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Abstract: In this manuscript, a new three-step iterative scheme to approximate fixed points in the
setting of Busemann spaces is introduced. The proposed algorithms unify and extend most of the
existing iterative schemes. Thereafter, by making consequent use of this method, strong and ∆-
convergence results of mappings that satisfy the condition (Eµ) in the framework of uniformly convex
Busemann space are obtained. Our results generalize several existing results in the same direction.
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1. Introduction

Throughout this paper,R,R+, and f℘ denote the set of all real numbers, positive real
numbers, and fixed points of the mapping ℘, respectively.

The fixed point theory is considered one of the most powerful analytical techniques in
mathematics, especially in nonlinear analysis, where it plays a prominent role in algorithm
technology. The purpose of investing in algorithms is to obtain the best algorithms with
a faster convergence rate, because the lower the convergence rate, the faster the speed of
obtaining the solution. This is probably the drawback of using the iterative methods.

It should be noted that the Mann iteration converges faster than the Ishikawa iteration
for the class of Zamfirescu operators [1], and hence the convergence behavior of proclaimed
and empirically proven faster iterative schemes need not always be faster. There was
extensive literature on proclaimed new and faster iteration schemes in ancient times.
Some of the iteration schemes are undoubtedly better versions of previously existed
iteration schemes, whereas a few are only the special cases. There are more than twenty
iteration schemes in the present literature. Our analysis’s focal objective is to unify the
existing results in the framework of Busemann spaces (see [2] for the precise definitions
and properties of Busemann spaces). This analysis has a special significance in terms of
unification, and numerous researchers have intensively investigated various aspects of it.

Apart from Picard, Mann, and Ishikawa, many iterative schemes with better conver-
gence rates are obtained; see, for example, [3–11]. In many cases, these algorithms cannot
obtain strong convergence; therefore, it was necessary to investigate new effective algo-
rithms. Recently, several authors were able to apply the strong convergence of algorithms,
see [12–16].

Recall that a metric space (B, ∂) is called a geodesic path (or simply a geodesic [17]) in B
if there is a path γ : [a, b]→ B, such that γ is an isometry for [a, b] ⊂ [0, ∞). A geodesic ray
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is an isometry γ : R+ → B, and a geodesic line is an isometry γ : R → B. For more details
about geodesic path in metric fixed point theory, see [18–24].

Definition 1 ([17]). Let (B, ∂) be a metric space and , ` ∈ B. A geodesic path joining  to ` is a
mapping γ : [α, β] ⊆ R+ → B such that γ(α) = , γ(β) = ` and

∂(γ(t), γ(t′)) = |t− t′|

for all t, t′ ∈ [α, β]. Particularly, γ is an isometry and ∂(, `) = β− α.
A geodesic segment joining  and ` in B is the image of a geodesic path in B. The space B is

said to be a geodesic space, if every two points of  are joined by a geodesic.

Definition 2 ([17]). A metric space B is said to be a geodesic space if given two arbitrary points
of B there exists a geodesic path that joins them.

Definition 3 ([17]). The geodesic metric space (B, ∂) is said to be Busemann space, if for any
two affinely reparametrized geodesices γ : [α, β] → B and γ′ : [α′, β′] → B, the map Dγ.γ′ :
[α, β]× [α′, β′]→ R defined by

Dγ.γ′(t, t′) = ∂(γ(t), γ′(t′))

is a convex; that is, the metric of Busemann space is convex. In a Busemann space the geodesic
joining any two points is unique.

Proposition 1 ([25]). In such spaces, the hypotheses below hold:

(1) ∂(ε, (1− α)⊕ α`) ≤ (1− α)∂(ε, ) + α∂(ε, `),
(2) ∂((1− α)⊕ α`), (1− α′)⊕ α′`) = |α− α′|∂(, `),
(3) (1− α)⊕ α` = α`⊕ (1− α),
(4) ∂((1− α)⊕ αε, ((1− α)`⊕ αω)) ≤ (1− α)∂(, `) + α∂(ε, ω),

where , `, ε, ω ∈ B and α, α′ ∈ [0, 1].

Busemann spaces are also hyperbolic spaces, which were introduced by Kohlen-
bach [26]. Further, B is said to be uniquely geodesic [17] if there is exactly one geodesic
joining  and ` for each , ` ∈ B.

Definition 4 ([17]). Suppose that B is a uniquely geodesic space and γ([α, β]) is a geodesic
segment joining  and ` and α ∈ [0, 1]. Then,

ε = γ((1− α) + α`)

will be a unique point in γ([α, β]) satisfying

∂(ε, ) = α∂(, `)

and
∂(ε, `) = (1− α)∂(, `).

In the sequel, the notation [, `] is used for geodesic segment γ([α, β]) and ε is denoted
by (1− α) ⊕ α`. A subset κ ⊆ B is said to be geodesically convex if κ includes every
geodesic segment joining any two of its points. Let B be a geodesic metric space and
℘ : B → R. We say that ℘ is convex if for every geodesic path γ : [α, β] → B, the map
℘ ◦ γ : [α, β] → is a convex. It is known that if ℘ : B → R is a convex function and
℘′ : B → R is an increasing convex function, then ℘′ ◦ ℘ : B → R is convex.

We now introduce our algorithm.
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Let B be a complete Busemann space, Bs be a nonempty convex subset of B and
℘ : Bs → Bs be a mapping. For any υ0 ∈ Bs,

`η = τ0
η υη ⊕ κ0

η℘υη ⊕ ι0η η ⊕ω0
η℘η ,

η = τ1
η υη ⊕ κ1

η℘υη ⊕ ι1η`η ⊕ω1
η℘`η ,

υn+1 = τ2
η υη ⊕ κ2

η℘υη ⊕ ι2η η ⊕ω2
η℘η ⊕ εη`η ⊕ ση℘`η ,

where {εη}, {ση}, {τi
η}, {κi

η}, {ιiη} and {ωi
η} for i = 0, 1, 2 are sequences in [0, 1]. Moreover,

τ0
η + κ0

η + ι0η + ω0
η = 1, τ1

η + κ1
η + ι1η + ω1

η = 1 and τ2
η + κ2

η + ι2η + εη + ση = 1.

Remark 1. For distinct values of εη , {ση}, τi
η , κi

η , ιiη and ωi
η for i = 0, 1, 2, we have well-known

distinct iteration schemes as follows:

(R1) ι0η = ω0
η = ι1η = κ1

η = ι2η = κ2
η = εη = ση = 0, τ0

η = (1 − κ0
η), τ1

η = (1 − ω1
η),

τ1
η = (1− ω2

η) in the standard three-step iteration scheme, we obtain the Noor iterative
scheme [27].

(R2) ι0η = ω0
η = ι1η = τ1

η = κ1
η = ι2η = ω2

η = εη = ση = 0, τ0
η = (1− κ0

η), ι1η = (1− ω1
η)

and ι2η = (1− ω2
η) in the standard three-step iteration scheme, we obtain the SP iterative

scheme [28].
(R3) ι0η = ω0

η = ι1η = τ1
η = κ1

η = τ2
η = ι2η = ω2

η = εη = ση = 0, ι0η = (1− κ0
η), κ1

η = (1−ω1
η)

and κ2
η = 1 in the standard three-step iteration scheme, we obtain the Picard-S iterative

scheme [29].
(R4) τ0

η = κ0
η = ι0η = ω0

η = ι1η = ω1
η = τ2

η = κ2
η = εη = ση = 0 and τ0

η = (1 − κ0
η),

κ1
η = (1−ω1

η) and ι2η = (1−ω2
η) in the standard three-step iteration scheme, we obtain the

CR iterative scheme [30].
(R5) τ0

η = κ0
η = ι1η = τ1

η = τ2
η = ι2η = εη = ση = 0, τ1

η = (1− κ1
η), κ1

η = (1− ω1
η) in the

standard three-step iteration scheme, we obtain the Abbas and Nazir iterative scheme [31].
(R6) ι0η = ω0

η = τ1
η = κ1

η = κ2
η = ι2η = ω2

η = εη = 0, τ0
η = (1 − κ0

η), ι1η = (1 − ω1
η)

and σ2
η = (1− ω2

η) in the standard three-step iteration scheme, we obtain the P iterative
scheme [32].

(R7) ι0η = ω0
η = τ1

η = ι1η = κ2
η = ι2η = τ2

η = εη = 0, τ0
η = (1 − κ0

η), κ1
η = (1 − ω1

η)

and σ2
η = (1− ω2

η) in the standard three-step iteration scheme, we obtain the D iterative
scheme [33].

(R8) ι0η = ω0
η = τ0

η = κ0
η = ι1η = ω1

η = τ1
η = κ1

η = ω2
η = ι2η = εη = 0, τ2

η = (1− κ2
η) in the

standard three-step iteration scheme, we obtain the Mann iterative scheme [34].
(R9) ι0η = ω0

η = τ0
η = κ0

η = ι1η = ω1
η = κ2

η = ι2η = εη = ση = 0, τ1
η = (1 − κ1

η) and
τ2

η = (1−ω2
η) in the standard three-step iteration scheme, we obtain the Ishikawa iterative

scheme [35].

2. Preliminaries

In this section, we present some relevant and essential definitions, lemmas, and
theorems needed in the sequel.

Definition 5 ([36]). The Busemann space B is called uniformly convex if for any ζ > 0 and
ε ∈ (0, 2], there exists a map δ such that for every three points α, , ` ∈ B, ∂(, α) ≤ ζ, ∂(`, α) ≤ ζ
and ∂(, `) ≥ εζ implies that

∂(m, α) ≤ (1− δ)ζ,

where m denotes the midpoint of any geodesic segment [, `] (i.e., m = 1
2 ⊕ 1

2 `) and inf{δ : ζ > 0}.
A mapping ℘ : (0, ∞)× (0, 2]→ (0, 1] is called a modulus of uniform convexity, for ℘(η, ε) := δ
and for a given η > 0, ε ∈ (0, 2].

Henceforth, the uniform convexity modulus with a decreasing modulus concerning
η (for a fixed ε) is termed as the uniform convexity monotone modulus. The subsequent



Axioms 2021, 10, 26 4 of 11

lemmas and geometric properties, which are instrumental throughout the discussion to
learn about essential terms of Busemann spaces, are necessary to achieve our significant
findings and are as follows:

Lemma 1. If ℘ is a mapping satisfying condition (E) and has a fixed point then it is a quasi-
nonexpansive mapping.

Let Bs be a nonempty closed convex subset of a Busemann space B, and let {η} be a
bounded sequence in B. For  ∈ B, we set

ζ(, {η}) = lim sup
η→∞

||η − ||.

The asymptotic radius of ζ({η} is given by

ζ(Bs, {η}) = inf{ζ(, {η}) :  ∈ Bs}

and the asymptotic center A({η}) of {η} relative to Bs is the set

A(Bs, {η}) = { ∈ Bs : ζ(, η) = ζ(Bs, {η})}.

It is known that, in a Busemann space, A({η}) consists of exactly one point [37].
Recall that a bounded sequence {η} ∈ B is said to be regular [38], if ζ({η}) =

ζ({ηk}) for every subsequence {ηk} of {η}.

Lemma 2 ([4]). Let B be a Busemann space and  ∈ B, {tn} a sequence in [b, c], for some
b, c ∈ (0, 1). If {η} and {`η} are sequences in B satisfying

lim sup
η→∞

∂(η , ) ≤ r

also,
lim sup

η→∞
∂(`η , `) ≤ r

and
lim sup

η→∞
∂(tη η ⊕ (1− tη)`η , ) = r,

for some r ≥ 0, then
lim

η→∞
∂(η , `η) = 0.

Lemma 3 ([5]). If Bs is a closed convex subset of a uniformly convex Busemann space B and {η}
is a bounded sequence in Bs, then the asymptotic center of {η} belongs to Bs.

Lemma 4 ([38]). Let B be a Busemann space, {η} be a bounded sequence in B and Bs be a subset
of B. Then {η} has a subsequence, which is regular in Bs.

Definition 6 ([38]). A sequence {η} in Busemann space B is said to be ∆− convergent if there
exists some  ∈ B such that  is the unique asymptotic center of ηk for every subsequence {ηk} of
{η}. In this case we write ∆− limη→∞ η =  and it is called the ∆− lim of {η}.

Lemma 5 ([21]). Every bounded sequence in a complete Busemann space always has a ∆ −
convergent subsequence.

Lemma 6 ([21]). Suppose that Bs is a closed convex subset of a Busemann space B and ℘ : Bs → B
satisfies the condition (E ). Then {η}, ∆− converges to  and ∂(℘η , η)→ 0, implying that  ∈ Bs
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and ℘ = .

Definition 7. Assume that Bs 6= ∅ is a subset of a Busemann space B. For , ` ∈ Bs, a mapping
℘ : Bs → Bs is called:

(i) Contraction if there is µ ∈ (0, 1) so that ∂(℘,℘`) ≤ µ∂(, `),
(ii) Nonexpansive if ∂(℘,℘`) ≤ ∂(, `),
(iii) Quasi-nonexpansive if ∂(℘,κ) ≤ ∂(,κ), κ ∈ F(℘) and F(℘) denote the set {κ ∈ B :

κ = ℘κ}.
(iv) Satisfy Condition (E) if

1
2

∂(,℘) ≤ ∂(, `)⇒ ∂(℘,℘`) ≤ ∂(, `).

(v) Suzuki generalized nonexpansive if it verifies Condition (E).

Garcia-Falset et al. [6] introduced the generalization for nonexpansive mappings
known as condition (Eµ).

Definition 8 ([6]). Let µ ≥ 1. A mapping ℘ : Bs → Bs is said to satisfy condition (Eµ) if for all
, ` ∈ Bs, we have

∂(,℘`) ≤ µ∂(,℘) + ∂(, `).

We say that ℘ satisfies condition (E), if ℘ satisfies condition (Eµ) for some µ ≥ 1 [39].

Theorem 1. Let Cs be a nonempty bounded, closed and convex subset of a complete CAT(0) space
C. If ℘ : Cs → Cs is a generalized nonexpansive mapping, then ℘ has a fixed point in Cs. Moreover,
f℘ is closed and convex.

3. Main Results

We begin this section with the proof of the following lemmas:

Lemma 7. Let Bs be a nonempty closed convex subset of a complete Busemann space B, and let
℘ : Bs → Bs be a mapping satisfying condition (Eµ). For an arbitrary chosen υ0 ∈ Bs, let the
sequence {υη} be generated by a standard three-step iteration algorithm with the condition

((τ1
η + κ1

η) + (ι1η + ω1
η)(τ

0
η + κ0

η))(1− (ι1η + ω1
η)(ι

0
η + ω0

η))
−1 ≤ 1

and
(τ2

η + κ2
η + ι2η + ω2

η + (εη + ση)(τ
0
η + κ0

η + ι0η + ω0
η)) ≤ 1.

Then, limn→∞ ∂(υη , υ∗) exists for all υ∗ ∈ f℘.

Proof. Let υ∗ ∈ f℘ and z ∈ Bs. Since ℘ satisfies condition (Eµ), and hence

∂(υ∗,℘) ≤ µ∂(υ∗,℘υ∗) + ∂(υ∗, ).

From standard three-step iteration algorithm, we have

∂(`η , υ∗) = ∂(τ0
η υη ⊕ κ0

η℘υη ⊕ ι0η η ⊕ω0
η℘η , υ∗)

≤ τ0
η ∂(υη , υ∗) + κ0

η(µ∂(υ∗,℘υ∗) + ∂(υ∗, υn)) + ι0η∂(η , υ∗) + ω0
η(µ∂(υ∗,℘υ∗) + ∂(υ∗, n))

≤ τ0
η ∂(υη , υ∗) + κ0

η∂(υη , υ∗) + ι0η∂(η , υ∗) + ω0
η∂(η , υ∗)

= (τ0
η + κ0

η)∂(υη , υ∗) + (ι0η + ω0
η)∂(η , υ∗).

Also,
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∂(η , υ∗) = ∂(τ1
η υη ⊕ κ1

η℘υη ⊕ ι1η`η ⊕ω1
η℘`η , υ∗)

≤ τ1
η ∂(υη , υ∗) + κ1

η∂(℘υη , υ∗) + ι1η∂(`η , υ∗) + ω1
η∂(℘`η , υ∗)

≤ τ1
η ∂(υη , υ∗) + κ1

η(µ∂(υ∗,℘υ∗) + ∂(υ∗, υn)) + ι1η∂(`η , υ∗) + ω1
η(µ∂(υ∗,℘υ∗) + ∂(υ∗, `n))

= (τ1
η + κ1

η)∂(υη , υ∗) + (ι1η + ω1
η)∂(`η , υ∗).

Using the value of ∂(`η , υ∗), we have

∂(η , υ∗) ≤ (τ1
η + κ1

η)∂(υη , υ∗) + (ι1η + ω1
η)((τ

0
η + κ0

η)∂(υη , υ∗) + (ι0η + ω0
η)∂(η , υ∗))

≤ ((τ1
η + κ1

η) + (ι1η + ω1
η)(τ

0
η + κ0

η))∂(υη , υ∗) + (ι1η + ω1
η)(ι

0
η + ω0

η)∂(η , υ∗)

∂(η , υ∗) ≤
(
(τ1

η + κ1
η) + (ι1η + ω1

η)(τ
0
η + κ0

η)

1− (ι1η + ω1
η)(ι

0
η + ω0

η)

)
∂(υη , υ∗).

Since ((τ1
η + κ1

η) + (ι1η + ω1
η)(τ

0
η + κ0

η))(1− (ι1η + ω1
η)(ι

0
η + ω0

η))
−1 ≤ 1, we have

∂(η , υ∗) ≤ ∂(υη , υ∗).

Now,

∂(υn+1, υ∗) ≤ ∂(τ2
η υη ⊕ κ2

η℘υη ⊕ ι2η η ⊕ω2
η℘η ⊕ εη`η ⊕ ση℘`η , υ∗)

≤ τ2
η ∂(υη , υ∗) + κ2

η∂(℘υη , υ∗) + ι2η∂(η , υ∗) + ω2
η∂(℘η , υ∗) + εη∂(`η , υ∗) + ση∂(℘`η , υ∗)

≤ τ2
η ∂(υη , υ∗) + κ2

η(µ∂(℘υ∗, υ∗) + ∂(υη , υ∗)) + ι2η∂(η , υ∗) + ω2
η(µ∂(℘υ∗, υ∗) + ∂(η , υη))

+ εη∂(`η , υ∗) + ση(µ∂(℘υ∗, υ∗) + ∂(`η , υ∗))

≤ (τ2
η + κ2

η)∂(υη , υ∗) + (ι2η + ω2
η)∂(η , υ∗) + (εη + ση)∂(`η , υ∗).

Since
∂(η , υ∗) ≤ ∂(υη , υ∗),

we have

∂(υn+1, υ∗) ≤ (τ2
η + κ2

η + ι2η + ω2
η)∂(υη , υ∗) + (εη + ση)∂(`η , υ∗).

On substituting

∂(`η , υ∗) = (τ0
η + κ0

η)∂(υη , υ∗) + (ι0η + ω0
η)∂(η , υ∗),

we have

∂(υn+1, υ∗) ≤ (τ2
η + κ2

η + ι2η + ω2
η)∂(υη , υ∗) + ((εη + ση)× (τ0

η + κ0
η)∂(υη , υ∗) + (ι0η + ω0

η)∂(η , υ∗))

≤ (τ2
η + κ2

η + ι2η + ω2
η)∂(υη , υ∗) + (εη + ση)(τ

0
η + κ0

η + ι0η + ω0
η)∂(υη , υ∗)

= (τ2
η + κ2

η + ι2η + ω2
η + (εη + ση)(τ

0
η + κ0

η + ι0η + ω0
η))∂(υη , υ∗).

Also, it is given that

(τ2
η + κ2

η + ι2η + ω2
η + (εη + ση)(τ

0
η + κ0

η + ι0η + ω0
η)) ≤ 1,

we have

∂(υn+1, υ∗) ≤ ∂(υη , υ∗).

This implies that {∂(υη , υ∗)} is bounded and non-increasing for all υ∗ ∈ f℘. Hence,
limn→∞ ∂(υη , υ∗) exists, as required.
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Lemma 8. Let Bs be a nonempty closed convex subset of complete Busemann space B, and
℘ : Bs → Bs be a mapping satisfying condition (Eµ). For an arbitrary chosen υ0 ∈ Bs, let the
sequence {υη} be generated by a standard three-step iteration algorithm. Then, f℘ is nonempty if
and only if {υη} is bounded and limn→∞ ∂(℘υη , υη) = 0 for a unique asymptotic center.

Proof. Since f℘ 6= ∅, let υ∗ ∈ f℘ and z ∈ Bs. Using Lemma 7, there is an existence of
limn→∞ ∂(υη , υ∗), which confirms the boundedness of {υη}. Assuming

lim
n→∞

∂(υη , υ∗) = r,

on combining this result with the values of ∂(η , υ∗) and ∂(`η , υ∗) of Lemma 7

lim sup
n→∞

∂(`η , υ∗) ≤ lim sup
n→∞

∂(υη , υ∗) = r. (2.1)

Also,

lim sup
n→∞

∂(℘υη , υ∗) = lim sup
n→∞

(µ∂(℘υ∗, υ∗) + ∂(υη , υ∗))

≤ lim sup
n→∞

∂(υη , υ∗)

= r.

On the other hand, by using the value of ∂(`η , υ∗) of Lemma 7, we have

∂(υn+1, υ∗) ≤ ∂(τ2
η υη ⊕ κ2

η℘υη ⊕ ι2η η ⊕ω2
η℘η ⊕ εη`η ⊕ σ℘`η , υ∗)

≤ τ2
η ∂(υη , υ∗) + κ2

η∂(℘υη , υ∗) + ι2η∂(η , υ∗) + ω2
η∂(℘η , υ∗)

+ εη∂(`η , υ∗) + ση∂(℘`η , υ∗)

≤ τ2
η ∂(υη , υ∗) + κ2

η(µ∂(℘υ∗, υ∗) + ∂(υη , υ∗)) + ι2η∂(η , υ∗) + ω2
η(µ∂(℘υ∗, υ∗)

+ ∂(η , υ∗)) + εη∂(`η , υ∗) + ση(µ∂(℘υ∗, υ∗) + ∂(`n, υ∗))

≤ (τ2
η + κ2

η + ι2η + ω2
η)∂(υη , υ∗) + (εη + ση)∂(`η , υ∗)

≤ (τ2
η + κ2

η + ι2η + ω2
η)∂(υη , υ∗) + (εη + ση)∂(`η , υ∗),

by the above-mentioned standard three-step iteration algorithm,

∂(υn+1, υ∗) ≤ (1− (εη + ση))∂(υη , υ∗) + (εη + ση)∂(`η , υ∗)

≤ ∂(υη , υ∗)− (εη + ση)∂(υη , υ∗) + (εη + ση)∂(`η , υ∗).

This implies that,

∂(υn+1, υ∗) ≤ ∂(υη , υ∗)− (εη + ση)∂(υη , υ∗) + (εη + ση)∂(`η , υ∗).

≤ ∂(υη , υ∗) + (εη + ση)(∂(`η , υ∗)− ∂(υη , υ∗)).

∂(υn+1, υ∗)− ∂(υη , υ∗) ≤ (εη + ση)(∂(`η , υ∗)− ∂(υη , υ∗)).

∂(υn+1, υ∗)− ∂(υη , υ∗)

(εη + ση)
≤ (∂(`η , υ∗)− ∂(υη , υ∗)).

This implies that,

∂(υn+1, υ∗)− ∂(υη , υ∗) ≤
∂(υn+1, υ∗)− ∂(υη , υ∗)

(εη + ση)
≤ (∂(`η , υ∗)− ∂(υη , υ∗))

and hence, we have

∂(υn+1, υ∗) ≤ ∂(`η , υ∗).
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Therefore,

r ≤ lim
n→∞

∂(`η , υ∗). (2.2)

By using Equations (2.1) and (2.2), we have

r = lim
n→∞

∂(`η , υ∗)

= lim
n→∞

∂(τ0
η υη ⊕ κ0

η℘υη ⊕ ι0η η ⊕ω0
η℘η , υ∗)

= lim
n→∞

(∂(τ0
η υη + κ0

η℘υη , υ∗) + (ι0η + ω0
η)∂(η , υ∗))

= lim
n→∞

((τ0
η + ι0η + ω0

η)∂(υη , υ∗) + κ0
η∂(℘υη , υ∗))

= lim
n→∞

((τ0
η + ι0η + ω0

η)∂(υη , υ∗) + κ0
η(µ∂(℘υ∗, υ∗) + ∂(υη , υ∗)))

= lim
n→∞

((1− κ0
η)∂(υη , υ∗) + κ0

η∂(υη , υ∗)).

= lim
n→∞

∂(υη , υ∗). (2.3)

Using Equations (2.1) and (2.3) and the above-mentioned inequalities, we have

lim sup
n→∞

∂(`η , υ∗) ≤ lim sup
n→∞

∂(υη , υ∗) = r,

and hence, by Lemma 2, we have

lim
n→∞

∂(℘υη , υη) = 0.

Conversely, suppose that {υη} is bounded and limn→∞ ∂(℘υη , υη) = 0. Then, by
Lemma 4 {υη} has a subsequence that is regular with respect to Bs. Let υ{ηκ} be a
subsequence of {υη} in such a way that A(Bs, {υη}) = υ. Hence, we have

lim sup
n→∞

∂(υη ,℘υ∗) ≤ lim sup
n→∞

(µ∂(υη ,℘υη) + ∂(υη , υ))

≤ lim sup
n→∞

∂(υη , υ)

As a consequence, the uniqueness of the asymptotic center ensures that υ is a fixed
point of ℘ so this concludes the proof.

Now, we state and prove our main theorems in this section.

Theorem 2. Let Bs be a nonempty closed convex subset of a compete Busemann space B and
℘ : Bs → Bs be a mapping satisfying condition (Eµ). For an arbitrary chosen υ0 ∈ Bs, assume
that {υη} is a sequence generated by a standard three-step iteration algorithm. Then f℘ 6= ∅ and
{υη} ∆−converges to a fixed point of ℘.

Proof. Since f℘ 6= ∅, so by Lemma 8, we have bounded {υη} and

lim
n→∞

∂(℘υη , υη) = 0.

Also, let
ωω{υη} :=

⋃
A(υηκ )

where the union is taken over all subsequences {υηκ} of {υη}. We claim that ωω{υη} ⊂
f℘. Considering υ∗ ∈ ωω{υη}, then there is an existence of subsequence {υηκ} of {υη}
in such a way that A({υη}) = {υ∗}. Using Lemmas 3 and 5 there is an existence of
subsequence {υ′ηκ

} of {υηκ} in such a way that ∆ − limη→∞{υ′ηκ
} = υ′∗ ∈ Bs. Since

limη→∞ ∂(υ′ηκ
,℘υ′ηκ

) = 0, then by Lemma 6 υ′ ∈ f℘. We claim that υ∗ = υ′∗. In contrast,
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since ℘ is a mapping satisfying condition (E) and υ∗ ∈ f℘, then by Lemma 7 there is an
existence of limη→∞ ∂(υη , υ∗). Using the uniqueness of asymptotic centers, we have

lim sup
n→∞

∂(υη , υ′∗) < lim sup
n→∞

∂(υ′ηκ
, υ∗)

≤ lim
n→∞

∂(υηκ , υ∗)

< lim
n→∞

∂(υ′ηκ
, υ′∗)

= lim
n→∞

∂(υη , υ′∗)

= lim
n→∞

∂(υ′ηκ
, υ′∗)

which is a contradiction. So υ′ηκ
= υηκ ∈ f℘. To prove that {υη} ∆−converges to a fixed

point of ℘, it is sufficient to show that ωω{υη} consists of exactly one point. Considering
a subsequence {υηκ} of {υη}. By Lemmas 3 and 5 there is existence of subsequence
{υ′ηκ
} of {υηκ}, which is how ∆ − limη→∞{υ′ηκ

} = υ′∗ ∈ Bs. Let A({υηκ}) = {υ∗} and
A({υη}) = υ∗∗. We can conclude the explanation by proving that υ∗∗ = υ∗. On the
contrary, since ∂(υη , υ′ηκ

) is convergent, then by the uniqueness of the asymptotic centers,
we have

lim sup
n→∞

∂(υη , υ′∗) < lim sup
n→∞

∂(υ′ηκ
, υ∗∗)

≤ lim
n→∞

∂(υη , υ∗∗)

< lim
n→∞

∂(υη , υ′∗)

= lim
n→∞

∂(υ′ηκ
, υ′∗)

which is a contradiction. Hence, f℘ 6= ∅ and {υη} ∆−converges to a fixed point of ℘.

Theorem 3. Let Bs be a nonempty closed convex and complete Busemann space B, and ℘ : Bs →
Bs be a mapping verification condition (Eµ). For an arbitrary chosen υ0 ∈ Bs, assume that {υη} is
a sequence generated by a standard three-step iteration algorithm. Then {υη} converges strongly to
a fixed point of ℘.

Proof. By Lemmas 7, 8 and Theorem 2, we have f℘ 6= ∅ so by Lemma 8 {υη} is bounded
and ∆−converges to υ ∈ f℘. Suppose on the contrary that {υη} does not converge strongly
to υ. By the compactness assumption, passing to subsequences if necessary, we may assume
that there exists υ′ ∈ Bs with υ′ 6= υ such that {υη} converges strongly to υ′. Therefore,

lim
n→∞

∂(℘υη , υ′) = 0 ≤ lim
n→∞

∂(℘υη , υ).

Since υ is the unique asymptotic center of {υη}, it follows that υ′ = υ, which is a
contradiction. Hence, {υη} converges strongly to a fixed point of ℘.

4. Conclusions

The extension of the linear version of fixed point results to nonlinear domains has its
own significance. To achieve the objective of replacing a linear domain with a nonlinear
one, Takahashi [40] introduced the notion of a convex metric space and studied fixed point
results of nonexpansive mappings in this direction. Since the standard three-step iteration
scheme unifies various existing iteration schemes for different values of εη , ση , τi

η , κi
η , ωi

η ,
and ιiη for i = 0, 1, 2, existing results of the standard three-step iteration scheme including
strong and ∆− convergence results in the setting of Busemann spaces satisfying condition
E are generalized.
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7. Ðukić, D.; Paunović, L.; Radenović, S. (). Convergence of iterates with errors of uniformly quasi-Lipschitzian mappings in cone

metric spaces. Kragujev. J. Math. 2011, 35, 399–410.
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