Article

The Cranks for 5-Core Partitions

Louis Kolitsch

The University of Tennessee at Martin, Martin, TN 38238, USA; E-Mail: 1kolitsc @utm.edu;
Tel.: +1-731-881-7358; Fax: +1-731-881-1407
Received: 7 August 2012; in revised form: 21 September 2012 / Accepted: 26 November 2012 /
Published: 3 December 2012

Abstract

It is well known that the number of 5-core partitions of $5^{k} n+5^{k}-1$ is a multiple of 5^{k}. In [1] a statistic called a crank was developed to sort the 5 -core partitions of $5 n+4$ and $25 n+24$ into 5 and 25 classes of equal size, respectively. In this paper we will develop the cranks that can be used to sort the 5 -core partitions of $5^{k} n+5^{k}-1$ into 5^{k} classes of equal size.

Keywords: partitions; 5-cores; cranks

1. Introduction

A t-core partition of n is a partition of n that contains no hook numbers that are multiples of t [2, 2.7.40]. The generating function for t-core partitions is given by $\sum_{\substack{\bar{n} \times i=0 \\ \bar{n} \in Z^{\prime}}} q^{\frac{t}{2}|\bar{n}|+\vec{b} \times \bar{n}}$ where the vector $\overrightarrow{1}=(1,1, \ldots, 1)$ in Z^{t} and $\vec{b}=(0,1, \ldots, t-1)$ [3]. In [3] Garvan, Stanton, and Kim showed that the statistic $4 n_{0}+n_{1}+n_{3}+4 n_{4}(\bmod 5)$, where the n_{i} 's are the components of the vector in the generating function for 5 -cores, can be used to sort the 5 -cores of $5 n+4$ into 5 classes of equal size. In a sequel to this paper [1] Garvan explicitly describes a crank for the 5 -cores of $25 n+24$. In this paper a crank for the 5 -cores of $5^{k} n+5^{k}-1$ will be given using techniques similar to those used by Garvan, Stanton, and Kim.

2. Description of the Crank

For ease of working with the vector \vec{n} we will write it as (a, b, c, d, e). Using the fact that $a+b+c$ $+d+e=0$, the exponent on q in the generating function for the 5-core partitions can be expressed as

$$
\begin{equation*}
G(a, b, c, d)=5 a^{2}+5 b^{2}+5 c^{2}+5 d^{2}+5 a b+5 a c+5 a d+5 b c+5 b d+5 c d-4 a-3 b-2 c-d \tag{1}
\end{equation*}
$$

Thus the 5 -cores of integers of the form $5 n+4$ are associated with the values of a, b, c, and d satisfying $-4 a-3 b-2 c-d \equiv 4(\bmod 5)$. Evaluating $G(a, b, c, d)$ with $a=A-C-2 D, b=-2 A+B-$ $C+D, c=-B+4 C-D, d=2 A-B-C+2 D+1$, we get an expression in A, B, C, and D which we will label as $H(A, B, C, D)$.

$$
\begin{equation*}
H(A, B, C, D)=25 A^{2}+10 B^{2}+50 C^{2}+25 D^{2}-25 A B-25 B C-25 C D+15 A-10 B+15 D+4 \tag{2}
\end{equation*}
$$

Note that A, B, C, and D are integers since

$$
\begin{equation*}
(A, B, C, D)=((a, b, c, d)-\gamma) T^{-1}=(3 a+b+c+6 M,-4 a-5 b-3 c-3 d+3,2 a+b+c+4 M, M) \tag{3}
\end{equation*}
$$

where $T=\left(\begin{array}{cccc}1 & -2 & 0 & 2 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -2 & 1 & -1 & 2\end{array}\right), \gamma=(0,0,0,1)$, and $M=\frac{-4 a-3 b-2 c-d+1}{5}$.

Theorem 1.1

The 5 -core partitions of $5 n+4$ corresponding to the vectors (A, B, C, D) can be sorted into 5 classes of equal size by looking at the values of B modulo 5 .

To see this, let $(A, B, C, D)=\left(\left(A, \frac{B-m}{5}, C, D\right)-\lambda_{m}\right) U_{m}$ where $B \equiv m(\bmod 5)$ and

$$
\begin{array}{lll}
\lambda_{0}=(0,0,0,0) & U_{0}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & -1 & -1 \\
-1 & 0 & 0 & 1
\end{array}\right) & U_{0}^{-1}=\left(\begin{array}{cccc}
2 & 1 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
-3 & -1 & -2 & -1 \\
2 & 1 & 1 & 1
\end{array}\right) \\
\lambda_{1}=(0,0,0,0) & U_{1}=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
-4 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 \\
0 & -1 & 0 & 0
\end{array}\right) & U_{1}^{-1}=\left(\begin{array}{cccc}
-2 & -1 & -1 & -1 \\
0 & 0 & 0 & -1 \\
-3 & -1 & -1 & -1 \\
-5 & -2 & -3 & -2
\end{array}\right) \\
\lambda_{2}=(-2,-1,-1,-1) & U_{2}=\left(\begin{array}{cccc}
0 & 1 & 0 & -1 \\
1 & -4 & 1 & 1 \\
-1 & 1 & 0 & 1 \\
1 & 0 & -1 & 0
\end{array}\right) & U_{2}^{-1}=\left(\begin{array}{cccc}
5 & 2 & 3 & 2 \\
3 & 1 & 2 & 1 \\
5 & 2 & 3 & 1 \\
2 & 1 & 2 & 1
\end{array}\right) \tag{6}
\end{array}
$$

$$
\begin{array}{lll}
\lambda_{3}=(1,0,1,0) & U_{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 1 & -4 & 1 \\
-1 & -1 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right) & U_{3}^{-1}=\left(\begin{array}{cccc}
-2 & -1 & -2 & -1 \\
3 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
3 & 1 & 1 & 0
\end{array}\right) \\
\lambda_{4}=(2,0,1,0) & U_{4}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 4 & -1 & -1 \\
0 & -1 & 1 & 1 \\
1 & 0 & -1 & 0
\end{array}\right) & U_{4}^{-1}=\left(\begin{array}{cccc}
-3 & -1 & -1 & 0 \\
-1 & 0 & 0 & 0 \\
-3 & -1 & -1 & -1 \\
2 & 1 & 2 & 1
\end{array}\right) \tag{8}
\end{array}
$$

Note that A, B, C, and D are integers and for each of these changes of variable $H(A, B, C, D)$ becomes $5 G(A, B, C, D)+4$. Hence $G(A, B, C, D)=n$ and for each solution of this equation we have 5 solutions (A, B, C, D) of $H(A, B, C, D)=5 n+4$, one with $B \equiv m(\bmod 5)$ for each choice of $m=0,1,2,3,4$, which can be transformed to a solution (a, b, c, d) of $G(a, b, c, d)=5 n+4$. This completes the proof of the theorem.

Theorem 1.2

The 5 -core partitions of $5^{k} n+5^{k}-1$ can be sorted into 5^{k} classes of equal size.
From the proof of Theorem 1.1 we can transform a solution of $G(a, b, c, d)=n$ into 5 solutions of $G(a, b, c, d)=5 n+4$. Each solution of $G(a, b, c, d)=5 \mathrm{n}+4$ can be transformed into 5 solutions of $G(a, b, c, d)=25 n+24$. Iterating this process k times we easily see that a solution of $G(a, b, c, d)=n$ can be transformed into 5^{k} solutions of $G(a, b, c, d)=5^{k} n+5^{k}-1$. At each stage in the transformation process we can keep track of the congruence class modulo 5 of B to get a k-tuple of values $m(\bmod 5)$ associated with each solution of $G(a, b, c, d)=5^{k} n+5^{k}-1$. These k-tuples can be used to sort the solutions of $G(a, b, c, d)=5^{k} n+5^{k}-1$ into 5^{k} classes of equal size.

3. An Illustration of the Crank

The following series of Tables $1-3$ show the 2 solutions of $G(a, b, c, d)=2$ transformed into 250 solutions of $G(a, b, c, d)=374$. The intermediate solutions of $H(A, B, C, D)$ are shown in order to easily see the classes of $B(\bmod 5)$ which can be used to sort these 250 solutions into 125 classes of equal size.

Table 1. Solutions corresponding to 5-cores of 14.

Solutions of	Solutions of		
$\boldsymbol{G}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})=\mathbf{2}$	$\boldsymbol{H}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})=\mathbf{1 4}$	Solutions of $\boldsymbol{G}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})=\mathbf{1 4}$	Congruence class of $\boldsymbol{B}(\mathbf{m o d} \mathbf{5})$
$(0,1,0,0)$	$(-1,0,0,0)$	$(-1,2,0,-1)$	0
	$(0,1,0,-1)$	$(2,0,0,-2)$	1
	$(1,2,1,0)$	$(0,-1,2,0)$	2
$(1,0,0,-1)$	$(4,8,2,1)$	$(0,-1,-1,1)$	3
	$(1,4,1,0)$	$(0,1,0,-2)$	4
	$(0,0,0,-1)$	$(2,-1,1,-1)$	0
	$(3,6,2,1)$	$(-1,-1,1,1)$	1
	$(1,2,0,0)$	$(1,0,-2,1)$	2
	$(-4,-7,-2,-1)$	$(0,2,0,0)$	3
	$(-3,-6,-2,-1)$	$(1,1,-1,1)$	4

Table 2. Solutions corresponding to 5-cores of 74.

Solutions of $G(a, b, c, d)=14$	Solutions of $H(A, B, C, D)=74$	Solutions of $G(a, b, c, d)=74$	2-Tuples showing congruence classes of B's mod 5
$(-1,2,0,-1)$	$(-6,-10,-2,-1)$	$(-2,3,3,-1)$	$(0,0)$
	$(7,16,4,1)$	$(1,-1,-1,-3)$	$(0,1)$
	$(-3,-8,-2,-2)$	(3, -2, 2, 1)	$(0,2)$
	$(6,13,4,3)$	$(-4,0,0,2)$	$(0,3)$
	(1, 4, 0, -1)	(3, 1, -3, -3)	$(0,4)$
(2, 0, 0, -2)	(0, 0, 0, -2)	(4, -2, 2, -3)	$(1,0)$
	$(6,11,4,2)$	$(-2,-3,3,2)$	$(1,1)$
	$(4,7,1,1)$	(1, -1, -4, 3)	$(1,2)$
	$(-9,-17,-5,-2)$	($0,4,-1,1)$	$(1,3)$
	$(-8,-16,-5,-2)$	(1, 3, -2, 2)	$(1,4)$
($0,-1,2,0)$	$(-5,-10,-4,-2)$	(3, 2, -4, 1)	$(2,0)$
	$(-6,-9,-2,-1)$	(-2, 4, 2, -2)	$(2,1)$
	$(5,12,3,0)$	(2, -1, 0, -4)	$(2,2)$
	(0, -2, 0, -1)	$(2,-3,3,1)$	$(2,3)$
	$(-3,-6,-1,-2)$	(2, -1, 4, -2)	$(2,4)$
$(0,-1,-1,1)$	$(6,10,3,2)$	$(-1,-3,0,4)$	$(3,0)$
	$(-2,-4,-2,0)$	(0, 2, -4, 3)	$(3,1)$
	$(-8,-13,-4,-2)$	(0, 5, -1, -2)	$(3,2)$
	($0,3,1,-1$)	(1, 1, 2, -5)	$(3,3)$
	(8, 14, 4, 2)	(0, -4, 0, 3)	$(3,4)$
(0, 1, 0, -2)	$(-5,-10,-2,-2)$	(1, 0, 4, -1)	$(4,0)$
	$(10,21,6,3)$	$(-2,-2,0,0)$	$(4,1)$
	$(-3,-8,-3,-2)$	$(4,-1,-2,2)$	$(4,2)$
	$(-2,-2,0,1)$	$(-4,3,1,1)$	$(4,3)$
	$(-3,-6,-3,-2)$	(4, 1, -4, 0)	$(4,4)$

Table 2. Cont.

(2, -1, 1, -1)	($0,0,-1,-2)$	($5,-1,-2,-2)$	$(0,0)$
	(-2, -4, 0, 0)	($-2,0,4,1$)	$(0,1)$
	(8, 17, 4, 2)	($0,-1,-3,0)$	$(0,2)$
	$(-8,-17,-5,-3)$	($3,1,0,1$)	$(0,3)$
	(-8, -16, -4, -2)	(0, 2, 2, 1)	$(0,4)$
$(-1,-1,1,1)$	$(-2,-5,-2,0)$	($0,1,-3,4$)	$(1,0)$
	$(-6,-9,-3,-1)$	$(-1,5,-2,-1)$	$(1,1)$
	$(-3,-3,-1,-2)$	(2, 2, 1, -5)	$(1,2)$
	$(4,8,3,0)$	(1, -3, 4, -2)	$(1,3)$
	($5,9,3,0)$	(2, -4, 3, -1)	$(1,4)$
(1, 0, -2, 1)	$(10,20,6,3)$	$(-2,-3,1,1)$	$(2,0)$
	$(-1,-4,-2,-1)$	(3, -1, -3, 3)	$(2,1)$
	$(-5,-8,-2,0)$	($-3,4,0,1$)	$(2,2)$
	(0, 3, 0, -1)	($2,2,-2,-4$)	$(2,3)$
	(7, 14, 4, 3)	$(-3,-1,-1,3)$	$(2,4)$
(0, 2, 0, 0)	($-2,0,0,0$)	$(-2,4,0,-3)$	$(3,0)$
	(0, 1, 0, -2)	$(4,-1,1,-4)$	$(3,1)$
	$(4,7,3,1)$	$(-1,-3,4,1)$	$(3,2)$
	(7, 13, 3, 2)	$(0,-2,-3,3)$	$(3,3)$
	(0, 4, 1, 0)	$(-1,3,0,-4)$	$(3,4)$
(1, 1, -1, 1)	$(6,15,4,2)$	$(-2,1,-1,-2)$	$(4,0)$
	$(-4,-9,-3,-3)$	($5,-1,0,-1$)	$(4,1)$
	(3, 7, 3, 2)	$(-4,0,3,1)$	$(4,2)$
	$(4,8,1,0)$	($3,-1,-4,0)$	$(4,3)$
	(3, 9, 3, 2)	$(-4,2,1,-1)$	$(4,4)$

Table 3. Solutions corresponding to 5-cores of 74.

Solutions of $G(a, b, c, d)=74$	Solutions of $H(A, B, C, D)=374$	Solutions of $G(a, b, c, d)=374$	3-Tuples showing congruence classes of $B \prime$'s $\bmod 5$
$(-2,3,3,-1)$	$(-18,-30,-9,-4)$	$(-1,11,-2,-4)$	$(0,0,0)$
	$(0,6,2,-2)$	(2, 2, 4, -11)	$(0,0,1)$
	$(10,17,6,0)$	(4, -9, 7, -2)	$(0,0,2)$
	$(14,23,7,5)$	$(-3,-7,0,9)$	$(0,0,3)$
	$(-6,-6,-2,-4)$	$(4,4,2,-11)$	$(0,0,4)$
$(1,-1,-1,-3)$	$(0,-5,0,-2)$	($4,-7,7,2$)	$(0,1,0)$
	$(16,31,9,7)$	$(-7,-3,-2,7)$	$(0,1,1)$
	$(-11,-23,-9,-4)$	(6, 4, -9, 3)	$(0,1,2)$
	$(-14,-22,-5,-2)$	$(-5,9,4,-4)$	$(0,1,3)$
	$(-3,-11,-5,-2)$	$(6,-2,-7,7)$	$(0,1,4)$

Table 3. Cont.

$(3,-2,2,1)$	(4, 10, 0, -1)	(6, 1, -9, -3)	(0, 2, 0)
	$(-17,-34,-8,-5)$	(1, 3, 7, -1)	$(0,2,1)$
	$(19,42,12,6)$	$(-5,-2,0,-3)$	$(0,2,2)$
	$(-6,-17,-6,-5)$	(10, -4, -2, 2)	$(0,2,3)$
	$(-9,-16,-2,-1)$	$(-5,3,9,-1)$	$(0,2,4)$
$(-4,0,0,2)$	$(-4,-10,-2,2)$	$(-6,2,0,9)$	(0, 3, 0)
	$(-2,1,-2,0)$	(0, 7, -9, -2)	$(0,3,1)$
	$(-18,-33,-9,-7)$	(5, 5, 4, -7)	$(0,3,2)$
	$(15,33,11,4)$	$(-4,-4,7,-5)$	$(0,3,3)$
	(18, 34, 9, 2)	(5, -9, 0, -2)	$(0,3,4)$
(3, 1, -3, -3)	(8, 15, 6, 0)	(2, -7, 9, -4)	$(0,4,0)$
	$(18,31,9,5)$	$(-1,-9,0,7)$	$(0,4,1)$
	$(-5,-13,-5,0)$	(0, 2, -7, 9)	$(0,4,2)$
	$(-14,-22,-7,-2)$	$(-3,11,-4,-2)$	$(0,4,3)$
	$(-5,-11,-5,0)$	(0, 4, -9, 7)	$(0,4,4)$
(4, -2, 2, -3)	$(-2,-5,-3,-5)$	(11, -3, -2, -5)	$(1,0,0)$
	(1, 1, 3, 2)	$(-6,-2,9,3)$	$(1,0,1)$
	(16, 32, 7, 4)	(1, -3, -8, 2)	$(1,0,2)$
	(-20, -42, -12, -6)	$(4,4,0,3)$	$(1,0,3)$
	$(-20,-41,-11,-5)$	(1, 5, 2, 3)	$(1,0,4)$
$(-2,-3,3,2)$	$(-6,-15,-6,-1)$	(2, 2, -8, 8)	$(1,1,0)$
	$(-15,-24,-7,-2)$	$(-4,11,-2,-2)$	$(1,1,1)$
	(-2, 2, 0, -3)	(4, 3, 1, -11)	$(1,1,2)$
	(5, 8, 4, -1)	(3, -7, 9, -3)	$(1,1,3)$
	(6, 9, 4, -1)	(4, -8, 8, -2)	$(1,1,4)$
$(1,-1,-4,3)$	$(21,40,12,7)$	$(-5,-7,1,5)$	$(1,2,0)$
	$(-5,-14,-6,-2)$	$(5,0,-8,7)$	$(1,2,1)$
	$(-14,-23,-6,-1)$	$(-6,10,0,0)$	$(1,2,2)$
	(1, 8, 1, -2)	(4, 3, -2, -10)	$(1,2,3)$
	$(18,34,10,7)$	$(-6,-5,-1,7)$	$(1,2,4)$
$(0,4,-1,1)$	(1, 10, 3, 2)	(-6, 7, 0, -6)	$(1,3,0)$
	(-2, -4, -2, -5)	($10,-3,1,-7)$	$(1,3,1)$
	(7, 12, 6, 3)	$(-5,-5,9,3)$	$(1,3,2)$
	$(15,28,6,4)$	(1, -4, -8, 5)	$(1,3,3)$
	(3, 14, 4, 2)	$(-5,6,0,-7)$	$(1,3,4)$
(1, 3, -2, 2)	(9, 25, 7, 4)	(-6, 4, -1, -5)	$(1,4,0)$
	$(-6,-14,-5,-6)$	(11, -3, 0, -4)	$(1,4,1)$
	(6, 12, 6, 4)	$(-8,-2,8,3)$	$(1,4,2)$
	(12, 23, 4, 2)	(4, -3, -9, 2)	$(1,4,3)$
	$(6,19,6,4)$	$(-8,5,1,-4)$	$(1,4,4)$
$(3,2,-4,1)$	($18,40,12,5)$	(-4, -3, 3, -5)	($2,0,0$)
	(1, -4, -2, -3)	(9, -7, -1, 3)	$(2,0,1)$
	(1, 2, 2, 4)	$(-9,2,2,7)$	$(2,0,2)$

Table 3. Cont.

$(-2,4,2,-2)$	(0, 3, -2, -1)	$(4,4,-10,-2)$	$(2,0,3)$
	($5,14,4,5)$	$(-9,5,-3,3)$	$(2,0,4)$
	$(-18,-30,-8,-4)$	($-2,10,2,-5$)	$(2,1,0)$
	($8,21,6,0)$	(2, -1, 3, -10)	$(2,1,1)$
	$(6,7,3,-1)$	(5, -9, 6, 1)	$(2,1,2)$
$(2,-1,0,-4)$	(13, 23, 7, 6)	$(-6,-4,-1,9)$	$(2,1,3)$
	$(-6,-6,-3,-4)$	(5, 5, -2, -10)	$(2,1,4)$
	($-3,-10,-2,-4$)	(7, -6, 6, -1)	$(2,2,0)$
	$(16,31,10,7)$	$(-8,-4,2,6)$	$(2,2,1)$
	$(-3,-8,-5,-2)$	(6, 1, -10, 4)	$(2,2,2)$
(2, -3, 3, 1)	$(-18,-32,-8,-3)$	(-4, 9, 3, -1)	$(2,2,3)$
	$(-11,-26,-9,-4)$	$(6,1,-6,6)$	$(2,2,4)$
	(0, 0, -3, -2)	(7, 1, -10, 0)	$(2,3,0)$
	$(-18,-34,-8,-4)$	$(-2,6,6,-1)$	$(2,3,1)$
	$(16,37,10,4)$	$(-2,-1,-1,-6)$	$(2,3,2)$
$(2,-1,4,-2)$	$(-6,-17,-5,-5)$	(9, -5, 2, 1)	$(2,3,3)$
	(-8, -16, -2, -2)	$(-2,0,10,-1)$	$(2,3,4)$
	$(-11,-20,-8,-6)$	(9, 4, -6, -5)	$(2,4,0)$
	(-6, -9, 0, -1)	(-4, 2, 10, -4)	$(2,4,1)$
	(21, 42, 11, 4)	(2, -7, -2, -2)	$(2,4,2)$
$(-1,-3,0,4)$	$(-8,-22,-6,-3)$	(4, -3, 1, 7)	$(2,4,3)$
	$(-19,-36,-9,-6)$	($2,5,6,-4$)	$(2,4,4)$
	(9, 15, 3, 4)	($-2,-2,-7,9$)	($3,0,0$)
	$(-18,-34,-11,-4)$	(1, 9, -6, 2)	$(3,0,1)$
	$(-8,-8,-2,-2)$	$(-2,8,2,-9)$	$(3,0,2)$
($0,2,-4,3)$	$(6,13,4,-2)$	(6, -5, 5, -8)	$(3,0,3)$
	$(16,29,10,4)$	$(-2,-9,7,2)$	$(3,0,4)$
	$(16,35,11,7)$	($-9,-1,2,1$)	$(3,1,0)$
	$(-3,-9,-5,-4)$	(10, -2, -7, 1)	$(3,1,1)$
	$(-10,-18,-3,0)$	$(-7,5,6,2)$	$(3,1,2)$
$(0,5,-1,-2)$	$(12,28,6,2)$	(2, 0, -6, -5)	$(3,1,3)$
	$(18,39,11,7)$	$(-7,-1,-2,1)$	$(3,1,4)$
	$(-6,-5,0,-1)$	$(-4,6,6,-8)$	$(3,2,0)$
	(13, 26, 7, 0)	(6, -7, 2, -6)	$(3,2,1)$
	$(4,2,2,1)$	$(0,-7,5,7)$	$(3,2,2)$
	(9, 18, 4, 5)	$(-5,1,-7,7)$	$(3,2,3)$
(1, 1, 2, -5)	(-4, -1, -2, -1)	(0, 8, -6, -6)	$(3,2,4)$
	$(-15,-30,-8,-7)$	(7, 1, 5, -5)	$(3,3,0)$
	(17, 36, 12, 6)	(-7, -4, 6, -1)	$(3,3,1)$

Table 3. Cont.

(0, -4, 0, 3)	($6,7,0,-1$)	(8, -6, -6, 4)	$(3,3,2)$
	$(-11,-22,-5,0)$	$(-6,5,2,6)$	$(3,3,3)$
	$(-18,-36,-12,-7)$	(8, 5, -5, -1)	$(3,3,4)$
	(10, 15, 3, 3)	(1, -5, -6, 9)	$(3,4,0)$
	$(-15,-29,-9,-2)$	$(-2,8,-5,5)$	$(3,4,1)$
	$(-8,-8,-3,-2)$	(-1, 9, -2, -8)	$(3,4,2)$
(1, 0, 4, -1)	$(-2,-2,0,-4)$	($6,-2,6,-9$)	$(3,4,3)$
	(12, 19, 7, 3)	(-1, -9, 6, 5)	$(3,4,4)$
	(-12, -20, -8, -5)	(6, 7, -7, -5)	$(4,0,0)$
	$(-9,-14,-2,-3)$	(-1, 3, 9, -7)	$(4,0,1)$
	(21, 42, 12, 4)	(1, -8, 2, -3)	$(4,0,2)$
$(-2,-2,0,0)$	(0, -7, -2, -1)	(4, -6, 0, 8)	$(4,0,3)$
	(-15, -26, -6, -5)	(1, 5, 7, -7)	$(4,0,4)$
	($-2,-10,-2,0$)	($0,-4,2,9)$	$(4,1,0)$
	(4, 11, 2, 4)	(-6, 5, -7, 4)	$(4,1,1)$
	$(-18,-33,-11,-7)$	(7, 7, -4, -5)	$(4,1,2)$
(4, -1, -2, 2)	$(-1,3,3,0)$	(-4, 2, 9, -7)	$(4,1,3)$
	($10,14,3,0)$	(7, -9, -2, 4)	$(4,1,4)$
	(19, 40, 10, 4)	(1, -4, -4, -3)	$(4,2,0)$
	(-12, -29, -8, -5)	($6,-2,2,4$)	$(4,2,1)$
	(9, 22, 7, 6)	(-10, 3, 0, 2)	$(4,2,2)$
$(-4,3,1,1)$	(-6, -12, -6, -5)	($10,1,-7,-3$)	$(4,2,3)$
	(1, 4, 3, 4)	(-10, 3, 4, 4)	$(4,2,4)$
	$(-12,-20,-5,0)$	(-7, 9, 0, 2)	$(4,3,0)$
	($0,6,0,-2$)	(4, 4, -4, -9)	$(4,3,1)$
	(-6, -13, -2, -4)	(4, -3, 9, -4)	$(4,3,2)$
(4, 1, -4, 0)	(22, 43, 13, 7)	(-5, -7, 2, 3)	$(4,3,3)$
	(10, 24, 6, 0)	(4, -2, 0, -9)	$(4,3,4)$
	(19, 40, 12, 4)	($-1,-6,4,-5$)	$(4,4,0)$
	(4, 1, 0, -1)	($6,-8,0,6)$	$(4,4,1)$
	(1, 2, 1, 4)	(-8, 3, -2, 8)	$(4,4,2)$
$(5,-1,-2,-2)$	$(-8,-12,-6,-3)$	(4, 7, -9, -3)	$(4,4,3)$
	(1, 4, 1, 4)	(-8, 5, -4, 6)	$(4,4,4)$
	(13, 25, 7, 0)	($6,-8,3,-5$)	($0,0,0$)
	$(6,6,3,2)$	(-1, -7, 4, 8)	(0, 0, 1)
	(6, 12, 2, 4)	$(-4,2,-8,7)$	$(0,0,2)$
	(-20, -37, -12, -6)	(4, 9, -5, -2)	$(0,0,3)$
	(-10, -21, -6, 0)	$(-4,5,-3,8)$	(0, 0, 4)

Table 3. Cont.

$(-2,0,4,1)$	$(-14,-25,-9,-3)$	$(1,9,-8,1)$	$(0,1,0)$
	$(-13,19,-5,-4)$	($0,8,3,-9$)	$(0,1,1)$
	$(10,22,7,0)$	$(3,-5,6,-8)$	$(0,1,2)$
	$(12,18,6,2)$	$(2,-10,4,5)$	$(0,1,3)$
	$(-2,-1,1,-3)$	(3, -1, 8, -9)	$(0,1,4)$
$(0,-1,-3,0)$	$(10,15,6,3)$	$(-2,-8,6,6)$	$(0,2,0)$
	(9, 16, 3, 4)	$(-2,-1,-8,8)$	$(0,2,1)$
	$(-20,-38,-12,-5)$	$(2,9,-5,1)$	$(0,2,2)$
	$(-5,-2,0,-1)$	$(-3,7,3,-9)$	$(0,2,3)$
	$(12,19,4,3)$	$(2,-6,-6,8)$	$(0,2,4)$
(3, 1, 0, 1)	$(7,20,4,1)$	$(1,3,-5,-7)$	$(0,3,0)$
	$(-11,-24,-6,-6)$	$(7,-2,6,-3)$	$(0,3,1)$
	$(18,37,12,7)$	$(-8,-4,4,2)$	$(0,3,2)$
	$(1,-2,-3,-2)$	$(8,-3,-8,4)$	$(0,3,3)$
	$(-6,-6,0,1)$	$(-8,7,5,-3)$	$(0,3,4)$
(0, 2, 2, 1)	$(-6,-5,-3,-1)$	$(-1,9,-6,-5)$	$(0,4,0)$
	$(-11,-19,-5,-6)$	$(6,2,5,-9)$	$(0,4,1)$
	$(16,32,11,4)$	$(-3,-7,8,-2)$	$(0,4,2)$
	$(12,18,4,2)$	$(4,-8,-4,7)$	$(0,4,3)$
	$(-4,-1,1,-1)$	$(-3,5,6,-9)$	$(0,4,4)$
(0, 1, -3, 4)	$(16,35,10,7)$	$(-8,0,-2,2)$	$(1,0,0)$
	$(-11,-24,-9,-6)$	$(10,1,-6,0)$	$(1,0,1)$
	$(-6,-8,0,1)$	$(-8,5,7,-1)$	$(1,0,2)$
	$(13,28,6,1)$	$(5,-3,-5,-5)$	$(1,0,3)$
	$(18,39,12,7)$	$(-8,-2,2,0)$	$(1,0,4)$
$(-1,5,-2,-1)$	$(-3,0,2,1)$	$(-7,5,7,-5)$	$(1,1,0)$
	$(13,26,6,0)$	(7, -6, -2, -5)	$(1,1,1)$
	$(-4,-13,-2,-1)$	$(0,-4,6,6)$	$(1,1,2)$
	$(13,28,7,6)$	$(-6,1,-6,4)$	$(1,1,3)$
	$(4,14,2,1)$	$(0,5,-7,-5)$	$(1,1,4)$
(2, 2, 1, -5)	$(-11,-20,-5,-6)$	$(6,1,6,-8)$	$(1,2,0)$
	$(18,36,12,5)$	$(-4,-7,7,-1)$	$(1,2,1)$
	$(9,12,2,1)$	$(5,-7,-5,7)$	$(1,2,2)$
	$(-11,-22,-6,0)$	$(-5,6,-2,7)$	$(1,2,3)$
	$(-19,-36,-12,-6)$	$(5,8,-6,-1)$	$(1,2,4)$
$(1,-3,4,-2)$	$(-11,-25,-9,-6)$	$(10,0,-5,1)$	$(1,3,0)$
	$(-4,-4,1,2)$	$(-9,5,6,0)$	$(1,3,1)$
	(10, 22, 4, 0)	(6, -2, -6, -5)	$(1,3,2)$
	$(-12,-27,-6,-4)$	($2,-1,7,2)$	$(1,3,3)$
	$(-14,-31,-8,-6)$	$(6,-1,5,0)$	$(1,3,4)$

Table 3. Cont.

$(2,-4,3,-1)$	$(-3,-10,-5,-4)$	$(10,-3,-6,2)$	$(1,4,0)$
	$(-8,-14,-2,1)$	$(-8,5,5,3)$	$(1,4,1)$
	(9, 22, 4, 1)	(3, 1, -7, -5)	$(1,4,2)$
	$(-15,-32,-8,-6)$	(5, 0, 6, -1)	$(1,4,3)$
	$(-11,-26,-6,-4)$	(3, -2, 6, 3)	$(1,4,4)$
$(-2,-3,1,1)$	$(-2,-10,-3,0)$	$(1,-3,-2,10)$	$(2,0,0)$
	(-4, -4, -2, 2)	$(-6,8,-6,3)$	$(2,0,1)$
	$(-14,-23,-8,-6)$	(6, 7, -3, -8)	$(2,0,2)$
	($0,3,3,-1$)	$(-1,-1,10,-7)$	$(2,0,3)$
	(10, 14, 4, 0)	(6, -10, 2, 3)	$(2,0,4)$
$(3,-1,-3,3)$	($22,45,12,6)$	$(-2,-5,-3,0)$	$(2,1,0)$
	$(-12,-29,-9,-5)$	(7, -1, -2, 5)	$(2,1,1)$
	(1, 7, 3, 4)	$(-10,6,1,1)$	$(2,1,2)$
	$(-2,-2,-3,-4)$	(9, 1, -6, -6)	$(2,1,3)$
	(9, 19, 7, 6)	$(-10,0,3,5)$	$(2,1,4)$
$(-3,4,0,1)$	$(-8,-10,-2,1)$	$(-8,9,1,-1)$	$(2,2,0)$
	(1, 6, $0,-3$)	(7, 1, -3, -9)	$(2,2,1)$
	(-3, -8, 0, -2)	(1, -4, 10, -1)	$(2,2,2)$
	(22, 43, 12, 7)	$(-4,-6,-2,4)$	$(2,2,3)$
	$(9,24,6,1)$	(1, 1, -1, -9)	$(2,2,4)$
$(2,2,-2,-4)$	($0,0,2,-2$)	(2, -4, 10, -5)	$(2,3,0)$
	(22, 41, 12, 6)	$(-2,-9,1,4)$	$(2,3,1)$
	$(-4,-13,-5,-1)$	(3, -1, -6, 9)	$(2,3,2)$
	$(-11,-17,-5,0)$	$(-6,10,-3,1)$	$(2,3,3)$
	(-8, -16, -7, -2)	(3, 5, -10, 4)	$(2,3,4)$
$(-3,-1,-1,3)$	(4, 5, 2, 4)	$(-6,-1,-1,10)$	$(2,4,0)$
	$(-6,-9,-5,-1)$	(1, 7, -10, 1)	$(2,4,1)$
	$(-19,-33,-9,-6)$	($2,8,3,-7$)	$(2,4,2)$
	(12, 28, 9, 2)	$(-1,-3,6,-8)$	$(2,4,3)$
	($21,39,11,4)$	(2, -10, 1, 1)	$(2,4,4)$
$(-2,4,0,-3)$	$(-14,-25,-5,-3)$	$(-3,5,8,-3)$	($3,0,0$)
	(19, 41, 11, 4)	(0, -4, -1, -5)	($3,0,1$)
	($-6,-18,-5,-4$)	(7, -5, 2, 4)	$(3,0,2)$
	$(8,18,6,6)$	$(-10,2,0,5)$	$(3,0,3)$
	$(-2,-1,-3,-3)$	(7, 3, -8, -5)	$(3,0,4)$
$(4,-1,1,-4)$	$(-2,-5,-2,-5)$	(10, -4, 2, -6)	$(3,1,0)$
	(9, 16, 7, 4)	$(-6,-5,8,4)$	$(3,1,1)$
	(12, 22, 4, 3)	(2, -3, -9, 5)	$(3,1,2)$
	(-21, -42, -12, -5)	(1, 7, -1, 3)	$(3,1,3)$
	$(-20,-41,-12,-5)$	$(2,6,-2,4)$	$(3,1,4)$

Table 3. Cont.

$(-1,-3,4,1)$	$(-9,-20,-8,-3)$	$(5,3,-9,5)$	$(3,2,0)$
	$(-15,-24,-6,-2)$	$(-5,10,2,-3)$	$(3,2,1)$
	$(6,17,4,-1)$	$(4,0,0,-10)$	$(3,2,2)$
	$(1,-2,1,-2)$	($4,-7,8,0$)	$(3,2,3)$
	(-2, -6, 0, -3)	$(4,-5,9,-3)$	$(3,2,4)$
$(0,-2,-3,3)$	$(17,30,9,6)$	$(-4,-7,0,8)$	$(3,3,0)$
	$(-6,-14,-6,-1)$	$(2,3,-9,7)$	$(3,3,1)$
	$(-17,-28,-8,-3)$	$(-3,11,-1,-3)$	$(3,3,2)$
	$(1,8,2,-2)$	$(3,2,2,-11)$	$(3,3,3)$
	$(19,34,10,6)$	$(-3,-8,0,7)$	$(3,3,4)$
$(-1,3,0,-4)$	$(-13,-25,-5,-4)$	($0,2,9,-3$)	$(3,4,0)$
	$(22,46,13,6)$	$(-3,-5,0,-2)$	$(3,4,1)$
	$(-6,-18,-6,-4)$	$(8,-4,-2,5)$	$(3,4,2)$
	($0,3,2,4$)	$(-10,5,1,4)$	$(3,4,3)$
	$(-6,-11,-6,-4)$	(8, 3, -9, -2)	$(3,4,4)$
$(-2,1,-1,-2)$	$(-6,-15,-2,-1)$	$(-2,-2,8,4)$	$(4,0,0)$
	$(17,36,9,6)$	$(-4,-1,-6,2)$	$(4,0,1)$
	$(-18,-38,-12,-7)$	$(8,3,-3,1)$	$(4,0,2)$
	$(1,8,4,3)$	$(-9,5,5,-3)$	$(4,0,3)$
	$(6,9,0,-1)$	$(8,-4,-8,2)$	$(4,0,4)$
$(5,-1,0,-1)$	$(9,20,4,-1)$	$(7,-3,-3,-7)$	$(4,1,0)$
	$(-5,-14,-2,-2)$	(1, -4, 8, 3)	$(4,1,1)$
	$(18,37,10,7)$	$(-6,-2,-4,4)$	$(4,1,2)$
	$(-15,-32,-11,-6)$	($8,3,-6,2)$	$(4,1,3)$
	$(-14,-26,-6,-1)$	$(-6,7,3,3)$	$(4,1,4)$
$(-4,0,3,1)$	$(-15,-30,-9,-2)$	$(-2,7,-4,6)$	$(4,2,0)$
	$(-6,-4,-2,-1)$	$(-2,9,-3,-7)$	$(4,2,1)$
	$(-5,-8,-2,-5)$	$(7,-1,5,-9)$	$(4,2,2)$
	$(15,28,10,4)$	$(-3,-8,8,1)$	$(4,2,3)$
	$(7,14,4,-2)$	$(7,-6,4,-7)$	$(4,2,4)$
$(3,-1,-4,0)$	$(19,35,11,4)$	$(0,-10,5,1)$	$(4,3,0)$
	$(6,6,1,2)$	(1, -5, -4, 10)	$(4,3,1)$
	$(-10,-18,-6,0)$	$(-4,8,-6,5)$	$(4,3,2)$
	$(-12,-17,-6,-4)$	$(2,9,-3,-8)$	$(4,3,3)$
	$(6,9,2,4)$	$(-4,-1,-5,10)$	$(4,3,4)$
$(-4,2,1,-1)$	$(-15,-30,-7,-2)$	$(-4,5,4,4)$	$(4,4,0)$
	$(10,26,6,3)$	$(-2,3,-5,-5)$	$(4,4,1)$
	$(-13,-28,-8,-7)$	$(9,-1,3,-3)$	$(4,4,2)$
	$(13,28,10,6)$	$(-9,-2,6,1)$	$(4,4,3)$
	$(7,14,2,-2)$	$(9,-4,-4,-5)$	$(4,4,4)$

4. Conclusion

Though this crank is not explicit like the ones presented by Garvan, Stanton, and Kim, its iterative nature makes it easy to program using a computer algebra system. I used a simple routine in MAPLE to generate the information included in the tables in the previous section.

Acknowledgments

I would like to thank the reviewers for their helpful suggestions.

References

1. Garvan, F.G. More cranks and t-cores. Bull. Aust. Math. Soc. 2001, 63, 379-391.
2. James, G.; Kerber, A. The Representation Theory of the Symmetric Group; Addison-Wesley: Reading, MA, USA, 1981; pp. 379-391.
3. Garvan, F.G.; Kim, D.; Stanton, D. Cranks and t-cores. Invent. Math. 1990, 101, 1-17.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
