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Abstract: The novel coronavirus disease (COVID-19) pneumonia has posed a great threat to the
world recent months by causing many deaths and enormous economic damage worldwide. The
first case of COVID-19 in Morocco was reported on 2 March 2020, and the number of reported cases
has increased day by day. In this work, we extend the well-known SIR compartmental model to
deterministic and stochastic time-delayed models in order to predict the epidemiological trend of
COVID-19 in Morocco and to assess the potential role of multiple preventive measures and strategies
imposed by Moroccan authorities. The main features of the work include the well-posedness of the
models and conditions under which the COVID-19 may become extinct or persist in the population.
Parameter values have been estimated from real data and numerical simulations are presented for
forecasting the COVID-19 spreading as well as verification of theoretical results.

Keywords: COVID-19; coronaviruses; mathematical modeling; delayed stochastic differential equa-
tions (DSDEs)

1. Introduction

Coronaviruses are a large family of viruses that cause illnesses, ranging from the
common cold to more serious illnesses such as Middle Eastern Respiratory Syndrome
(MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). The new coronavirus
COVID-19 corresponds to a new strain that has not previously been identified in humans.
On 11 March 2020, COVID-19 was reclassified as a pandemic by the World Health Organi-
zation (WHO). The disease has spread rapidly from country to country, causing enormous
economic damage and many deaths around the world, prompting governments to issue a
dramatic decree, ordering the lockdown of entire countries.

Since the confirmation of the first case of COVID-19 in Morocco on 2 March 2020 in the
city of Casablanca, numerous preventive measures and strategies to control the spread of
diseases have been imposed by the Moroccan authorities. In addition, Morocco declared a
health emergency during the period from 20 March to 20 April 2020 and gradually extended
it until 10 June 2020 in order to control the spread of the disease. In this paper, we report
the assessment of the evolution of COVID-19 outbreak in Morocco. Besides shedding light
on the dynamics of the pandemic, the practical intent of our analysis is to provide officials
with the tendency of COVID-19 spreading, as well as gauge the effects of preventives
measures using mathematical tools. Several other papers developed mathematical models
for COVID-19 for particular regions in the globe and particular intervals of time, e.g., in [1]
a Susceptible–Infectious–Quarantined–Recovered (SIQR) model to the analysis of data
from the Brazilian Department of Health, obtained from 26 February 2020 to 25 March
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2020 is proposed to better understand the early evolution of COVID-19 in Brazil; in [2], a
new COVID-19 epidemic model with media coverage and quarantine is constructed on the
basis of the total confirmed new cases in the UK from 1 February 2020 to 23 March 2020;
while in [3] SEIR modelling to forecast the COVID-19 outbreak in Algeria is carried out by
using available data from 1 March to 10 April 2020.

Mathematical modeling, particularly in terms of differential equations, is a strong tool
that attracts the attention of many scientists to study various problems arising from me-
chanics, biology, physics, and so on. For instance, in [4], a system of differential equations
with density-dependent sublinear sensitivity and logistic source is proposed and blow up
properties of solutions are investigated; paper [5] presents a mathematical model with ap-
plication in civil engineering related to the equilibrium analysis of a membrane with rigid
and cable boundaries; [6] studies nonnegative and classical solutions to porous medium
problems; and [7] a two-dimensional boundary value problem under proper assumptions
on the data. Herein, we will focus on the dynamic of COVID-19. Tang et al. [8] used
a Susceptible–Exposed–Infectious–Recovered (SEIR) compartmental model to estimate
the basic reproduction number of COVID-19 transmission, based on data of confirmed
cases for the disease in mainland China. Wu et al. [9] provided an estimate of the size
of the epidemic in Wuhan on the basis of the number of cases exported from Wuhan to
cities outside mainland China by using a SEIR model. In [10], Kuniya applied the SEIR
compartmental model for the prediction of the epidemic peak for COVID-19 in Japan,
using real-time data from 15 January to 29 February, 2020. Fanelli and Piazza [11] analyzed
and forecasted the COVID-19 spreading in China, Italy and France, by using a simple
Susceptible–Infected–Recovered–Deaths (SIRD) model. A more elaborate model, which in-
cludes the transmissibility of super-spreader individuals, is proposed in Ndaïrou et al. [12].
The model we propose here is new and has completely different compartments: in the
paper [12], they model susceptible, exposed, symptomatic and infectious, super-spreaders,
infectious but asymptomatic, hospitalized, recovered and the fatality class, with the main
contribution being the inclusion of super-spreader individuals; in contrast, here we con-
sider susceptible individuals, symptomatic infected individuals, which have not yet been
treated, the asymptomatic infected individuals who are infected but do not transmit the
disease, patients diagnosed and under quarantine and subdivided into three categories—
benign, severe and critical forms—recovered and dead individuals. Moreover, our model
has delays, while the previous model [12] has no delays; our model is stochastic, while
the previous model [12] is deterministic. In fact, all mentioned models are deterministic
and neglect the effect of stochastic noises derived from environmental fluctuations. To
the best of our knowledge, research works that predict the COVID-19 outbreak taking
into account a stochastic component, are a rarity [13–15]. The novelty of our work is
twofold: the extension of the models cited above to a more accurate model with time delay,
suggested biologically in the first place; secondly, to combine between the deterministic
and the stochastic approaches in order to well-describe reality. To do this, Section 2 deals
with the formulation and the well-posedness of the models. Section 3 is devoted to the
qualitative analysis of the proposed models. Parameters estimation and forecast of COVID-
19 spreading in Morocco is presented in Sections 4 and 5, respectively. The paper ends
with discussion and conclusions, in Section 6.

2. Models Formulation and Well-Posedness

Based on the epidemiological feature of COVID-19 and the several strategies imposed
by the government, with different degrees, to fight against this pandemic, we extend the
classical SIR model to describe the transmission of COVID-19 in the Kingdom of Morocco.
In particular, we divide the population into eight classes, denoted by S, Is, Ia, Fb, Fg,
Fc, R and M, where S represents the susceptible individuals; Is the symptomatic infected
individuals, which have not yet been treated; Ia the asymptomatic infected individuals who
are infected but do not transmit the disease; Fb, Fg and Fc denote the patients diagnosed,
supported by the Moroccan health system and under quarantine, and subdivided into
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three categories: benign, severe and critical forms, respectively. Finally, R and M are the
recovered and fatality classes. This model satisfies the following assumptions:

(1) all coefficients involved in the model are positive constants;
(2) natural birth and death rate are not factors;
(3) true asymptomatic patients will stay asymptomatic until recovery and do not spread

the virus;
(4) patients who are temporarily asymptomatic are included on symptomatic ones;
(5) the second infection is not considered in the model;
(6) the Moroccan health system is not overwhelmed.

According to the above assumptions and the actual strategies imposed by the Moroc-
can authorities, the spread of COVID-19 in the population is modeled by the following
system of delayed differential equations (DDEs):





dS(t)
dt

= −β(1− u)
S(t)Is(t)

N
,

dIs(t)
dt

= βε(1− u)
S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t),

dIa(t)
dt

= β(1− ε)(1− u)
S(t− τ1)Is(t− τ1)

N
− ηa Ia(t),

dFb(t)
dt

= αγb Is(t− τ2)−
(
µb + rb

)
Fb(t),

dFg(t)
dt

= αγg Is(t− τ2)−
(
µg + rg

)
Fg(t),

dFc(t)
dt

= αγc Is(t− τ2)−
(
µc + rc

)
Fc(t),

dR(t)
dt

= ηs(1− α)Is(t− τ3) + ηa Ia(t− τ3) + rbFb(t− τ4) + rgFg(t− τ4) + rcFc(t− τ4),

dM(t)
dt

= µs(1− α)Is(t− τ3) + µbFb(t− τ4) + µgFg(t− τ4) + µcFc(t− τ4),

(1)

where t ∈ R+, N represents the total population size and u ∈ [0, 1] denotes the level of
the preventive strategies on the susceptible population. The parameter β indicates the
transmission rate and ε ∈ [0, 1] is the proportion for the symptomatic individuals. The
parameter α denotes the proportion of the diagnosed symptomatic infected population
that moves to the three forms: Fb, Fg and Fc, by the rates γb, γg and γc, respectively. The
mean recovery period of these forms are denoted by 1/rb, 1/rg and 1/rc, respectively. The
latter forms die also with the rates µb, µg and µc, respectively. Asymptomatic infected
population, which are not diagnosed, recover with rate ηa and the symptomatic infected
ones recover or die with rates ηs and µs, respectively. The time delays τ1, τ2, τ3 and τ4
denote the incubation period, the period of time needed before the charge by the health
system, the time required before the death of individuals coming from the compartments
Is, Fb, Fg, and Fc, respectively. At each instant of time,

D(t) =: µs(1− α)Is(t− τ3) + µbFb(t− τ4) + µgFg(t− τ4) + µcFc(t− τ4) =
dM(t)

dt
(2)

gives the number of new death due to the disease (cf. [12]).

Remark 1. In system (1), delays occur at the entrances, when the actions of infection take charge
or the actions by the health system begin, and not at exits. Let us see an example. A susceptible
individual, after contact with an infected person at instant t, becomes himself infected at instant
t + τ1. Suddenly, the compartment of the infected is fed at the instant t by the susceptible infected
at the instant t− τ1. The same operation occurs at the level of the other interactions between the
compartments of the model.
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Remark 2. We assume that the compartment of symptomatic infected Is does not completely
empty at any time t. For this reason, one has µs + ηs < 1. Note also that the diagnosed symp-
tomatic infected population is completely distributed into one of three possible forms: Fb, Fg and Fc,
respectively by the rates γb, γg and γc. Then, γb + γg + γc = 1.

Remark 3. Biologically, τ3 = 21 days and τ4 = 13.5 days are the time periods needed before dying,
deriving from Is and the three forms Fb, Fg, Fc, respectively. That is why we inserted these delays
in the last equation of system (1).

Remark 4. We consider only a short time period in comparison to the demographic time-frame.
From a biological point of view, this means that we can assume that there is neither entry (recruit-
ment rate) nor exit (natural mortality rate), and vital parameters can be neglected. Note also that
in our model, the individuals that die due to the disease are included in the population. Therefore,
the total population is here assumed to be constant, that is, N(t) ≡ N during the period under
study. This assumption is also reinforced by the fact that the Moroccan authorities have closed
geographic borders.

The initial conditions of system (1) are

S(θ) = ϕ1(θ) ≥ 0, Is(θ) = ϕ2(θ) ≥ 0, Ia(θ) = ϕ3(θ) ≥ 0,
Fb(θ) = ϕ4(θ) ≥ 0, Fg(θ) = ϕ5(θ) ≥ 0, Fc(θ) = ϕ6(θ) ≥ 0,
R(θ) = ϕ7(θ) ≥ 0, M(θ) = ϕ8(θ) ≥ 0, θ ∈ [−τ, 0],

(3)

where τ = max{τ1, τ2, τ3, τ4}. Let C = C([−τ, 0],R8) be the Banach space of continuous
functions from the interval [−τ, 0] into R8 equipped with the uniform topology. It follows
from the theory of functional differential equations [16] that system (1) with initial condi-
tions

(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8) ∈ C
has a unique solution. On the other hand, due to continuous fluctuation in the environment,
the parameters of the system are actually not absolute constants and always fluctuate ran-
domly around some average value. Hence, using delayed stochastic differential equations
(DSDEs) to model the epidemic provide some additional degree of realism compared to
their deterministic counterparts. The parameters β and α play an important role in control-
ling and preventing COVID-19 spreading and they are not completely known, but subject
to some random environmental effects. We introduce randomness into system (1) by ap-
plying the technique of parameter perturbation, which has been used by many researchers
(see, e.g., [17–19]). In agreement, we replace the parameters β and α by β → β + σ1Ḃ1(t)
and α→ α + σ2Ḃ2(t), where B1(t) and B2(t) are independent standard Brownian motions
defined on a complete probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the
usual conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets)
and σi represents the intensity of Bi for i = 1, 2. Therefore, we obtain the following model
governed by delayed stochastic differential equations:
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



dS(t) =

(
−β(1− u)

S(t)Is(t)
N

)
dt− σ1(1− u)

S(t)Is(t)
N

dB1(t),

dIs(t) =

(
βε(1− u)

S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t)

)
dt

+σ1

(
ε(1− u)

S(t− τ1)Is(t− τ1)

N

)
dB1(t) + σ2(µs + ηs − 1)Is(t)dB2(t),

dIa(t) =

(
β(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N
− ηa Ia(t)

)
d(t)

+σ1(1− ε)(1− u)
S(t− τ1)Is(t− τ1)

N
dB1(t),

dFb(t) =

(
αγb Is(t− τ2)−

(
µb + rb

)
Fb(t)

)
dt + σ2γb Is(t− τ2)dB2(t),

dFg(t) =

(
αγg Is(t− τ2)−

(
µg + rg

)
Fg(t)

)
dt + σ2γg Is(t− τ2)dB2(t),

dFc(t) =

(
αγc Is(t− τ2)−

(
µc + rc

)
Fc(t)

)
dt + σ2γc Is(t− τ2)dB2(t),

dR(t) =

(
ηs(1− α)Is(t− τ3) + ηa Ia(t− τ3) + rbFb(t− τ4) + rgFg(t− τ4) + rcFc(t− τ4)

)
dt

−σ2ηs Is(t− τ3)dB2(t),

dM(t) =
(
µs(1− α)Is(t− τ3) + µbFb(t− τ4) + µgFg(t− τ4) + µcFc(t− τ4)

)
dt

−σ2µs Is(t− τ3)dB2(t),

(4)

where the coefficients are locally Lipshitz with respect to all the variables, for all t ∈ R+.
Let us denote R8

+ = {(x1, x2, x3, x4, x5, x6, x7, x8) | xi > 0, i = 1, 2, . . . , 8}. We have
the following result.

Theorem 1. For any initial value satisfying condition (3), there is a unique solution

x(t) = (S(t), Is(t), Ia(t), Fb(t), Fg(t), Fc(t), R(t), M(t))

to the COVID-19 stochastic model (4) that remains in R8
+ with a probability of one.

Proof. Since the coefficients of the stochastic differential equations with several delays (4)
are locally Lipschitz continuous, it follows from [20] that for any square integrable ini-
tial value x(0) ∈ R8

+, which is independent of the considered standard Brownian mo-
tion B, there exists a unique local solution x(t) on t ∈ [0, τe), where τe is the explo-
sion time. For showing that this solution is global, knowing that the linear growth
condition is not verified, we need to prove that τe = ∞. Let k0 > 0 be sufficiently

large for
1
k0

< x(0) < k0. For each integer k ≥ k0, we define the stopping time

τk = inf
{

t ∈ [0, τe) s.t. xi(t) /∈
(

1
k

, k
)

for some i = 1, 2, 3
}

, where inf ∅ = ∞. It is clear

that τk ≤ τe. Let T > 0 be arbitrary. Define the twice differentiable function W on R∗3
+ → R+

as follows:
W(x) = (x1 + x2 + x3)

2 +
1
x1

+
1
x2

+
1
x3

.

By Itô’s formula, for any 0 ≤ t ≤ τk ∧ T and k ≥ 1, we have

dW(x(t)) = LW(x(t))dt + ζ(x(t))dB(t),
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where ζ is a continuous functional defined on [0,+∞)× C([−τ, 0],R3×2) by

ζ(x(t)) =




−σ1(1− u)
S(t)Is(t)

N
0

σ1ε(1− u)
S(t− τ1)Is(t− τ1)

N
σ2(µs + ηs − 1)Is(t)

σ1(1− ε)(1− u)
S(t− τ1)Is(t− τ1)

N
0




,

B(t) = (B1(t), B2(t))T with the superscript “T ” representing transposition, and L is the
differential operator of function W defined by

LW(x(t)) =
(

2(S(t) + Is(t) + Ia(t))−
1

S2(t)

)(
−β(1− u)

S(t)Is(t)
N

)

+

(
1 +

1
S3(t)

)(
−σ1(1− u)

S(t)Is(t)
N

)2

+

(
2(S(t) + Is(t) + Ia(t))−

1
I2
s (t)

)[
βε(1− u)

S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t)

]

+

(
1 +

1
I3
s (t)

)[(
σ1ε(1− u)

S(t− τ1)Is(t− τ1)

N

)2

+
(
σ2(µs + ηs − 1)Is(t)

)2
]

+

(
2(S(t) + Is(t) + Ia(t))−

1
I2
a (t)

)(
β(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N
− ηa Ia(t)

)

+

(
1 +

1
I3
a (t)

)(
σ1(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N

)2

.

Thus,

LW(x(t)) ≤ β(1− u)S(t)Is(t)
NS2(t)

+

(
1 +

1
S3(t)

)(
σ1(1− u)

S(t)Is(t)
N

)2

+ 2βε(1− u)
(
S(t) + Is(t) + Ia(t)

)S(t− τ1)Is(t− τ1)

N
+

α + (1− α)(µs + ηs)

Is(t)

+

(
1 +

1
I3
s (t)

)[(
σ1ε(1− u)

S(t− τ1)Is(t− τ1)

N

)2

+
(
σ2(µs + ηs − 1)Is(t)

)2
]

+ 2β(1− ε)(1− u)
(
S(t) + Is(t) + Ia(t)

)S(t− τ1)Is(t− τ1)

N

+
ηa

Ia(t)
+

(
1 +

1
I3
a (t)

)(
σ1(1− ε)(1− u)

S(t− τ1)Is(t− τ1)

N

)2

.

(5)

We now apply the elementary inequality 2xy ≤ x2 + y2, valid for any x, y ∈ R, by
firstly taking x = βε(1− u) and y = S(t) + Is(t) + Ia(t) and, secondly, x = β(1− ε)(1− u)
and y = S(t) + Is(t) + Ia(t). In this way, we easily increase the right-hand side of inequality
(5) to obtain that

LW(x(t)) ≤ b1 + ψ
(
S(t) + Is(t) + Ia(t)

)2
+

b2

S(t)
+

b3

Is(t)
+

b4

Ia(t)
≤ D(1 + W(x(t))),

where ψ, b1, b2, b3, and b4 are positive constants and D = max(ψ, b1, b2, b3, b4). By
integrating both sides of equality

dW(x(t)) = LW(x(t))dt + ζ(x(t))dB(t)
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between t0 and t ∧ τk and acting the expectation, which eliminates the martingale part,
we get

E(W(x(t ∧ τk)) = E(W(x0)) + E
∫ t∧τk

t0

LW(x(s)))ds

≤ E(W(x0)) + E
∫ t∧τk

t0

D(1 + W(x(s)))ds

≤ E(W(x0)) + DT +
∫ t∧τk

t0

EW(x(s)))ds

and Gronwall’s inequality implies that

E(W(x(t ∧ τk)) ≤ (EW(x0) + DT) exp(CT).

For ω ∈ {τk ≤ T}, xi(τk) equals k or
1
k

for some i = 1, 2, 3. Hence,

W(xi(τk)) ≥
(

k2 +
1
k

)
∧
(

1
k2 + k

)
.

It follows that

(EW(x0) + DT) exp(CT) ≥ E
(

χ{τk≤T}(ω)W(xτk )
)

≥
(

k2 +
1
k

)
∧
(

1
k2 + k

)
P(τk ≤ T).

Letting k→ ∞, we get P(τe ≤ T) = 0. Since T is arbitrary, we obtain P(τe = ∞) = 1.

By defining the stopping time τ̃k = inf
{

t ∈ [0, τe) s.t. xi(t) /∈
(

1
k

, k
)

for some i = 4, . . . , 8
}

,

and considering the twice differentiable function W̃ on R∗5
+ → R+ as

W̃(x) =

(
8

∑
i=4

xi

)2

+
8

∑
i=4

1
xi

,

we deduce, with the same technique, that all the variables of the system are positive on
[0, ∞).

3. Qualitative Analysis of the Models

The basic reproduction number, as a measure for disease spread in a population,
plays an important role in the course and control of an ongoing outbreak [21]. This
number is defined as the expected number of secondary cases produced, in a completely
susceptible population, by a typical infective individual. Note that the calculation of the
basic reproduction number R0 does not depend on the variables of the system but depends
on its parameters. In addition, the R0 of our model does not depend on the time delays.
For this reason, we use the next-generation matrix approach outlined in [22] to compute
R0. Precisely, the basic reproduction numberR0 of system (1) is given by

R0 = ρ(FV−1) =
βε(1− u)

(1− α)(ηs + µs) + α
, (6)

where ρ is the spectral radius of the next-generation matrix FV−1 with

F =

(
βε(1− u) 0

0 0

)
and V =

(
(1− α)(ηs + µs) + α 0

0 ηa

)
.
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Noting that the classes that are directly involved in the spread of disease are only Is,
Ia, Fb, Fg and Fc, we can reduce the local stability of system (1) to the local stability of





dIs(t)
dt

= βε(1− u)
S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t),

dIa(t)
dt

= β(1− ε)(1− u)
S(t− τ1)Is(t− τ1)

N
− ηa Ia(t),

dFb(t)
dt

= αγb Is(t− τ2)−
(
µb + rb

)
Fb(t),

dFg(t)
dt

= αγg Is(t− τ2)−
(
µg + rg

)
Fg(t),

dFc(t)
dt

= αγc Is(t− τ2)−
(
µc + rc

)
Fc(t).

(7)

The other classes are uncoupled to the equations of system (1) and the total population size
N is constant. Then, we can easily obtain the following analytical results:





S(t) = N −
(

Is(t) + Ia(t) + Fb(t) + Fg(t) + Fc(t) + R(t) + M(t)
)
,

R(t) =
∫ t

0

[
ηs(1− α)Is(δ− τ3) + ηa Ia(δ− τ3) + rbFb(δ− τ4) + rgFg(δ− τ4) + rcFc(δ− τ4)

]
dδ,

M(t) =
∫ t

0

[
µs(1− α)Is(δ− τ3) + µa Ia(δ− τ3) + µbFb(δ− τ4) + µgFg(δ− τ4) + µcFc(δ− τ4)

]
dδ.

(8)

Let E = (Is, Ia, Fb, Fg, Fc) be an arbitrary equilibrium, and consider into system (7), the
following change of unknowns:

U1(t) = Is(t)− Is, U2(t) = Ia(t)− Ia, U3(t) = Fb(t)− Fb, U4(t) = Fg(t)− Fg and U5(t) = Fc(t)− Fc.

By substituting Ui(t), i = 1, 2, . . . , 5, into system (7) and linearizing around the free
equilibrium, we get a new system that is equivalent to

dX(t)
dt

= AX(t) + BX(t− τ1) + CX(t− τ2), (9)

where X(t) = (U1(t), U2(t), U3(t), U4(t), U5(t))T and A, B, C are the Jacobian matrix of (7)
given by

A =




−α− (1− α)(µs + ηs) 0 0 0 0
0 −ηa 0 0 0
0 0 −(µb + rb) 0 0
0 0 0 −(µg + rg) 0
0 0 0 0 −(µc + rc)




,

B =




βε(1− u) 0 0 0 0
β(1− ε)(1− u) 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




,

and

C =




0 0 0 0 0
0 0 0 0 0

αγb 0 0 0 0
αγg 0 0 0 0
αγc 0 0 0 0




.
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The characteristic equation of system (7) is given by

P(λ) = (λ− a1(R0e−λτ1 − 1))(λ+ ηa)(λ+ (µb + rb))(λ+ (µg + rg))(λ+ (µc + rc)), (10)

where
a1 = α + (1− α)(µs + ηs).

Clearly, the characteristic Equation (10) has the roots λ1 = −ηa, λ2 = −(µb + rb),
λ3 = −(µg + rg), λ4 = −(µc + rc) and the root of the equation

λ− a1(R0e−λτ1 − 1) = 0. (11)

We suppose Re(λ) ≥ 0. From (11), we get

Re(λ) = a1(R0e−Re(λ)τ1 cos(Imλ τ1)− 1) < 0,

if R0 < 1, which contradicts Re(λ) ≥ 0. On the other hand, we show that (11) has a real
positive root whenR0 > 1. Indeed, we put

Φ(λ) = λ− a1(R0e−λτ1 − 1).

We have that Φ(0) = −a1(R0 − 1) < 0, limλ→+∞ Φ(λ) = +∞ and function Φ is
continuous on (0,+∞). Consequently, Φ has a positive root and the following result holds.

Theorem 2. The disease free equilibrium of system (1), that is, (N, 0, 0, 0, 0, 0, 0, 0), is locally
asymptotically stable ifR0 < 1 and unstable ifR0 > 1.

Knowing the value of the deterministic threshold R0 characterizes the dynamical
behavior of system (1) and guarantees persistence or extinction of the disease. Similarly,
now we characterize the dynamical behavior of system (4) by a sufficient condition for
extinction of the disease.

Theorem 3. Let x(t) =
(
S(t), Is(t), Ia(t), Fb(t), Fg(t), Fc(t), R(t), M(t)

)
be the solution of the

COVID-19 stochastic model (4) with initial value x(0) defined in (3). Assume that

σ2
1 >

β2

2(α + (1− α)(µs + ηs))
.

Then,

lim sup
t→+∞

ln
Is(t)

t
< 0. (12)

Namely, Is(t) tends to zero exponentially almost surely, that is, the disease dies out with a
probability of one.

Proof. Let

d ln Is(t) =
[

1
Is(t)

(
βε(1− u)

S(t− τ1)Is(t− τ1)

N
− αIs(t)− (1− α)(µs + ηs)Is(t)

)

− 1
2I2

s (t)

((
σ1

βε(1− u)S(t− τ1)Is(t− τ1)

N

)2

+
(
σ2(µs + ηs − 1)Is(t)

)2
)]

dt

+ σ1βε(1− u)
S(t− τ1)Is(t− τ1)

NIs(t)
dB1(t) + σ2(µs + ηs − 1)dB2(t).
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To simplify, we set

G(t) = ε(1− u)
S(t− τ1)Is(t− τ1)

N
, R1(t) = σ1β

G(t)
Is(t)

,

R3 = σ2(µs + ηs − 1), H = −α− (1− α)(µs + ηs).

Then, we get

d ln Is(t) =

[
βG(t)
Is(t)

+ H − 1
2

((
σ1G(t)

Is(t)

)2

+ R2
3

)]
dt + R1(t)dB1(t) + R3dB2(t)

=

[
−σ2

1
2

[(
G(t)
Is(t)

)2

− 2β

σ2
1

G(t)
Is(t)

]
+ H − R2

3
2

]
dt + R1(t)dB1(t) + R3dB2(t)

=


−σ2

1
2



(

G(t)
Is(t)

− β

σ2
1

)2

− β2

σ4
1


+ H − R2

3
2


dt + R1(t)dB1(t) + R3dB2(t)

≤
[

β2

2σ2
1
+ H

]
dt + R1(t)dB1(t) + R3dB2(t).

Integrating both sides of the above inequality between 0 and t, one has

ln Is(t)
t
≤ ln Is(0)

t
+

β2

2σ2
1
+ H +

M1(t)
t

+
M3(t)

t
,

where

M1(t) =
∫ t

0
R1(s)dB1(s) and M3(t) =

∫ t

0
R3dB2(s).

We have

< M1, M1 >t =
∫ t

0
σ1

2ε2(1− u)2 S(s− τ1)
2 Is(s− τ1)

2

N2 I2
s (s)

ds

≤
∫ t

0
σ1

2ε2(1− u)2 N4

N2
1

I2
s (s)

ds

≤
∫ t

0
σ1

2ε2(1− u)2ds.

Then,

lim sup
t→∞

< M1, M1 >t

t
≤ σ1

2ε2(1− u)2 < +∞.

From the large number theorem for martingales [23], we deduce that

lim
t→∞

M1(t)
t

= 0.

We also have

< M3, M3 >t=
∫ t

0
σ2

3 (µs + ηs − 1)2ds = σ2
3 (µs + ηs − 1)2t.

Then,

lim sup
t→∞

< M3, M3 >t

t
≤ σ2

3 (µs + ηs − 1) < +∞

and

lim
t→∞

M3(t)
t

= 0.
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Subsequently,

lim sup
t→+∞

ln
Is(t)

t
≤ β2

2σ2
1
− α− (1− α)(µs + ηs).

We conclude that if
β2

2σ2
1
− α− (1− α)(µs + ηs) < 0, then lim I(t)

t→∞
= 0. This completes

the proof.

4. Assessment of Parameters

Estimating the model parameters poses a big challenge because the COVID-19 situa-
tion changes rapidly and from one country to another. The parameters are likely to vary
over time as new policies are introduced on a day-to-day basis. For this reason, in order to
simulate the COVID-19 models (1) and (4), we consider some parameter values from the
literature, while the remaining ones are estimated or fitted.

As the transmission rate β is unknown, we carry out the least-square method [10]
to estimate this parameter, based on the actual official reported confirmed cases from
2 March to 20 March, 2020 [24]. Through this method, we estimated β as 0.4517 (95%CI,
0.4484–0.455). Since the life expectancy for symptomatic individuals is 21 days on average
and the crude mortality ratio is between 3% to 4% [25], we estimated µs = 0.01/21 per day
and ηs = 0.8/21 per day. Furthermore, since the hospitals are not yet saturated and the
epidemic situation is under control, we assume that mortality comes mainly from critical
forms with a percentage of 40% for an average period of 13.5 days [25]. Then, we choose
µc = 0.4/13.5 per day and rc = 0.6/13.5 per day. According to [26], the proportion of
asymptomatic individuals varies from 20.6% to 39.9% and of symptomatic individuals
from 60.1% and 79.4% of the infected population. The progression rates γb, γg and γc, from
symptomatic infected individuals to the three forms, are assumed to be 80% of diagnosed
cases for benign form, 15% of diagnosed cases for severe form, and 5% of diagnosed cases
for critical form, respectively [25]. The incubation period is estimated to be 5.5 days [27,28]
while the time needed before hospitalization is to be 7.5 days [29–31]. Following a clinical
observation related to the situation of COVID-19 in Morocco, an evolution of symptomatic
individuals is estimated towards recovery or death after 21 days without any clinical
intervention. In the case when clinical intervention is applied, we estimate the evolution
of the critical forms towards recovery or death after 13.3 days. The rest of the parameter
values are shown in Table 1.

Table 1. Parameter values of models (1) and (4).

Parameter Value Source Parameter Value Source

β 0.4517 Estimated u [0–1] Varied
ε 0.794 [26] γb 0.8 [25]

γg 0.15 [25] γc 0.05 [25]
α 0.06 Assumed ηa 1/21 Calculated
ηs 0.8/21 Calculated µs 0.01/21 Calculated
µb 0 Assumed µg 0 Assumed
µc 0.4/13.5 Calculated rb 1/13.5 Calculated
rg 1/13.5 Calculated rc 0.6/13.5 Calculated
τ1 5.5 [27,28] τ2 7.5 [29–31]
τ3 21 Assumed τ4 13.5 Assumed
σ1 1.03 Calculated σ2 0.1 Assumed

5. Numerical Simulation of Moroccan COVID-19 Evolution

In this section, we present the forecasts of COVID-19 in Morocco related to different
strategies implemented by Moroccan authorities.
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Taking into account the four levels of measures attached to containment, the effective-
ness level of the applied Moroccan preventive measures is estimated to be

u =





0.2, on (2 March, 10 March];
0.3, on (10 March, 20 March];
0.4, on (20 March, 6 April];
0.8, after 6 April.

In Figure 1, we see that the plots and the clinical data are globally homogeneous.
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In addition, the last daily reported cases in Morocco [32], confirm the biological
tendency of our model. Thus, our models are efficient to describe the spread of COVID-19
in Morocco. However, we note that some clinical data are far from the values of the models
due to certain foci that appeared in some large areas or at the level of certain industrial areas.
We conclude also that the stochastic behavior of COVID-19 presents certain particularities
contrary to the deterministic one, namely the magnitude of its peak is higher and the
convergence to eradication is faster. On the other hand, the conditions in Theorems 2 and 3
are verified. More precisely, the basic reproduction numberR0 = 0.5230 is less than one

from 12 May 2020 and σ2
1 = 1.0609 > 1.0598 =

β2

2(α + (1− α)(µs + ηs))
, which means that

the eradication of disease is ensured.
To prove the biological importance of delay parameters, we give the graphical results of

Figure 2, which describe the evolution of diagnosed positive cases with and without delays.
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We observe in Figure 2, a high impact of delays on the number of diagnosed positive
cases, thereby the plot of model (4) without delays (τi = 0, i = 1, 2, 3, 4) is very different to
that of the clinical data. Thus, we conclude that delays play an important role in the study
of the dynamic behavior of COVID-19 worldwide, especially in Morocco, and allow us to
better understand the reality.

In Figure 3, we present the forecast of susceptible, severe forms of deaths and critical
forms, from which we deduce that COVID-19 will not attack the total population.
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In addition, the number of hospitalization beds or artificial respiration apparatus
required can be estimated by the number of different clinical forms. Moreover, we see that
the number of deaths given by the model is less than those declared in other countries [33],
which shows that Morocco has avoided a dramatic epidemic situation by imposing the
described strategies.

Finally, we present in Figure 4, the cumulative diagnosed cases, severe forms, deaths
and critical forms 240 days from the start of the pandemic in Morocco. We summarize
some important numbers in Table 2, which gives us some information about the future
epidemic situation in Morocco.
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Table 2. Estimated peaks and cumulative of diagnosed cases, severe forms, critical forms and deaths.

Compartments Peak Cumulative

Diagnosed Around 190 18,890
Severe forms Around 28 2233
Critical forms Around 10 997

Deaths Around 5 468

6. Conclusions

In this study, we proposed a new deterministic model with delay and its correspond-
ing stochastic model to describe the dynamic behavior of COVID-19 in Morocco. These
models provide us with the evolution and prediction of important categories of individuals
to be monitored, namely, the positive diagnosed cases, which can help to examine the
efficiency of the measures implemented in Morocco, and the different developed forms,
which can quantify the capacity of the public health system as well as the number of new
deaths. Firstly, we have shown that our models are mathematically and biologically well
posed by proving global existence and uniqueness of positive solutions. Secondly, the
extinction of the disease was established. By analyzing the characteristic equation, we
proved that ifR0 < 1, then the disease free equilibrium of the deterministic model is locally
asymptotically stable (Theorem 2). Based on the Lyapunov analysis method, a sufficient
condition for the extinction was obtained in the stochastic case (Theorem 3). Thirdly, and
since there is a substantial interest in estimating the parameters, we applied the least
square method to determine the confidence interval of the transmission rate β as 0.4517
(95%CI, 0.4484–0.455). In addition, the rest of the parameters were either assumed, based
on some daily observations, or taken from the available literature. Finally, some numerical
simulations were performed to gather information in order to be able to fight against the
propagation of the new coronavirus. In 12 May 2020, the basic reproduction number was
less than one (R0 = 0.5230), which means that the epidemic was tending toward eradica-
tion, which is conditional on strict compliance with the implemented measures. Currently,
the consequences of the measures taken against COVID-19 in Morocco encourage their
maintenance to control the spread of the epidemic and quickly move towards extinction.

As future work, we intend to study the regional evolution of COVID-19 in Morocco.
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