Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion

Hari Mohan Srivastava ${ }^{1,2,3,4, *(\mathbb{D}}$, Ahmad Motamednezhad ${ }^{5}$ (D) and Safa Salehian ${ }^{6}$ (D)
1 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
2 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
3 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, Baku AZ1007, Azerbaijan
4 Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
5 Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood P.O. Box 316-36155, Iran; a.motamedne@gmail.com
6 Department of Mathematics, Gorgan Branch, Islamic Azad University, Gorgan P.O. Box 717, Iran; s.salehian84@gmail.com
* Correspondence: harimsri@math.uvic.ca

Abstract

In this paper, we introduce a new comprehensive subclass $\Sigma_{B}(\lambda, \mu, \beta)$ of meromorphic bi-univalent functions in the open unit disk \mathbb{U}. We also find the upper bounds for the initial TaylorMaclaurin coefficients $\left|b_{0}\right|,\left|b_{1}\right|$ and $\left|b_{2}\right|$ for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients $\left|b_{n}\right|(n \geqq 1)$ for functions in the subclass $\Sigma_{B}(\lambda, \mu, \beta)$ by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.

Keywords: analytic functions; univalent and bi-univalent functions; meromorphic bi-univalent functions; coefficient estimates; Faber polynomial expansion; meromorphic bi-Bazilevič functions of order β and type μ; meromorphic bi-starlike functions of order β

1. Introduction

Let \mathcal{A} denote the class of functions f of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

We also let \mathcal{S} be the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}.
It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geqq \frac{1}{4}\right)
$$

If f and f^{-1} are univalent in \mathbb{U}, then f is said to be bi-univalent in \mathbb{U}. We denote by $\sigma_{\mathcal{B}}$ the class of bi-univalent functions in \mathbb{U}. For a brief history and interesting examples of functions in the class $\sigma_{\mathcal{B}}$, see the pioneering work [1]. In fact, this widely-cited work
by Srivastava et al. [1] actually revived the study of analytic and bi-univalent functions in recent years, and it has also led to a flood of papers on the subject by (for example) Srivastava et al. [2-14] and by others [15,16].

In this paper, let Σ be the family of meromorphic univalent functions f of the following form:

$$
\begin{equation*}
f(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}} \tag{2}
\end{equation*}
$$

which are defined on the domain

$$
\Delta=\{z: z \in \mathbb{C} \quad \text { and } \quad 1<|z|<\infty\}
$$

Since a function $f \in \Sigma$ is univalent, it has an inverse f^{-1} that satisfies the following relationship:

$$
f^{-1}(f(z))=z \quad(z \in \Delta)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad(M<|w|<\infty ; \quad M>0)
$$

Furthermore, the inverse function f^{-1} has a series expansion of the form [17]:

$$
g(w)=f^{-1}(w)=w+\sum_{n=0}^{\infty} \frac{B_{n}}{w^{n}} \quad(M<|w|<\infty)
$$

A function $f \in \Sigma$ is said to be meromorphic bi-univalent if both f and f^{-1} are meromorphic univalent in Δ. The family of all meromorphic bi-univalent functions in Δ of the form (2) is denoted by $\Sigma_{\mathcal{M}}$. A simple calculation shows that (see also [18,19])

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\cdots \tag{3}
\end{equation*}
$$

Moreover, the coefficients of $g=f^{-1}$ can be given in terms of the Faber polynomial [20] (see also [21-23]) as follows:

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-b_{0}-\sum_{n=1}^{\infty} \frac{1}{n} K_{n+1}^{n} \frac{1}{w^{n}} \quad(w \in \Delta) \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
K_{n+1}^{n}=n b_{0}^{n-1} b_{1}+n(n-1) b_{0}^{n-2} b_{2}+\frac{1}{2} n(n-1)(n-2) b_{0}^{n-23}\left(b_{3}+b_{1}^{2}\right) \\
+\frac{n(n-1)(n-2)(n-3)}{3!} b_{0}^{n-4}\left(b_{4}+3 b_{1} b_{2}\right)+\sum_{j \geqq 5} b_{0}^{n-j} V_{j}
\end{gathered}
$$

and V_{j} (with $5 \leqq j \leqq n$) is a homogeneous polynomial of degree j in the variables $b_{1}, b_{2}, \cdots, b_{n}$.

Estimates on the coefficients of meromorphic univalent functions were widely investigated in the literature. For example, Schiffer [24] obtained the estimate $\left|b_{2}\right| \leqq 2 / 3$ for meromorphic univalent functions $f \in \Sigma$ with $b_{0}=0$ and Duren [25] proved that

$$
\left|b_{n}\right| \leqq \frac{2}{n+1} \quad\left(f \in \Sigma ; b_{k}=0 ; 1 \leqq k<\frac{n}{2}\right)
$$

Many researchers introduced and studied subclasses of meromorphic bi-univalent functions (see, for instance, Janani et al. [26], Orhan et al. [27] and others [28-30]).

Recently, Srivastava et al. [31] introduced a new class $\Sigma_{B^{*}}(\lambda, \beta)$ of meromorphic biunivalent functions and obtained the estimates on the initial Taylor-Maclaurin coefficients $\left|b_{0}\right|$ and $\left|b_{1}\right|$ for functions in this class.

Definition 1 (see [31]). A function $f \in \Sigma_{\mathcal{M}}$, given by (2), is said to be in the class $\Sigma_{B^{*}}(\lambda, \beta)$ $(\lambda \geqq 1 ; 0 \leqq \beta<1)$, if the following conditions are satisfied:

$$
\Re\left(\frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}\right)>\beta
$$

and

$$
\Re\left(\frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)}\right)>\beta
$$

where the function g, given by (3) is the inverse of f and $z, w \in \Delta$.
Theorem 1 (see [31]). Let the function $f \in \Sigma_{\mathcal{M}}$, given by (2), be in the class $\Sigma_{B^{*}}(\lambda, \beta)$. Then,

$$
\left|b_{0}\right| \leqq 2(1-\beta) \quad \text { and } \quad\left|b_{1}\right| \leqq \frac{2(1-\beta) \sqrt{4 \beta^{2}-8 \beta+5}}{1+\lambda}
$$

In this paper, we introduce a new comprehensive subclass $\Sigma_{B}(\lambda, \mu, \beta)$ of the meromorphic bi-univalent function class $\Sigma_{\mathcal{M}}$. We also obtain estimates for the initial TaylorMaclaurin coefficients b_{0}, b_{1} and b_{2} for functions in this subclass. Furthermore, we find estimates for the general coefficients $b_{n}(n \geqq 1)$ for functions in this comprehensive subclass $\Sigma_{B}(\lambda, \mu, \beta)$ by using the Faber polynomials [20]. Our results for the meromorphic bi-univalent function subclass $\Sigma_{B}(\lambda, \mu, \beta)$ would generalize and improve some recent works by Srivastava et al. [31], Hamidi et al. [32] and Jahangiri et al. [33] (see also the recent works [34,35]).

2. Preliminary Results

For finding the coefficients of functions belonging to the function class $\Sigma_{B}(\lambda, \mu, \beta)$, we need the following lemmas and remarks.

Lemma 1 (see $[21,22])$. Let f be the function given by

$$
f(z)=z+b_{0}+\frac{b_{1}}{z}+\frac{b_{2}}{z^{2}}+\cdots
$$

be a meromorphic univalent function defined on the domain Δ. Then, for any $\rho \in \mathbb{R}$, there are polynomials K_{n}^{ρ} such that

$$
\left(\frac{f(z)}{z}\right)^{\rho}=1+\sum_{n=1}^{\infty} \frac{K_{n}^{\rho}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)}{z^{n}}
$$

where

$$
K_{n}^{\rho}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)=\rho b_{n-1}+\frac{\rho(\rho-1)}{2} D_{n}^{2}+\frac{\rho!}{(\rho-3)!3!} D_{n}^{3}+\cdots+\frac{\rho!}{(\rho-n)!n!} D_{n}^{n}
$$

and

$$
D_{n}^{k}\left(x_{1}, x_{2}, \cdots, x_{n-k+1}\right)=\sum \frac{k!\left(x_{1}\right)^{\mu_{1}} \cdots\left(x_{n-k+1}\right)^{\mu_{n-k+1}}}{\mu_{1}!\cdots \mu_{n-k+1}!}
$$

in which the sum is taken over all non-negative integers $\mu_{1}, \cdots, \mu_{n-k+1}$ such that

$$
\left\{\begin{array}{l}
\mu_{1}+\mu_{2}+\cdots+\mu_{n-k+1}=k \\
\mu_{1}+2 \mu_{2}+\cdots+(n-k+1) \mu_{n-k+1}=n
\end{array}\right.
$$

The first three terms of K_{n}^{ρ} are given by

$$
\begin{gathered}
K_{1}^{\rho}\left(b_{0}\right)=\rho b_{0} \\
K_{2}^{\rho}\left(b_{0}, b_{1}\right)=\rho b_{1}+\frac{\rho(\rho-1)}{2} b_{0}^{2}
\end{gathered}
$$

and

$$
K_{3}^{\rho}\left(b_{0}, b_{1}, b_{2}\right)=\rho b_{2}+\rho(\rho-1) b_{0} b_{1}+\frac{\rho(\rho-1)(\rho-2)}{3!} b_{0}^{3} .
$$

Remark 1. In the special case when

$$
b_{0}=b_{1}=\cdots=b_{n-1}=0
$$

it is easily seen that

$$
K_{i}^{\rho}\left(b_{0}, \cdots, b_{i-1}\right)=0 \quad(1 \leqq i \leqq n)
$$

and

$$
K_{n+1}^{\rho}\left(b_{0}, b_{1}, \cdots, b_{n}\right)=\rho b_{n}
$$

Lemma 2 (see $[21,22]$). Let f be the function given by

$$
f(z)=z+b_{0}+\frac{b_{1}}{z}+\frac{b_{2}}{z^{2}}+\cdots
$$

be a meromorphic univalent function defined on the domain Δ. Then, the Faber polynomials F_{n} of $f(z)$ are given by

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=1+\sum_{n=1}^{\infty} \frac{F_{n}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)}{z^{n}} \tag{5}
\end{equation*}
$$

where $F_{n}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)$ is a homogeneous polynomial of degree n.
Remark 2 (see [36]). For any integer $n \geqq 1$, the polynomials $F_{n}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)$ are given by

$$
F_{n}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)=\sum_{i_{1}+2 i_{2}+\cdots+n i_{n}=n} A_{\left(i_{1}, i_{2}, \cdots, i_{n}\right)} b_{0}^{i_{1}} b_{1}^{i_{2}} \cdots b_{n-1}^{i_{n}}
$$

where

$$
A_{\left(i_{1}, i_{2}, \cdots, i_{n}\right)}:=(-1)^{n+2 i_{1}+3 i_{2}+\cdots+(n+1) i_{n}} \frac{\left(i_{1}+i_{2}+\cdots+i_{n}-1\right)!n}{i_{1}!i_{2}!\cdots i_{n}!}
$$

The first three terms of F_{n} are given by

$$
\begin{gathered}
F_{1}\left(b_{0}\right)=-b_{0}, \\
F_{2}\left(b_{0}, b_{1}\right)=b_{0}^{2}-2 b_{1}
\end{gathered}
$$

and

$$
F_{3}\left(b_{0}, b_{1}, b_{2}\right)=-b_{0}^{3}+3 b_{0} b_{1}-3 b_{2}
$$

Remark 3. In the special case when $b_{0}=b_{1}=\cdots=b_{n-1}=0$, it is readily observed that

$$
F_{i}\left(b_{0}, \cdots, b_{i-1}\right)=0 \quad(1 \leqq i \leqq n)
$$

and

$$
F_{n+1}\left(b_{0}, b_{1}, \cdots, b_{n}\right)=(-1)^{2 n+3}(n+1) b_{n}=-(n+1) b_{n} .
$$

Lemma 3. Let f be the function given by

$$
f(z)=z+b_{0}+\frac{b_{1}}{z}+\frac{b_{2}}{z^{2}}+\cdots
$$

be a meromorphic univalent function defined on the domain Δ. Then, for $\lambda \geqq 1$ and $\mu \geqq 0$,

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\lambda}\left(\frac{f(z)}{z}\right)^{\mu}=1+\sum_{n=1}^{\infty} \frac{L_{n}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)}{z^{n}}
$$

where

$$
L_{n}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)=\sum_{i=0}^{n} K_{n-i}^{\lambda}\left(F_{1}, \cdots, F_{n-i}\right) K_{i}^{\mu}\left(b_{0}, \cdots, b_{i-1}\right) \quad\left(K_{0}^{\lambda}=K_{0}^{\mu}=1\right)
$$

and $F_{n}=F_{n}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)$ is given by (5).
Proof. By using Lemmas 1 and 2, we have

$$
\begin{aligned}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\lambda}\left(\frac{f(z)}{z}\right)^{\mu}= & \left(1+\sum_{m=1}^{\infty} \frac{F_{m}\left(b_{0}, b_{1}, \cdots, b_{m-1}\right)}{z^{m}}\right)^{\lambda} \\
& \cdot\left(1+\sum_{m=1}^{\infty} \frac{K_{m}^{\mu}\left(b_{0}, b_{1}, \cdots, b_{m-1}\right)}{z^{m}}\right)
\end{aligned}
$$

In addition, by applying Lemma 1 once again, we obtain

$$
\begin{aligned}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\lambda}\left(\frac{f(z)}{z}\right)^{\mu}= & \left(1+\sum_{m=1}^{\infty} \frac{K_{m}^{\lambda}\left(F_{1}, \cdots, F_{m}\right)}{z^{m}}\right) \\
& \cdot\left(1+\sum_{m=1}^{\infty} \frac{K_{m}^{\mu}\left(b_{0}, \cdots, b_{m-1}\right)}{z^{m}}\right) \\
=1+ & \sum_{n=1}^{\infty} \sum_{i=0}^{n} K_{n-i}^{\lambda}\left(F_{1}, \cdots, F_{n-i}\right) K_{i}^{\mu}\left(b_{0}, \cdots, b_{i-1}\right) \frac{1}{z^{n}} \\
& \left(K_{0}^{\lambda}=K_{0}^{\mu}=1\right) .
\end{aligned}
$$

Our demonstration of Lemma 3 is thus completed.
The first three terms of L_{n} are given by

$$
\begin{gathered}
L_{1}\left(b_{0}\right)=(\mu-\lambda) b_{0} \\
L_{2}\left(b_{0}, b_{1}\right)=\frac{\lambda(1+\lambda-2 \mu)+\mu(\mu-1)}{2} b_{0}^{2}+(\mu-2 \lambda) b_{1}
\end{gathered}
$$

and

$$
\begin{aligned}
L_{3}\left(b_{0}, b_{1}, b_{2}\right)= & \left.\frac{\lambda(2-\mu)(\mu-\lambda)}{2}+\frac{\mu(\mu-1)(\mu-2)-\lambda(\lambda-1)(\lambda-2)}{6}\right) b_{0}^{3} \\
& +[\lambda(2 \lambda+1)+\mu(\mu-3 \lambda-1)] b_{0} b_{1}+(\mu-3 \lambda) b_{2}
\end{aligned}
$$

Remark 4. In the special case when $b_{0}=b_{1}=\cdots=b_{n-1}=0$, we easily find that

$$
L_{i}\left(b_{0}, \cdots, b_{i-1}\right)=0 \quad(1 \leqq i \leqq n)
$$

and

$$
L_{n+1}\left(b_{0}, b_{1}, \cdots, b_{n}\right)=(\mu-(n+1) \lambda) b_{n} .
$$

Lemma 4 (see [37]). If the function $p \in \mathcal{P}$, then $\left|c_{k}\right| \leqq 2$ for each k, where \mathcal{P} is the family of all functions p, which are analytic in the domain Δ given by

$$
\Delta=\{z: z \in \mathbb{C} \text { and } 1<|z|<\infty\}
$$

for which

$$
\Re(p(z))>0 \quad(z \in \Delta)
$$

where

$$
p(z)=1+\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\frac{c_{3}}{z^{3}}+\cdots
$$

3. The Comprehensive Class $\Sigma_{B}(\lambda, \mu, \beta)$

In this section, we introduce and investigate the comprehensive class $\Sigma_{B}(\lambda, \mu, \beta)$ of meromorphic bi-univalent functions defined on the domain Δ.

Definition 2. A function $f \in \Sigma_{\mathcal{M}}$, given by (2), is said to be in the class

$$
\Sigma_{B}(\lambda, \mu, \beta) \quad(\lambda \geqq 1 ; \mu \geqq 0 ; 0 \leqq \beta<1)
$$

of meromorphic bi-univalent functions of order β and type μ, if the following conditions are satisfied:

$$
\Re\left(\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\lambda}\left(\frac{f(z)}{z}\right)^{\mu}\right)>\beta
$$

and

$$
\Re\left(\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\lambda}\left(\frac{g(w)}{w}\right)^{\mu}\right)>\beta
$$

where the function g given by (4), is the inverse of f and $z, w \in \Delta$.
Remark 5. There are several choices of the parameters λ and μ which would provide interesting subclasses of meromorphic bi-univalent functions. For example, we have the following special cases:

- By putting $\lambda=1$ and $0 \leqq \mu<1$, the class $\Sigma_{B}(\lambda, \mu, \beta)$ reduces to the subclass $B(\beta, \mu)$ of meromorphic bi-Bazilevič functions of order β and type μ, which was considered by Jahangiri et al. [33].
- By putting $\lambda=1$ and $\mu=0$, the class $\Sigma_{B}(\lambda, \mu, \beta)$ reduces to the subclass $\Sigma_{B}^{*}(\beta)$ of meromorphic bi-starlike functions of order β, which was considered by Hamidi et al. [32].
- By putting $\mu=\lambda-1$, the class $\Sigma_{B}(\lambda, \mu, \beta)$ reduces to the class $\Sigma_{B^{*}}(\lambda, \beta)$ in Definition 1.

Theorem 2. Let $f \in \Sigma_{B}(\lambda, \mu, \beta)$. If $b_{0}=b_{1}=\cdots=b_{n-1}=0$, then

$$
\left|b_{n}\right| \leqq \frac{2(1-\beta)}{|(n+1) \lambda-\mu|} \quad(n \geqq 1)
$$

Proof. By using Lemma 3 for the meromorphic bi-univalent function f given by

$$
f(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}},
$$

we have

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\lambda}\left(\frac{f(z)}{z}\right)^{\mu}=1+\sum_{n=0}^{\infty} \frac{L_{n+1}\left(b_{0}, b_{1}, \cdots, b_{n}\right)}{z^{n+1}} \tag{6}
\end{equation*}
$$

Similarly, for its inverse map g given by

$$
g(w)=f^{-1}(w)=w+B_{0}+\sum_{n=1}^{\infty} \frac{B_{n}}{w^{n}}
$$

we find that

$$
\begin{equation*}
\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\lambda}\left(\frac{g(w)}{w}\right)^{\mu}=1+\sum_{n=0}^{\infty} \frac{L_{n+1}\left(B_{0}, B_{1}, \cdots, B_{n}\right)}{w^{n+1}} \tag{7}
\end{equation*}
$$

Furthermore, since $f \in \Sigma_{B}(\lambda, \mu, \beta)$, by using Definition 2, there exist two positive real-part functions

$$
c(z)=1+\sum_{n=1}^{\infty} c_{n} z^{-n}
$$

and

$$
d(w)=1+\sum_{n=1}^{\infty} d_{n} w^{-n}
$$

for which

$$
\Re(c(z))>0 \quad \text { and } \quad \Re(d(w))>0 \quad(z, w \in \Delta)
$$

such that

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\lambda}\left(\frac{f(z)}{z}\right)^{\mu}=1+(1-\beta) \sum_{n=0}^{\infty} K_{n+1}^{1}\left(c_{1}, c_{2}, \cdots, c_{n+1}\right) \frac{1}{z^{n+1}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\lambda}\left(\frac{g(w)}{w}\right)^{\mu}=1+(1-\beta) \sum_{n=0}^{\infty} K_{n+1}^{1}\left(d_{1}, d_{2}, \cdots, d_{n+1}\right) \frac{1}{w^{n+1}} \tag{9}
\end{equation*}
$$

Upon equating the corresponding coefficients in (6) and (8), we get

$$
\begin{equation*}
L_{n+1}\left(b_{0}, b_{1}, \cdots, b_{n}\right)=(1-\beta) K_{n+1}^{1}\left(c_{1}, c_{2}, \cdots, c_{n+1}\right) \tag{10}
\end{equation*}
$$

Similarly, from (7) and (9), we obtain

$$
\begin{equation*}
L_{n+1}\left(B_{0}, B_{1}, \cdots, B_{n}\right)=(1-\beta) K_{n+1}^{1}\left(d_{1}, d_{2}, \cdots, d_{n+1}\right) \tag{11}
\end{equation*}
$$

Now, since $b_{i}=0 \quad(0 \leqq i \leqq n-1)$, we have

$$
B_{i}=0 \quad(0 \leqq i \leqq n-1) \quad \text { and } \quad B_{n}=-b_{n}
$$

Hence, by using Remark 4, Equations (10) and (11) can be rewritten as follows:

$$
\begin{equation*}
(\mu-(n+1) \lambda) b_{n}=(1-\beta) c_{n+1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
-(\mu-(n+1) \lambda) b_{n}=(1-\beta) d_{n+1} \tag{13}
\end{equation*}
$$

respectively. Thus, from (12) and (13), we find that

$$
2(\mu-(n+1) \lambda) b_{n}=(1-\beta)\left(c_{n+1}-d_{n+1}\right)
$$

Finally, by applying Lemma 4, we get

$$
\left|b_{n}\right|=\frac{(1-\beta)\left|c_{n+1}-d_{n+1}\right|}{2|(n+1) \lambda-\mu|} \leqq \frac{2(1-\beta)}{|(n+1) \lambda-\mu|}
$$

which completes the proof of Theorem 2

Theorem 3. Let the function $f \in \mathcal{M}$, given by (2), be in the class

$$
\Sigma_{B}(\lambda, \mu, \beta) \quad(\lambda \geqq 1 ; \mu \geqq 0 ; 0 \leqq \beta<1)
$$

Then,

$$
\begin{gathered}
\left|b_{0}\right| \leqq \min \left\{\frac{2(1-\beta)}{|\mu-\lambda|}, 2 \sqrt{\frac{1-\beta}{|\lambda(1+\lambda-2 \mu)+\mu(\mu-1)|}}\right\} \\
\left|b_{1}\right| \leqq \frac{2(1-\beta)}{|\mu-2 \lambda|}
\end{gathered}
$$

and

$$
\begin{aligned}
\left|b_{2}\right| \leqq & \frac{2\{|\lambda(2 \lambda+4)+\mu(\mu-3 \lambda-2)|+|\lambda(2 \lambda+1)+\mu(\mu-3 \lambda-1)|\}(1-\beta)}{|(\mu-3 \lambda)[\lambda(4 \lambda+5)+\mu(2 \mu-6 \lambda-3)]|} \\
& \quad+\frac{8|T(\mu, \lambda)|(1-\beta)^{3}}{\left|(\mu-3 \lambda)(\mu-\lambda)^{3}\right|}
\end{aligned}
$$

where

$$
T(\mu, \lambda)=\frac{\lambda(2-\mu)(\mu-\lambda)}{2}+\frac{\mu(\mu-1)(\mu-2)-\lambda(\lambda-1)(\lambda-2)}{6}
$$

Proof. By putting $n=0,1,2$ in (10), we get

$$
\begin{gather*}
(\mu-\lambda) b_{0}=(1-\beta) c_{1} \tag{14}\\
\frac{\lambda(1+\lambda-2 \mu)+\mu(\mu-1)}{2} b_{0}^{2}+(\mu-2 \lambda) b_{1}=(1-\beta) c_{2} \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
T(\mu, \lambda) b_{0}^{3}+[\lambda(2 \lambda+1)+\mu(\mu-3 \lambda-1)] b_{0} b_{1}+(\mu-3 \lambda) b_{2}=(1-\beta) c_{3} \tag{16}
\end{equation*}
$$

Similarly, by putting $n=0,1,2$ in (11), we have

$$
\begin{gather*}
-(\mu-\lambda) b_{0}=(1-\beta) d_{1} \tag{17}\\
\frac{\lambda(1+\lambda-2 \mu)+\mu(\mu-1)}{2} b_{0}^{2}-(\mu-2 \lambda) b_{1}=(1-\beta) d_{2} \tag{18}
\end{gather*}
$$

and

$$
\begin{equation*}
-T(\mu, \lambda) b_{0}^{3}+(\lambda(2 \lambda+4)+\mu(\mu-3 \lambda-2)) b_{0} b_{1}-(\mu-3 \lambda) b_{2}=(1-\beta) d_{3} \tag{19}
\end{equation*}
$$

Clearly, from (14) and (17), we get

$$
\begin{equation*}
c_{1}=-d_{1} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{0}=\frac{(1-\beta) c_{1}}{\mu-\lambda} \tag{21}
\end{equation*}
$$

Adding (15) and (18), we obtain

$$
\begin{equation*}
b_{0}^{2}=\frac{(1-\beta)\left(c_{2}+d_{2}\right)}{\lambda(1+\lambda-2 \mu)+\mu(\mu-1)} . \tag{22}
\end{equation*}
$$

In view of the Equations (21) and (22), by applying Lemma 4, we get

$$
\left|b_{0}\right| \leqq \frac{2(1-\beta)}{|\mu-\lambda|} \quad \text { and } \quad\left|b_{0}\right|^{2} \leqq \frac{4(1-\beta)}{|\lambda(1+\lambda-2 \mu)+\mu(\mu-1)|}
$$

respectively. Thus, we get the desired estimate on the coefficient $\left|b_{0}\right|$.
Next, in order to find the bound on the coefficient $\left|b_{1}\right|$, we subtract (18) from (15). We thus obtain

$$
\begin{equation*}
b_{1}=\frac{(1-\beta)\left(c_{2}-d_{2}\right)}{2(\mu-2 \lambda)} \tag{23}
\end{equation*}
$$

Applying Lemma 4 once again, we get

$$
\left|b_{1}\right| \leqq \frac{2(1-\beta)}{|\mu-2 \lambda|}
$$

Finally, in order to determine the bound on $\left|b_{2}\right|$, we consider the sum of the Equations (16) and (19) with $c_{1}=-d_{1}$. This yields

$$
\begin{equation*}
b_{0} b_{1}=\frac{(1-\beta)\left(c_{3}+d_{3}\right)}{\lambda(4 \lambda+5)+\mu(2 \mu-6 \lambda-3)} \tag{24}
\end{equation*}
$$

Subtracting (19) from (16) with $c_{1}=-d_{1}$, we obtain

$$
\begin{equation*}
2(\mu-3 \lambda) b_{2}+(\mu-3 \lambda) b_{0} b_{1}+2 T(\mu, \lambda) b_{0}^{3}=(1-\beta)\left(c_{3}-d_{3}\right) . \tag{25}
\end{equation*}
$$

In addition, by using (21) and (24) in (25), we get

$$
b_{2}=\frac{(1-\beta)\left(c_{3}-d_{3}\right)}{2(\mu-3 \lambda)}-\frac{(1-\beta)\left(c_{3}+d_{3}\right)}{2[\lambda(4 \lambda+5)+\mu(2 \mu-6 \lambda-3)]}-\frac{T(\mu, \lambda)(1-\beta)^{3} c_{1}^{3}}{(\mu-3 \lambda)(\mu-\lambda)^{3}}
$$

Hence,

$$
\begin{aligned}
b_{2}= & \frac{\left\{[\lambda(2 \lambda+4)+\mu(\mu-3 \lambda-2)] c_{3}-[\lambda(2 \lambda+1)+\mu(\mu-3 \lambda-1)] d_{3}\right\}(1-\beta)}{(\mu-3 \lambda)[\lambda(4 \lambda+5)+\mu(2 \mu-6 \lambda-3)]} \\
& -\frac{T(\mu, \lambda)(1-\beta)^{3} c_{1}^{3}}{(\mu-3 \lambda)(\mu-\lambda)^{3}} .
\end{aligned}
$$

Thus, by applying Lemma 4 once again, we get

$$
\begin{aligned}
\left|b_{2}\right| \leqq & \frac{2\{|\lambda(2 \lambda+4)+\mu(\mu-3 \lambda-2)|+|\lambda(2 \lambda+1)+\mu(\mu-3 \lambda-1)|\}(1-\beta)}{|(\mu-3 \lambda)[\lambda(4 \lambda+5)+\mu(2 \mu-6 \lambda-3)]|} \\
& \quad+\frac{8|T(\mu, \lambda)|(1-\beta)^{3}}{\left|(\mu-3 \lambda)(\mu-\lambda)^{3}\right|} .
\end{aligned}
$$

This completes the proof of Theorem 3.

4. A Set of Corollaries and Consequences

By setting $\lambda=1$ and $0 \leqq \mu<1$ in Theorem 2, we have the following result.
Corollary 1. Let the function $f \in \mathcal{M}$, given by (2), be in the subclass $B(\beta, \mu)$ of meromorphic bi-Bazilevič functions of order β and type μ. If

$$
b_{0}=b_{1}=\cdots=b_{n-1}=0
$$

then

$$
\left|b_{n}\right| \leqq \frac{2(1-\beta)}{n+1-\mu} \quad(n \geqq 1)
$$

Remark 6. The estimate of $\left|b_{n}\right|$, given in Corollary 1 , is the same as the corresponding estimate given by Hamidi et al. [38] Corollary 3.3.

By setting $\mu=0$ in Corollary 1, we have the following result.
Corollary 2. Let the function $f \in \mathcal{M}$, given by (2), be in the subclass $\Sigma_{B}^{*}(\beta)$ of meromorphic bi-starlike functions of order β. If

$$
b_{0}=b_{1}=\cdots=b_{n-1}=0
$$

then

$$
\left|b_{n}\right| \leqq \frac{2(1-\beta)}{n+1} \quad(n \geqq 1)
$$

Remark 7. The estimate of $\left|b_{n}\right|$, given in Corollary 2 , is the same as the corresponding estimate given by Hamidi et al. [38] Corollary 3.4.

By setting $\mu=\lambda-1$ in Theorem 2, we have the following result.
Corollary 3. Let the function $f \in \mathcal{M}$, given by (2), be in the subclass $\Sigma_{B^{*}}(\lambda, \beta)$. If

$$
b_{0}=b_{1}=\cdots=b_{n-1}=0
$$

then

$$
\left|b_{n}\right| \leqq \frac{2(1-\beta)}{n \lambda+1} \quad(n \geqq 1)
$$

Remark 8. Corollary 3 is a generalization of a result presented in Theorem 1, which was proved by Srivastava et al. [31].

By setting $\lambda=1$ and $0 \leqq \mu<1$ in Theorem 3, we have the following result.
Corollary 4. Let the function $f \in \mathcal{M}$, given by (2), be in the subclass $B(\beta, \mu)$ of meromorphic bi-Bazilevič functions of order β and type μ. Then,

$$
\begin{array}{cc}
\left|b_{0}\right| \leqq \begin{cases}\sqrt{\frac{4(1-\beta)}{(1-\mu)(2-\mu)}} & \left(0 \leqq \beta \leqq \frac{1}{2-\mu}\right) \\
\frac{2(1-\beta)}{1-\mu} & \left(\frac{1}{2-\mu} \leqq \beta<1\right), \\
\left|b_{1}\right| \leqq \frac{2(1-\beta)}{2-\mu}\end{cases}
\end{array}
$$

and

$$
\left|b_{2}\right| \leqq \frac{2(1-\beta)}{3-\mu}+\frac{4(2-\mu)(1-\beta)^{3}}{3(1-\mu)^{2}}
$$

Remark 9. Corollary 4 also contains the estimate of the Taylor-Maclaurin coefficient $\left|b_{2}\right|$ of functions in the subclass $B(\beta, \mu)$ (see [33]).

By setting $\mu=0$ in Corollary 4, we have the following result.

Corollary 5. Let the function $f \in \mathcal{M}$, given by (2), be in the subclass $\Sigma_{B}^{*}(\beta)$ of meromorphic bi-starlike functions of order β. Then,

$$
\left|b_{0}\right| \leqq \begin{cases}\sqrt{2(1-\beta)} & \left(0 \leqq \beta \leqq \frac{1}{2}\right) \\ 2(1-\beta) & \left(\frac{1}{2} \leqq \beta<1\right), \\ \left|b_{1}\right| \leqq 1-\beta\end{cases}
$$

and

$$
\left|b_{2}\right| \leqq \frac{2(1-\beta)}{3}+\frac{8(1-\beta)^{3}}{3}
$$

Remark 10. Corollary 5 not only improves the estimate of the Taylor-Maclaurin coefficient $\left|b_{0}\right|$, which was given by Hamidi et al. [32] Theorem 2, but it also provides an improvement of the known estimate of the Taylor-Maclaurin coefficient $\left|b_{2}\right|$ of functions in the subclass $\Sigma_{B}^{*}(\beta)$. Furthermore, the estimate of $\left|b_{0}\right|$, presented in Corollary 5 , is the same as the corresponding estimate given by Hamidi et al. [38] Corollary 3.5.

By setting $\mu=\lambda-1$ in Theorem 3, we have the following result.
Corollary 6. Let the function $f \in \mathcal{M}$, given by (2), be in the subclass $\Sigma_{B^{*}}(\lambda, \beta)$. Then,

$$
\left|b_{0}\right| \leqq \begin{cases}\sqrt{2(1-\beta)} & \left(0 \leqq \beta \leqq \frac{1}{2}\right) \\ 2(1-\beta) & \left(\frac{1}{2} \leqq \beta<1\right),\end{cases}
$$

and

$$
\left|b_{2}\right| \leqq \frac{2(1-\beta)}{2 \lambda+1}+\frac{8(1-\beta)^{3}}{2 \lambda+1}
$$

Remark 11. Corollary 6 improves the estimates of the Taylor-Maclaurin coefficients $\left|b_{0}\right|$ and $\left|b_{1}\right|$ in Theorem 1 of Srivastava et al. [31]. In fact, it also provides an improvement of the known estimate of the Taylor-Maclaurin coefficient $\left|b_{2}\right|$ of functions in the subclass $\Sigma_{B^{*}}(\lambda, \beta)$.

Remark 12. In his recently-published survey-cum-expository review article, Srivastava [39] demonstrated how the theories of the basic (or q-) calculus and the fractional q-calculus have significantly encouraged and motivated further developments in Geometric Function Theory of Complex Analysis (see, for example, [8,40-42]). This direction of research is applicable also to the results which we have presented in this article. However, as pointed out by Srivastava [39] (p.340), any further attempts to easily (and possibly trivially) translate the suggested q-results into the corresponding (p, q)-results (with $0<|q|<p \leqq 1$) would obviously be inconsequential because the additional parameter p is redundant.

Author Contributions: All three authors contributed equally to this investigation. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188-1192. [CrossRef]
2. Çağlar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694-706. [CrossRef]
3. Srivastava, H.M.; Bansal, D. Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 2015, 23, 242-246. [CrossRef]
4. Srivastava, H.M.; Bulut, S.; Çağlar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831-842. [CrossRef]
5. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afrika Mat. 2017, 28, 693-706. [CrossRef]
6. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. Acta Math. Sci. Ser. B Engl. Ed. 2016, 36, 863-871. [CrossRef]
7. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions. Acta Univ. Apulensis Math. Inform. 2015, 23, 153-164.
8. Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babeş-Bolyai Math. 2018, 63, 419-436. [CrossRef]
9. Srivastava, H.M.; Sakar, F.M.; Ö. Güney, H. Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination. Filomat 2018, 34, 1313-1322. [CrossRef]
10. Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J. 2014, 7, 1-10. [CrossRef]
11. Srivastava, H.M.; Sümer Eker, S.; Ali, R.M. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015, 29, 1839-1845. [CrossRef]
12. Srivastava, H.M.; Sümer Eker, S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149-157. [CrossRef]
13. Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric biunivalent functions defined by a linear combination. Kyungpook Math. J. 2019, 59, 493-503.
14. Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. Surveys Math. Appl. 2021, 16, 193-205.
15. Zireh, A.; Adegani, E.A.; Bulut, S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination. Bull. Belg. Math. Soc. Simon Stevin 2016, 23, 487-504. [CrossRef]
16. Zireh, A.; Adegani, E.A.; Bidkham, M. Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. Math. Slovaca 2018, 68, 369-378. [CrossRef]
17. Panigrahi, T. Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions. Bull. Korean Math. Soc. 2013, 50, 1531-1538. [CrossRef]
18. Schober, G. Coefficients of inverses of meromorphic univalent functions. Proc. Am. Math. Soc. 1977, 67, 111-116. [CrossRef]
19. Xiao, H.-G.; Xu, Q.-H. Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions. Filomat 2015, 29, 1601-1612. [CrossRef]
20. Faber, G. Über polynomische Entwickelungen. Math. Ann. 1903, 57, 389-408. [CrossRef]
21. Airault, H.; Bouali, A. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179-222. [CrossRef]
22. Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 2002, 126, 343-367. [CrossRef]
23. Todorov, P.G. On the Faber polynomials of the univalent functions of class Σ. J. Math. Anal. Appl. 1991, 162, 268-276. [CrossRef]
24. Schiffer, M. Sur un probléme déxtrémum de la représentation conforme. Bull. Soc. Math. Fr. 1938, 66, 48-55.
25. Duren, P.L. Coefficients of meromorphic schlicht functions. Am. Math. Soc. 1971, 28, 169-172. [CrossRef]
26. Janani, T.; Murugusundaramoorthy, G. Coefficient estimates of meromorphic bi-starlike functions of complex order. Int. J. Anal. Appl. 2014, 4, 68-77.
27. Orhan, H.; Magesh, N.; Balaji, V.K. Initial coefficient bounds for certain classes of Meromorphic bi-univalent functions. Asian-Eur. J. Math. 2014, 7, 1-9. [CrossRef]
28. Motamednezhad, A.; Salehian, S. Faber polynomial coefficient estimates for certain subclass of meromorphic bi-univalent functions. Commun. Korean Math. Soc. 2018, 33, 1229-1237. [CrossRef]
29. Salehian, S.; Zireh, A. Coefficient estimate for certain subclass of meromorphic and bi-univalent functions. Commun. Korean Math. Soc. 2017, 32, 389-397. [CrossRef]
30. Zireh, A.; Salehian, S. Initial coefficient bounds for certain class of meromorphic bi-univalent functions. Acta Univ. Sapient. Math. 2019, 11, 224-235. [CrossRef]
31. Srivastava, H.M.; Joshi, S.B.; Joshi, S.S.; Pawar, H. Coefficient estimates for certain subclasses of meromorphically bi-univalent functions. Palest. J. Math. 2016, 5, 250-258.
32. Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Faber polynomials coefficient estimates for meromorphic bi-starlike functions. Int. J. Math. Math. Sci. 2013, 2013, 498159. [CrossRef]
33. Jahangiri, J.M.; Hamidi, S.G. Coefficients of meromorphic bi-Bazilevič functions. J. Complex Anal. 2014, 2014, 63917. [CrossRef]
34. Srivastava, H.M.; Motamednezhad, A.; Adegan, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [CrossRef]
35. Srivastava, H.M.; Murugusundaramoorthy, G.; El-Deeb, S.M. Faber polynomial coefficient estmates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type. J. Nonlinear Var. Anal. 2021, 5, 103-118.
36. Bouali, A. Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions. Bull. Sci. Math. 2006, 130, 49-70. [CrossRef]
37. Pommerenke, C. Univalent Functions, 1st ed.; Vandenhoeck und Ruprecht: Göttingen, Germany, 1975.
38. Hamidi, S.G.; Janani, T.; Murugusundaramoorthy, G.; Jahangiri, J.M. Coefficient estimates for certain classes of meromorphic bi-univalent functions. C. R. Acad. Sci. Paris. Ser. I 2014, 352, 277-282. [CrossRef]
39. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327-344. [CrossRef]
40. Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, H.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024-1039. [CrossRef]
41. Srivastava, H.M.; Altınkaya, S.; Yalcin, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018, 32, 503-516. [CrossRef]
42. Srivastava, H.M.; El-Deeb, S.M. The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution. AIMS Math. 2020, 5, 7087-7106. [CrossRef]
