  η i   (  ξ k  )  = 0 ,  








and g the product metric of h and the left invariant Riemannian metric on G with respect to which   ξ 1  ,   ξ 2  ,   ξ 3   are an orthonormal basis of  g .



For a comparison with the class of 3-  ( 0 , δ )  -Sasaki manifolds, which will be introduced in the next section, it is worth remarking that for a 3- δ -cosymplectic manifold   ( M ,  φ i  ,  ξ i  ,  η i  , g )   the Lie derivatives of the structure tensor fields   φ i  ,   i = 1 , 2 , 3   with respect to the Reeb vector fields are given by


   L  ξ i    φ i  = 0 ,   L  ξ i    φ j  = 2 δ  (  η i  ⊗  ξ j  −  η j  ⊗  ξ i  )  = −  L  ξ j    φ i   



(11)




for every   i , j = 1 , 2 , 3  . Indeed, in a 3- δ -cosymplectic manifold the Levi-Civita connection satisfies ([1], Proposition 2.1.1):


   ∇  ξ i  g   φ i  = 0 ,  










   (  ∇  ξ i  g   φ j  )  X = δ  (  η i   ( X )   ξ j  −  η j   ( X )   ξ i  )  = −  (  ∇  ξ j  g   φ i  )  X ,  










   ∇ X g   ξ i  = δ  (  η k   ( X )   ξ j  −  η j   ( X )   ξ k  )  ,  








where   ( i , j , k )   is an even permutation of   ( 1 , 2 , 3 )   and   X ∈ X ( M )  . Therefore,


     (  L  ξ i    φ i  ) X     =  [  ξ i  ,  φ i  X ]  −  φ i   [  ξ i  , X ]           =  ∇  ξ i  g   (  φ i  X )  −  ∇   φ i  X  g   ξ i  −  φ i   (  ∇  ξ i  g  X )  +  φ i   (  ∇ X g   ξ i  )           =  (  ∇  ξ i  g   φ i  )  X −  ∇   φ i  X  g   ξ i  +  φ i   (  ∇ X g   ξ i  )           = − δ  (  η k   (  φ i  X )   ξ j  −  η j   (  φ i  X )   ξ k  )  + δ  (  η k   ( X )   φ i   ξ j  −  η j   ( X )   φ i   ξ k  )  = 0 .     











In the same way,


     (  L  ξ i    φ j  ) X     =  (  ∇  ξ i  g   φ j  )  X −  ∇   φ j  X  g   ξ i  +  φ j   (  ∇ X g   ξ i  )           = δ  (  η i   ( X )   ξ j  −  η j   ( X )   ξ i  )  − δ   η k   (  φ j  X )   ξ j  − δ   η j   ( X )   φ j   ξ k           = 2 δ  (  η i   ( X )   ξ j  −  η j   ( X )   ξ i  )  = −  (  L  ξ j    φ i  )  X .     












4. 3-  ( 0 , δ )  -Sasaki Manifolds


In this section we introduce the class of 3-  ( 0 , δ )  -Sasaki manifolds.



Definition 3.

An almost 3-contact metric manifold   ( M ,  φ i  ,  ξ i  ,  η i  , g )   will be called 3-  ( 0 , δ )  -Sasaki manifold if


  d  η i  = − 2 δ  η j  ∧  η k  ,  d  Φ i  = − 2 δ  (  η j  ∧  Φ k  −  η k  ∧  Φ j  )   



(12)




for every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  , and for some real constant   δ ∈ R  .





In particular, the structure is not 3-quasi-Sasaki when   δ ≠ 0  , and we have the following basic properties for a 3-  ( 0 , δ )  -Sasaki manifold:




	
The horizontal distribution ℋ is integrable;



	
Each   ξ i   is an infinitesimal automorphism of the distribution ℋ, i. e.


  d  η r   ( X ,  ξ s  )  = 0  X ∈ Γ  ( H )  ,  r , s = 1 , 2 , 3 ;  











	
The constant  δ  is the Reeb commutator function.








Remark 1.

In case   δ ≠ 0  , the two equations in (12) are not completely independent. Indeed, if one assumes   d  Φ i  = − 2 γ  (  η j  ∧  Φ k  −  η k  ∧  Φ j  )   ,   γ ∈  R *   , differentiating this equation, and combining with   d  η i  = − 2 δ  η j  ∧  η k   , a straightforward computation gives   γ = δ  . Thus, there is no freedom for the choice of constant in the second equation.





If   (  φ i  ,  ξ i  ,  η i  , g )   is a 3-  ( 0 , δ )  -Sasaki structure, applying an ℋ-homothetic deformation as in (5), an easy computation using (6) shows that the new structure   (  φ i ′  ,  η i ′  ,  ξ i ′  ,  g ′  )   is again 3-  ( 0 ,  δ ′  )  -Sasaki, with    δ ′  =  δ c   .



Example 1.

Consider the abelian Lie algebra   R  4 n    spanned by vectors   v r  ,   v  n + r   ,   v  2 n + r   ,   v  3 n + r   ,   r = 1 , … , n  , and endowed with the hypercomplex structure   {  J 1  ,  J 2  ,  J 3  }   defined by


    J i   (  v r  )  =  v  i n + r   ,   J i   (  v  i n + r   )  = −  v r  ,   J i   (  v  j n + r   )  =  v  k n + r   ,   J i   (  v  k n + r   )  = −  v  j n + r   ,   








for every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  . Let us consider also the Lie algebra   so ( 3 )   spanned by    ξ 1  ,  ξ 2  ,  ξ 3    with Lie brackets given by    [  ξ i  ,  ξ j  ]  = 2 δ  ξ k   ,   δ ≠ 0  . Let ρ be the representation of   so ( 3 )   on   R  4 n    given by


   ρ : so  ( 3 )  → gl  ( 4 n , R )  ,  ρ  (  ξ i  )  = δ  J i  ,  i = 1 , 2 , 3 .   








On the Lie algebra   g = so  ( 3 )   ⋉ ρ   R  4 n     on can define in a natural way an almost 3-contact metric structure   (  φ i  ,  ξ i  ,  η i  , g )  , with


    φ i    |   R  4 n    =  J i  ,  φ  (  ξ i  )  = 0 ,   φ i   (  ξ j  )  =  ξ k  = −  φ j   (  ξ k  )  ,   










    η i    |   R  4 n    = 0 ,   η i   (  ξ i  )  = 1 ,   η i   (  ξ j  )  =  η i   (  ξ k  )  = 0 ,   








and where g is the inner product such that the vectors   ξ i  ,   v l  ,   i = 1 , 2 , 3  ,   l = 1 , … , 4 n   are orthonormal. In particular, the non zero brackets on  g  are given by


    [  ξ i  ,  ξ j  ]  = 2 δ  ξ k  ,   [  ξ i  , X ]  = δ  φ i   ( X )  ,  X ∈  R  4 n   .   











The representation   ρ : so ( 3 ) → gl ( 4 n , R )   can be integrated to a representation    ρ ˜  : SO  ( 3 )  → GL  ( 4 n , R )   . Therefore, identifying   R  4 n    with   H n   in a natural way, the simply connected Lie group   G = SO  ( 3 )   ⋉  ρ ˜    H n   , with Lie algebra  g , admits a left invariant almost 3-contact metric structure   (  φ i  ,  ξ i  ,  η i  , g )  . One can easily verify that this structure satisfies (12).





Remark 2.

For more details on the above example we refer to [2], where  g  is described as a remarkable example of a Lie algebra endowed with an abelian almost 3-contact metric structure. In fact, the structure defined on  g  belongs to the class of canonical abelian structures, so that the Lie group G admits a unique metric connection with totally skew symmetric torsion ∇ such that


   ∇ X   φ i  = 2 δ  (  η k   ( X )   φ j  −  η j   ( X )   φ k  )   








for every vector field X and for every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  . The torsion of the canonical connection ∇ is   T = 2 δ  η 1  ∧  η 2  ∧  η 3   , which satisfies   ∇ T = 0  .



It is also shown in [2] that the Lie group G admits co-compact discrete subgroups, so that the corresponding compact quotients admit almost 3-contact metric structures of the same type.





Proposition 3.

Let   ( M ,  φ i  ,  ξ i  ,  η i  , g )   be a 3-  ( 0 , δ )  -Sasaki manifold. Then the structure is hypernormal.





Proof. 

In order to compute the tensor fields   N  φ i   , we apply Lemma 1. We always denote by   X , Y , Z   horizontal vector fields and by   ( i , j , k )   an even permutation of   ( 1 , 2 , 3 )  .



Being   d  Φ i   ( X , Y , Z )  = 0  , then    N  φ i    ( X , Y , Z )  = 0   for every   i = 1 , 2 , 3  . Furthermore, since the horizontal distribution is integrable, by the definition of the tensor field   N  φ i    (see (4)), one has    N  φ i    ( X , Y ,  ξ r  )  = 0   for all   r = 1 , 2 , 3  . Notice that, since


   ξ i  ⌟  Φ i  = 0 ,   ξ j  ⌟  Φ i  = −  η k  ,   ξ k  ⌟  Φ i  =  η j  ,  








from the second equation in (12), we have,


   ξ i  ⌟ d  Φ i  = 0 ,   ξ j  ⌟ d  Φ i  = − 2 δ  (  Φ k  +  η  i j   )  ,   ξ k  ⌟ d  Φ i  = 2 δ  (  Φ j  +  η  k i   )  .  



(13)







Therefore, form Lemma 1, applying (12) and (13), we have


      N  φ i    ( X ,  ξ i  , Z )      = − d  Φ j   ( X ,  ξ i  ,  φ j  Z )  + d  Φ k   (  φ i  X ,  ξ i  ,  φ j  Z )  + d  η j   (  φ i  X ,  φ j  Z )  + d  η k   ( X ,  φ j  Z )           = − 2 δ  Φ k   (  φ j  Z , X )  − 2 δ  Φ j   (  φ j  Z ,  φ i  X )           = 2 δ  Φ j   (  φ i  X ,  φ j  Z )  + 2 δ  Φ k   ( X ,  φ j  Z )  = − 2 δ g  (  φ i  X , Z )  − 2 δ g  ( X ,  φ i  Z )  = 0 ,        N  φ i    ( X ,  ξ j  , Z )      = d  Φ j   (  φ i  X ,  ξ k  ,  φ j  Z )  + d  Φ k   (  φ i  X ,  ξ j  ,  φ j  Z )           = − 2 δ  Φ i   (  φ j  Z ,  φ i  X )  + 2 δ  Φ i   (  φ j  Z ,  φ i  X )  = 0 ,        N  φ i    ( X ,  ξ k  , Z )      = − d  Φ j   ( X ,  ξ k  ,  φ j  Z )  − d  Φ k   ( X ,  ξ j  ,  φ j  Z )           = 2 δ  Φ i   (  φ j  Z , X )  − 2 δ  Φ i   (  φ j  Z , X )  = 0 .     











Equations (13) implies   d  Φ r   ( X ,  ξ s  ,  ξ t  )  = 0   for every   r , s , t = 1 , 2 , 3   and   X ∈ Γ ( H )  . Taking also into account that   d  η r   ( X ,  ξ s  )  = 0  , we deduce from (9) that


   N  φ r    ( X ,  ξ s  ,  ξ t  )  =  N  φ r    (  ξ s  ,  ξ t  , X )  = 0 .  











Finally, (9) implies together with   d  η r   (  ξ s  ,  ξ t  )  = − 2 δ  ϵ  r s t     that


   N  φ i    (  ξ i  ,  ξ j  ,  ξ k  )  =  N  φ i    (  ξ i  ,  ξ k  ,  ξ j  )  =  N  φ i    (  ξ j  ,  ξ k  ,  ξ i  )  = 0 ,  








completing the proof that M is hypernormal. □





Proposition 4.

Let   ( M ,  φ i  ,  ξ i  ,  η i  , g )   be a 3-  ( 0 , δ )  -Sasaki manifold. Then the Levi-Civita connection satisfies for all   X , Y ∈ X ( M )   and any cyclic permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  :


      (  ∇ X g   φ i  ) Y     = 2 δ    η k   ( X )   φ j  Y −  η j   ( X )   φ k  Y            − δ    η j   ( X )   η j   ( Y )  +  η k   ( X )   η k   ( Y )    ξ i  + δ   η i   ( Y )     η j   ( X )   ξ j  +  η k   ( X )   ξ k        



(14)




and


    ∇ X g   ξ i  = δ   (  η k   ( X )   ξ j  −  η j   ( X )   ξ k  )  ,   



(15)






    ∇  ξ i  g   ξ i  = 0 ,   ∇  ξ i  g   ξ j  = −  ∇  ξ j  g   ξ i  = δ  ξ k  .   



(16)







In particular, each   ξ i   is a Killing vector field.





Proof. 

Since the structure is hypernormal, by ([3], Lemma 6.1), the Levi-Civita connection satisfies


     2 g (  (  ∇ X g   φ i  )  Y , Z )     = d  Φ i   ( X ,  φ i  Y ,  φ i  Z )  − d  Φ i   ( X , Y , Z )            + d  η i   (  φ i  Y , X )   η i   ( Z )  − d  η i   (  φ i  Z , X )   η i   ( Y )  .     



(17)







Further, an easy computation (see [1]) shows that for every cyclic permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  ,


      Φ j   (  φ i  X ,  φ i  Y )      = −  Φ j   ( X , Y )  −  (  η k  ∧  η i  )   ( X , Y )  ,        Φ k   (  φ i  X ,  φ i  Y )      = −  Φ k   ( X , Y )  −  (  η i  ∧  η j  )   ( X , Y )  ,        Φ j   (  φ i  X , Y )      = −  Φ k   ( X , Y )  −  η i   ( X )   η j   ( Y )  ,        Φ k   (  φ i  X , Y )      =  Φ j   ( X , Y )  −  η i   ( X )   η k   ( Y )  .     











Then, using the second equation in (12) and the above equations, we have


      d  Φ i   ( X ,  φ i  Y ,  φ i  Z )  =        = − 2 δ  [  η j   ( X )   Φ k   (  φ i  Y ,  φ i  Z )  +  η j   (  φ i  Y )   Φ k   (  φ i  Z , X )  +  η j   (  φ i  Z )   Φ k   ( X ,  φ i  Y )         −  η k   ( X )   Φ j   (  φ i  Y ,  φ i  Z )  −  η k   (  φ i  Y )   Φ j   (  φ i  Z , X )  −  η k   (  φ i  Z )   Φ j   ( X ,  φ i  Y )   ]        = − 2 δ  [ −  η j   ( X )   Φ k   ( Y , Z )  −  η j   ( X )   (  η i  ∧  η j  )   ( Y , Z )         −  η k   ( Y )   Φ j   ( Z , X )  +  η k   ( Y )   η i   ( Z )   η k   ( X )  +  η k   ( Z )   Φ j   ( Y , X )  −  η k   ( Z )   η i   ( Y )   η k   ( X )         +  η k   ( X )   Φ j   ( Y , Z )  +  η k   ( X )   (  η k  ∧  η i  )   ( Y , Z )         +  η j   ( Y )   Φ k   ( Z , X )  +  η j   ( Y )   η i   ( Z )   η j   ( X )  −  η j   ( Z )   Φ k   ( Y , X )  −  η j   ( Z )   η i   ( Y )   η j    ( X )  ]        = d  Φ i   ( X , Y , Z )  + 4 δ   [  η j   ( X )   Φ k   ( Y , Z )  −  η k   ( X )   Φ j   ( Y , Z )  ]         + 4 δ   η j   ( X )   [  η i   ( Y )   η j   ( Z )  −  η j   ( Y )   η i   ( Z )  ]         + 4 δ   η k   ( X )   [  η i   ( Y )   η k   ( Z )  −  η k   ( Y )   η i   ( Z )  ]  .     











On the other hand, again using the first equation in (12), we obtain


      d  η i   (  φ i  Y , X )   η i   ( Z )  − d  η i   (  φ i  Z , X )   η i   ( Y )  =        = − 2 δ  (  η j  ∧  η k  )   (  φ i  Y , X )   η i   ( Z )  + 2 δ  (  η j  ∧  η k  )   (  φ i  Z , X )   η i   ( Y )        = − 2 δ   η i   ( Z )   [ −  η k   ( Y )   η k   ( X )  −  η j   ( X )   η j   ( Y )  ]  + 2 δ   η i   ( Y )   [ −  η k   ( Z )   η k   ( X )  −  η j   ( X )   η j   ( Z )  ]  .     











Inserting the above computations in (17), we conclude that


     g (  (  ∇ X g   φ i  )  Y , Z )     = 2 δ [  η k   ( X )  g  (  φ j  Y , Z )  −  η j   ( X )  g  (  φ k  Y , Z )  ]          − δ  η i   ( Z )   [  η k   ( Y )   η k   ( X )  +  η j   ( X )   η j   ( Y )  ]  + δ  η i   ( Y )   [  η k   ( Z )   η k   ( X )  +  η j   ( X )   η j   ( Z )  ]      








which implies (14). As regards the proof (15), applying (14) for   Y =  ξ i   , we get


   (  ∇ X g   φ i  )   ξ i  = − δ  (  η j   ( X )   ξ j  +  η k   ( X )   ξ k  )  .  











Applying   φ i   on both hand-sides, we obtain (15). Equations (16) are immediate consequences of (15). Furthermore, we also get


  g  (  ∇ X g   ξ i  , Y )  = − δ  (  η j  ∧  η k  )   ( X , Y )   








for every   X , Y ∈ X ( M )  . Since    ∇ g   ξ i    is skew-symmetric,   ξ i   is Killing. □





Corollary 1.

Let   ( M ,  φ i  ,  ξ i  ,  η i  , g )   be a 3-  ( 0 , δ )  -Sasaki manifold. Then for every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )   we have


    L  ξ i    φ i  = 0 ,   L  ξ i    φ j  = −  L  ξ j    φ i  = 2 δ  φ k  .   



(18)









Proof. 

For the first Lie derivative, notice that by (14) we have    ∇  ξ i  g   φ i  = 0  . Then, applying also (15), for every vector field X we have


     (  L  ξ i    φ i  ) X     =  (  ∇  ξ i  g   φ i  )  X −  ∇   φ i  X  g   ξ i  +  φ i   (  ∇ X g   ξ i  )         = − δ  (  η k   (  φ i  X )   ξ j  −  η j   (  φ i  X )   ξ k  )  + δ  (  η k   ( X )   φ i   ξ j  −  η j   ( X )   φ i   ξ k  )  = 0 .     











Now, using (14) for the covariant derivative    ∇ g   φ j   , for every vector field Y, we have


   (  ∇  ξ i  g   φ j  )  Y = 2 δ   φ k  Y − δ   η i   ( Y )   ξ j  −  η j   ( Y )   ξ i   .  











Therefore, applying also (15), we get


     (  L  ξ i    φ j  ) X     =  (  ∇  ξ i  g   φ j  )  X −  ∇   φ j  X  g   ξ i  +  φ j   (  ∇ X g   ξ i  )           = 2 δ   φ k  X − δ   η i   ( X )   ξ j  −  η j   ( X )   ξ i   − δ   η k   (  φ j  X )   ξ j  − δ   η j   ( X )   φ j   ξ k           = 2 δ  φ k  X .     











Analogously,    L  ξ j    φ i  = − 2 δ  φ k   . □





Theorem 3.

Let   ( M ,  φ i  ,  ξ i  ,  η i  , g )   be a 3-  ( 0 , δ )  -Sasaki manifold. Then both the horizontal and the vertical distribution are integrable with totally geodesic leaves. Each leaf of the vertical distribution is locally isomorphic to the Lie group   SO ( 3 )  , with constant sectional curvature   δ 2  ; each leaf of the horizontal distribution is endowed with a hyper-Kähler structure. Consequently, the Riemannian Ricci tensor of M is given by


    Ric g  = 2  δ 2   ∑  i = 1  3   η i  ⊗  η i  .   



(19)









Proof. 

We already know that the horizontal distribution ℋ is integrable. From (15), for every   X , Y ∈ Γ ( H )   and   i = 1 , 2 , 3  , we have


  g  (  ∇ X g  Y ,  ξ i  )  = − g  (  ∇ X g   ξ i  , Y )  = 0 ,  








so that the distribution ℋ has totally geodesic leaves. Furthermore, Equation (16) implies that the vertical distribution  V  is also integrable with totally geodesic leaves. In particular    [  ξ i  ,  ξ j  ]  = 2 δ  ξ k    for an even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  , so that the leaves of  V  are locally isomorphic to the Lie group   SO ( 3 )   and have constant sectional curvature   δ 2  . On each leaf of the horizontal distribution ℋ one can consider the almost hyper-Hermitian structure defined by   (  J i  : =  φ i   | H  , g )  , which turns out to be hyper-Kähler due to (14). Consequently, M is locally the Riemannnian product of 3-dimensional sphere of curvature   δ 2   and a   4 n  -dimensional manifold   M ′  , which is endowed with a hyper-Kähler structure. Since any hyper-Kähler manifold is Ricci flat, we obtain that the Riemannian Ricci tensor of M is given by (19). □





Remark 3.

From Theorem 3 it follows that any 3-  ( 0 , δ )  -Sasaki manifold is locally isometric to the Riemannnian product of 3-dimensional sphere and a   4 n  -dimensional manifold   M ′  , which is endowed with a hyper-Kähler structure. We recall that 3-δ-cosymplectic manifolds are also locally isometric to the Riemannian product of a 3-dimensional sphere of constant curvature   δ 2   and a hyper-Kähler manifold. Nevertheless, there is a difference between the two geometries. Looking at the transverse geometry of the foliation defined by the vertical distribution  V , in both cases the Riemannian metric g is projectable, being the vector fields   ξ i  ,   i = 1 , 2 , 3  , all Killing. In the case of 3-δ-cosymplectic manifolds, each tensor field   φ i   is also projectable, as by (11), the Lie derivatives with respect to the Reeb vector fields satisfy   (  L  ξ i    φ j  ) X = 0   for every   i , j = 1 , 2 , 3   and for every horizontal vector field X. In the case of 3-  ( 0 , δ )  -Sasaki manifolds, owing to (18), the tensor fields are not projectable. Nevertheless, taking into account the horizontal parts    Φ i   : =  Φ i  +  η j  ∧  η k    of the fundamental 2-forms   Φ i  , one can verify that horizontal 4-form


    Φ 1 H  ∧  Φ 1 H  +  Φ 2 H  ∧  Φ 2 H  +  Φ 3 H  ∧  Φ 3 H    








is projectable and defines a transversal quaternionic structure, which turns out to be locally hyper-Kähler.






5. Connections with Totally Skew-Symmetric Torsion


In this section we will show that every 3-  ( 0 , δ )  -Sasaki manifold is canonical in the sense of the definition given in [1], thus admitting a special metric connection with totally skew-symmetric torsion, called canonical. Recall that a metric connection ∇ with torsion T on a Riemannian manifold   ( M , g )   is said to have totally skew-symmetric torsion, or skew torsion for short, if the   ( 0 , 3 )  -tensor field T defined by   T ( X , Y , Z ) : = g ( T ( X , Y ) , Z )   is a 3-form. The relation between ∇ and the Levi-Civita connection   ∇ g   is then given by


   ∇ X  Y =  ∇ X g  Y +  1 2  T  ( X , Y )  .  











For more details we refer to [20]. We recall now the definition and the characterization of canonical almost 3-contact metric manifolds.



Definition 4

([1]). An almost 3-contact metric manifold   ( M ,  φ i  ,  ξ i  ,  η i  , g )   is called canonical if the following conditions are satisfied:




	(i)

	
each   N  φ i    is totally skew-symmetric on  H ,




	(ii)

	
each   ξ i   is a Killing vector field,




	(iii)

	
for any   X , Y , Z ∈ Γ ( H )   and any   i , j = 1 , 2 , 3  ,


   N  φ i    ( X , Y , Z )  − d  Φ i   (  φ i  X ,  φ i  Y ,  φ i  Z )  =  N  φ j    ( X , Y , Z )  − d  Φ j   (  φ j  X ,  φ j  Y ,  φ j  Z )  ,  












	(iv)

	
M admits a Reeb Killing function   β ∈  C ∞   ( M )   , that is the tensor fields   A  i j    defined on  H  by


   A  i j    ( X , Y )   : =  g  (  (  L  ξ j    φ i  )  X , Y )  + d  η j   ( X ,  φ i  Y )  + d  η j   (  φ i  X , Y )  ,  











satisfy


   A  i i    ( X , Y )  = 0 ,   A  i j    ( X , Y )  = −  A  j i    ( X , Y )  = β  Φ k   ( X , Y )  ,  











for every   X , Y ∈ Γ ( H )   and every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  .











Here   N  φ i    also denotes the   ( 0 , 3 )  -tensor field defined by    N  φ i    ( X , Y , Z )  : = g  (  N  φ i    ( X , Y )  , Z )    and we say that   N  φ i    is totally skew-symmetric on  H  if the   ( 0 , 3 )  -tensor is a 3-form on  H .



Theorem 4

([1]). An almost 3-contact metric manifold   ( M ,  φ i  ,  ξ i  ,  η i  , g )   is canonical, with Reeb Killing function β, if and only if it admits a metric connection ∇ with skew torsion such that


   ∇ X   φ i   =  β  (  η k   ( X )   φ j  −  η j   ( X )   φ k  )   








for every vector field X on M and for every even permutation   ( i , j , k )   of   ( 1 , 2 , 3 )  . If such a connection ∇ exists, it is unique and its torsion is given by


     T ( X , Y , Z )     =  N  φ i    ( X , Y , Z )  − d  Φ i   (  φ i  X ,  φ i  Y ,  φ i  Z )  ,       T ( X , Y ,  ξ i  )     = d  η i   ( X , Y )  ,       T ( X ,  ξ i  ,  ξ j  )     = − g (  [  ξ i  ,  ξ j  ]  , X ) ,       T (  ξ 1  ,  ξ 2  ,  ξ 3  )     =  2 ( β − δ ) ,     








for every   X , Y , Z ∈ Γ ( H )  , and   i , j = 1 , 2 , 3  , and where δ is the Reeb commutator function.





The connection ∇ is called the canonical connection of M, and also satisfies


   ∇ X   ξ i   =  β  (  η k   ( X )   ξ j  −  η j   ( X )   ξ k  )  ,   ∇ X   η i   =  β  (  η k   ( X )   η j  −  η j   ( X )   η k  )   



(20)




for every vector field X on M. Therefore, when   β = 0   the canonical connection parallelizes all the structure tensor fields, in which case we call the almost 3-contact metric manifold parallel.



Both 3-  ( α , δ )  -Sasaki manifolds and 3- δ -cosymplectic manifolds turn out to be canonical. In particular,



Theorem 5

([1]). Every 3-  ( α , δ )  -Sasaki manifold is a canonical almost 3-contact metric manifold, with constant Reeb Killing function   β = 2 ( δ − 2 α )  . The torsion T of the canonical connection ∇ is given by


  T  =   ∑  i = 1  3   η i  ∧ d  η i  + 8  ( δ − α )    η 123   =  2 α  ∑  i = 1  3   η i  ∧  Φ i  + 2  ( δ − 4 α )    η 123   








and satisfies   ∇ T = 0  .





We denote by   η 123   the 3-form    η 1  ∧  η 2  ∧  η 3   . From the above theorem, it follows that any 3-  ( α , δ )  -Sasaki manifold is a parallel canonical manifold if and only if   δ = 2 α  , in which case the 3-  ( α , δ )  -Sasaki structure is positive (  α δ > 0  ).



Regarding 3- δ -cosymplectic manifolds, we have:



Proposition 5

([1]). Any 3-δ-cosymplectic manifold is a parallel canonical almost 3-contact metric manifold. The torsion of the canonical connection is given by


  T = − 2 δ   η 123  .  













For the class of 3-  ( 0 , δ )  -Sasaki manifolds, we have the following



Proposition 6.

Every 3-  ( 0 , δ )  -Sasaki manifold is a canonical almost 3-contact metric manifold, with constant Reeb Killing function   β = 2 δ  . The torsion T of the canonical connection ∇ is given by


   T = 2 δ   η 123  ,   








which satisfies   ∇ T = 0  .





Proof. 

Let   ( M ,  φ i  ,  ξ i  ,  η i  , g )   be a 3-  ( 0 , δ )  -Sasaki manifold. We showed that the structure is hypernormal and the Reeb vector fields are Killing. Furthermore, by the second equation in (12),   d  Φ i   ( X , Y , Z )  = 0   for every   X , Y , Z ∈ Γ ( H )  . Therefore, conditions (i), (ii) and (iii) in Definition 4 are easily verified. As regards condition (iv), applying the first equation in (4) and Corollary 1, for every   X , Y ∈ Γ ( H )   we have


   A  i i    ( X , Y )  = 0 ,   A  i j    ( X , Y )  = −  A  j i    ( X , Y )  = 2 δ  Φ k   ( X , Y )  .  











Hence, the structure is canonical with Reeb commutator function   β = 2 δ  . Now, by Theorem 4, taking also into account the fact that the vertical distribution is integrable, the only non-vanishing term of the canonical connection is   T (  ξ 1  ,  ξ 2  ,  ξ 3  ) = 2 δ  , so that   T = 2 δ   η 123   . Although the structure is not parallel when   δ ≠ 0  , the torsion satisfies   ∇ T = 0  , as by (20), the 3-form   η 123   is parallel with respect to ∇. □





The above result generalizes the result obtained in [2] for the Lie group described in Example 1 (see also Remark 2).







Funding


This research received no external funding.




Conflicts of Interest


The author declares no conflict of interest.




References


	



Agricola, I.; Dileo, G. Generalizations of 3-Sasakian manifolds and skew torsion. Adv. Geom. 2020, 20, 331–374. [Google Scholar] [CrossRef]

	



Andrada, A.; Dileo, G. Odd dimensional counterparts of abelian complex and hypercomplex structures. arXiv 2020, arXiv:2006.16435. [Google Scholar]

	



Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed.; Progress in Mathematics 203; Birkhäuser: Boston, MA, USA, 2010. [Google Scholar]

	



Cappelletti-Montano, B.; De Nicola, A.; Yudin, I. A survey on cosymplectic geometry. Rev. Math. Phys. 2013, 25, 1343002. [Google Scholar] [CrossRef]

	



Boyer, C.; Galicki, C. Sasakian Geometry; Oxford Mathematical Monographs; Oxford Univiversity Press: Oxford, UK, 2008. [Google Scholar]

	



Yano, K.; Ishihara, S.; Konishi, M. Normality of almost contact 3-structure. Tôhoku Math. J. 1973, 25, 167–175. [Google Scholar] [CrossRef]

	



Cappelletti-Montano, B.; De Nicola, A.; Yudin, I. Cosymplectic p-spheres. J. Geom. Phys. 2016, 100, 68–79. [Google Scholar] [CrossRef]

	



Kuo, Y.-Y. On almost contact 3-structure. Tôhoku Math. J. 1970, 22, 325–332. [Google Scholar] [CrossRef]

	



Boyer, C.P.; Galicki, K. 3-Sasakian manifolds. In Surveys in Differential Geometry: Essays on Einstein Manifolds; Wang, M., Lebrun, C., Eds.; International Press: Cambridge, UK, 2007; pp. 123–184. [Google Scholar]

	



Boyer, C.P.; Galicki, K.; Mann, B.M. The geometry and the topology of 3-Sasakian manifolds. J. Reine Angew. Math. 1994, 455, 183–220. [Google Scholar]

	



Cappelletti-Montano, B. De Nicola, A. 3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem. J. Geom. Phys. 2007, 57, 2509–2520. [Google Scholar] [CrossRef]

	



Cappelletti-Montano, B.; De Nicola, A.; Yudin, I. Topology of 3-cosymplectic manifolds. Q. J. Math. 2013, 64, 59–82. [Google Scholar] [CrossRef]

	



Cappelletti-Montano, B.; De Nicola, A.; Dileo, G. 3-quasi-Sasakian manifolds. Ann. Glob. Anal. Geom. 2008, 33, 397–409. [Google Scholar] [CrossRef]

	



Cappelletti-Montano, B.; De Nicola, A.; Dileo, G. The geometry of 3-quasi-Sasakian manifolds. Int. J. Math. 2009, 20, 1081–1105. [Google Scholar] [CrossRef]

	



Kashiwada, T. On a contact 3-structure. Math. Z. 2001, 238, 829–832. [Google Scholar] [CrossRef]

	



Pastore, A.M.; Falcitelli, M.; Ianus, S. Riemannian Submersions and Related Topics; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2004. [Google Scholar]

	



Agricola, I.; Dileo, G.; Stecker, L. Homogeneous non-degenerate 3-(α,δ)-Sasaki manifolds and submersions over quaternionic Kähler spaces. arXiv 2020, arXiv:2011.13434. [Google Scholar]

	



Konishi, M. On manifolds with Sasakian 3-structure over quaternion Kaehler manifolds. Kodai Math. Semin. Rep. 1975, 26, 194–200. [Google Scholar] [CrossRef]

	



Tanno, S. Remarks on a triple of K-contact structures. Tôhoku Math. J. II. Ser. 1996, 48, 519–531. [Google Scholar] [CrossRef]

	



Agricola, I. The Srní lectures on non-integrable geometries with torsion. Arch. Math. (Brno) 2006, 42, 5–84. [Google Scholar]












	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  axioms-10-00008


  
    		
      axioms-10-00008
    


  




  





