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Abstract: The nature and origin of the early Yanshanian granitoids, widespread in the South China
Block, shed light on their geodynamic setting; however, understanding their magmatism processes
remains a challenge. In this paper, we present both major and trace elements of bulk rock, Sr–Nd–Pb
isotopic geochemistry, and zircon U–Pb–Hf isotopes of the low Sr and high Yb A2-type granites,
which were investigated with the aim to further constrain their petrogenesis and tectonic implications.
Zircon U–Pb dating indicates that these granites were emplaced at ca. 153 Ma. The granites are
characterized by high SiO2 (>74 wt.%) and low Al2O3 content (11.0 wt.%–12.7 wt.%; <13.9 wt.%).
They are enriched in large ion lithophile elements (LILEs) (e.g., Rb, Th, U, and K) and Yb, but depleted
in high field-strength elements (HFSEs) (e.g., Nb, Ta, Zr and Hf), Sr, Ba P, Ti and Eu concentrations.
They exhibit enriched rare earth elements (REEs) with pronounced negative Eu anomalies. They
have εNd(t) values in a range from −6.5 to −9.3, and a corresponding TDM model age of 1.5 to 1.7 Ga.
They have a (206Pb/204Pb)t value ranging from 18.523 to 18.654, a (207Pb/204Pb)t value varying from
15.762 to 15.797, and a (208Pb/204Pb)t value ranging from 39.101 to 39.272. The yield εHf(t) ranges
from −6.1 to −2.1, with crustal model ages (TDMC) of 1.3 to 1.6 Ga. These features indicate that
the low Sr and high Yb weakly peraluminous A2-type granites were generated by overlying partial
melting caused by the upwelling of the asthenosphere in an extensional tectonic setting. The rollback
of the Paleo-Pacific Plate is the most plausible combined mechanism for the petrogenesis of A2-type
granites, which contributed to the Sn–W polymetallic mineralization along the Shi-Hang zone in
South China.

Keywords: zircon U–Pb geochronology; Sr–Nd–Pb–Hf isotopes; low Sr and high Yb A2-type granite;
Xianghualing; South China

1. Introduction

The Mesozoic Age marks an important period in the geologic evolution of mainland South East
Asia (Figure 1a) [1–4], during which extensive magmatism took place in the South China Block (SCB)
parallel to the present-day coastline (Figure 1b). This magmatic zone was preliminarily named the
“Shi-Hang zone” after Gilder et al. [4]. As a granitoid belt, it reveals the Nd-depleted mantle model ages
(TDM = 1.4 ± 0.3 Ga) and negative εNd(t) values (−4 to −8) in composition [5]. Such Sn–W polymetallic
metallogenic domains related to widespread granitoids in South China represents one of the largest
tungsten-tin polymetallic ore provinces on Earth [6–15]. Previous studies demonstrated that these
temporally and spatially associated intrusions are different in terms of petrography, and elemental and
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isotopic compositions, and argued for different petrogenesis and tectonic regimes, ranging from an
extension [11], rift-related and convergent [5,16–19], or subduction-related models (Figure 1d) [20–24].
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Figure 1. (a) Simplified tectonic map of Asia showing the framework of the joint area of the
Paleo–Asian, Tethyan, and Pacific domains [4]. TB, Tibet Block; NCC, North China Block; SCB,
South China Block. (b) Distribution of the Mesozoic intrusive rocks in South China [7,15,21,24,25].
The locations of the Shi-Hang zone and Nangling range are after [19,26,27]. (c) Sketch map of the
Nanling Range [13]. (d) Simplified map showing the Late Jurassic subduction in Southeast China [28].
NM, Niumiao granodiorite [29]; TA, Tong’an monzonite [29]; HS, Huashan granite [30,31]; GPS,
Guposhan granite [30,31]; TSL, Tongshanling granodiorite [19,32]; JJL, Jinjiling granite [19,33]; XS,
Xishan granite [33]; DDS, Dadongshan granite [34]. JFL, Jianfengling (our no published data); DX,
Daoxian basalt [19,35]; NY, Ningyuan basalt [19,35]; QTL, Qitianling granite [36]; HSP, Huangshaping
granite [37]; BS, Baoshan granodiorite [32,38]; JF, Jiufeng granite [39,40]; QLS, Qianlishan granite [41];
YGX, Yaogangxian granite [42]; XHS, Xihuashan granite [43,44]; XT, Xitian granite [15]; DMS,
Damaoshan granite [45]; DX, Dexing granodiorite [46]; TS, Tongshan granite [45]; XP, Xiepu granite [24].
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The Xianghualing Sn polymetallic deposit is situated at the boundary between the Paleo-Pacific
and the Tethyan tectonic domains (Figure 1a). The Late Jurassic granites related to this deposit could
provide constraints on the petrogenesis of Late Jurassic granite-related W–Sn mineralization and their
tectonic settings. In this contribution, we present major and trace element geochemistry, Sr–Nd–Pb
isotope data for these granites, and zircon U–Pb dating and Hf isotopic evidence.

2. Geological Background

The Yangtze Block to the northwest and the Cathaysia Block to the southeast were amalgamated
to form the South China Block during the Neoproterozoic Era (Figure 1b) [7,11]. Numerous granites
are distributed in the Cathaysia Block and the Shi-Hong zone. The study area is located in the
central part of Shi-Hang zone (Figure 1b). The NE–SW trending of the Chenzhou-Lingwu fault zone
represents a regional fault in the study area (Figure 1b) [25,47]. The zone was originally formed at
970 Ma [1] and reactivated during the Triassic and the Cretaceous Eras [25]. A number of granite
plutons and associated Sn polymetallic mineralization were distributed along the Chenzhou-Lingwu
fault belt to the west of Shi-Hong zone (Figure 1b). This Sn-metallogenic region, called the Nanling
Range, is characterized by multiple and diverse mineral deposits (W, Sn, Cu, Pb–Zn, etc.) and
the Jurassic-Cretaceous intrusions [13]. The granites include the Baoshan, Tongshanling, Niumiao,
Yuanzhuding, Guposhan, Huashan, Xishan, Jinjiling, Qianlishan, and Qitianling plutons (Figure 1b).
Ore deposits associated to this belt are: Shizhuyuan (W–Sn–Mo–Bi–F) [48], Furong (Sn) [6,49,50],
Yaogangxian (W) [49], Xianghualing (Sn–W–Pb–Zn) [12,51], Huangshaping (Pb–Zn–W–Sn) [7,52],
Baoshan (Cu–Pb–Zn–W) [38], and Yuanzhuding (Cu–Mo) [14]. Basaltic rocks also crop out near the
Chenzhou-Lingwu fault, such as the Daoxian and Ningyuan basalts (Figure 1b) [19,35].

The Xianghualing Sn-polymetallic deposit is situated at the Midwestern point of the Nanling
Range (Figure 1c). The Xinfeng mine is one of the most important mines in the Xianghualing deposit.
The Xianghualing area is a tectono-magmatic dome (Figure 2a). The exposed basement comprises
the Cambrian slate and metasandstone, sandstone and shale in the Middle Devonian Tiaomajian
Formation, limestone and dolomitic limestone in the Middle Devonian Qiziqiao Formation, dolomitic
limestone and sandstone in the Upper Devonian of the Shetianqiao Formation, and the Carboniferous
carbonate and clastic rocks. The Qiziqiao Formation is the major ore bed, and the Laiziling and
Jianfengling are the two largest granites which intruded into the Cambrian and Devonian Eras,
respectively. The Xianghualing Sn polymetallic deposit is a typical skarn deposit related Laiziling
Pluton [12]. Skarn-type ore bodies and vein-like bodies formed in the contact zone of the granites.

3. Sampling and Analytical Methods

The granite samples in this study included ZK65-1, ZK65-2, ZK65-3 and ZK57-1 and were collected
from drill cores ZK65 and ZK57, one of the deepest holes of Laiziling pluton prior to 2015, in the Xinfeng
mine, Xianghualing deposit (Figure 2b). The sequence from the granite to the country rocks is as follows:
granite→ altered sandstone→ skarn→ Sn polymetallic ores in the drill cores ZK65, or, alternatively,
granite→ skarn→ tungsten–bearing quartz veins→ ore-bearing marble→ fracture in drill core ZK57
(Figure 2b). The pluton in the mine connects with the Laiziling pluton that exposes on the surface.
Three granite samples collected from the drill core ZK65 are mainly composed of fine to medium
grained porphyritic biotite monzonitic granites with a porphyritic texture. They contain 30–35%
rounded, variably resorbed quartz phenocrysts of 1–8 mm in diameter, 10–15% euhedral-subhedral
K-feldspar phenocrysts of 5–10 mm in length, about 5–10% equant and tabular plagioclase phenocrysts
of 0.5–2 mm in length, biotite (3–8%), and minor to trace amounts of hornblende. (Figure 3a,b).
Some K-feldspar phenocrysts have partially experienced sericitization. Sample ZK57-1 is two-mica
monzonitic granite with small phenocrysts and finer-grained quartz (30–35%), K-feldspar (10–15%),
plagioclase (10–15%), biotite (3–8%), and muscovite (3–8%) (Figure 3c,d). Accessory minerals are
composed of zircon with minor apatite.
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Details of analytical methods, namely whole-rock major and trace element compositions, Sr–Nd–Pb
isotopes, and zircon U–Pb and Lu–Hf isotope analyses are presented in the Supplementary material.Minerals 2019, 9, x FOR PEER REVIEW 4 of 19 
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South China. (a,b) Biotite monzonitic granites from ZK65. (c,d) Two-mica monzonitic granite from
ZK57. Q, quartz; Kf, feldspar; Bt, biotite; Ms, muscovite; Pl, plagioclase.
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4. Results

4.1. Whole-Rock Geochemistry

4.1.1. Major and Trace Elements

The analytical results of the four granite samples are presented in Table S1. These granites have
characteristics of high SiO2 content (74.1 wt.%–78.0 wt.%) (Figure 4a), similar to that of the Jianfengling
granites (73.6 wt.%–75.2 wt.%) [53], and Qitianling granites (65.9 wt.%–75.7 wt.%) in this region [54,55].
They are enriched in alkalis, with the K2O + Na2O contents ranging from 7.2 wt.% to 9.2 wt.% (average
8.3 wt.%), and K2O/Na2O ratios higher than 1. The samples are plotted in the high K calc-alkaline field
in the Na2O + K2O − CaO vs. SiO2 diagram (Figure 4a). They exhibit low Al2O3 contents (11.0 wt.% to
12.7 wt.%), and A/CNK ratios (1.0–1.1) lower than 1.1, indicating their weak peraluminous affinity in
the A/NK vs. A/CNK diagram (Figure 4b). They have low Fe2O3 (0.1 wt.%–0.5 wt.%), MgO (0.1 wt.%),
CaO (0.6 wt.%–0.8 wt.%), TiO2 (0.1 wt.%), and P2O5 contents.
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A primitive mantle-normalized trace element diagram and chondrite-normalized rare earth
element (REE) patterns for the four granite samples are illustrated in Figure 5a,b, respectively.
All samples have low Sr (3.6–7.3 ppm) and Nb (0.3–2.5 ppm, except ZK65–1) contents and extremely
high Rb (1606–2351 ppm) and Yb (7.9–14 ppm) contents. They are enriched in large-ion lithophile



Minerals 2019, 9, 182 6 of 19

elements (LILEs) (e.g., Rb, Th, U, and K) and depleted in high field strength elements (HFSEs) (e.g.,
Nb, Ta, Zr and Hf), Sr, and Ba (Figure 5a). The total contents of Zr, Nb, Ce, Y of four samples range
from 430 to 646 ppm (Figure 6). The granites exhibit enriched REEs (except Eu) with a total REE
ranging from 233 to 312 ppm. They are characterized by a slight enrichment of light REE (LREE)
((La/Yb)N = 1.8–5.0) and flat heavy REE (HREE) with pronounced negative Eu anomalies (δEu = 0.02)
(Figure 5b). The differentiation indexes (DI) of these samples are 93.7–94.58 (Table S1).Minerals 2019, 9, x FOR PEER REVIEW 6 of 19 

 

 
Figure 5. (a) Primitive mantle-normalized trace element spider diagram; (b) Chondrite-normalized 
REE patterns for the granites from the Xinfeng mine, Xianghualing area, South China. Normalized 
values for primitive mantle and chondrite are from Sun and McDonough [58]. 

  

Figure 6. (a) 10,000 × Ga/Al and; (b) (K2O + Na2O)/CaO vs. Zr + Nb + Ce + Y (ppm) diagrams showing 
that the Jurassic low Sr and high Yb granites are A-type granites [59]. 

4.1.2. Sr–Nd–Pb Isotopic Compositions 

The Sr–Nd–Pb isotopic composition data for the granites are presented in Table S2. Initial values 
of (206Pb/204Pb)t, (207Pb/204Pb)t, and (208Pb/204Pb)t are calculated using zircon ages of 153 Ma. 

The granites have an extremely high 87Sr/86Sr ratio (up to 1.89), which may be due to their 
extreme Sr (also Eu and Ba) depletion, and thus a very high Rb/Sr ratio. Previous studies pointed that 
the initial of Sr isotope is unreliable of high Rb granite [60]. We therefore do not discuss the initial 
ratio of Sr isotopes on the petrogenesis of the Xianghualiang granites. They have εNd(t) values ranging 
from −9.3 to −6.5 and (143Nd/144Nd)i from 0.511963 to 0.512107, corresponding to depleted mantle 
model ages (TDM2–Nd) of 1471–1702 Ma. The plots of εNd(t) vs. 206Pb/238U age is exhibited in Figure 7a. 

Figure 5. (a) Primitive mantle-normalized trace element spider diagram; (b) Chondrite-normalized
REE patterns for the granites from the Xinfeng mine, Xianghualing area, South China. Normalized
values for primitive mantle and chondrite are from Sun and McDonough [58].

Figure 6. (a) 10,000 × Ga/Al and; (b) (K2O + Na2O)/CaO vs. Zr + Nb + Ce + Y (ppm) diagrams
showing that the Jurassic low Sr and high Yb granites are A-type granites [59].
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4.1.2. Sr–Nd–Pb Isotopic Compositions

The Sr–Nd–Pb isotopic composition data for the granites are presented in Table S2. Initial values
of (206Pb/204Pb)t, (207Pb/204Pb)t, and (208Pb/204Pb)t are calculated using zircon ages of 153 Ma.

The granites have an extremely high 87Sr/86Sr ratio (up to 1.89), which may be due to their
extreme Sr (also Eu and Ba) depletion, and thus a very high Rb/Sr ratio. Previous studies pointed that
the initial of Sr isotope is unreliable of high Rb granite [60]. We therefore do not discuss the initial ratio
of Sr isotopes on the petrogenesis of the Xianghualiang granites. They have εNd(t) values ranging from
−9.3 to −6.5 and (143Nd/144Nd)i from 0.511963 to 0.512107, corresponding to depleted mantle model
ages (TDM2–Nd) of 1471–1702 Ma. The plots of εNd(t) vs. 206Pb/238U age is exhibited in Figure 7a.Minerals 2019, 9, x FOR PEER REVIEW 7 of 19 
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The data of zircon U–Pb age, εNd(t) and εHf(t) are from [7,15,21,24–45].

Four samples are characterized by high radiogenic Pb isotopic composition, with present-day
rock 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 19.624 to 19.791, 15.816 to 15.847, and 39.478
to 39.795, and their corresponding initial ratios are 18.523 to 18.654, 15.762 to 15.797, and 39.101 to
39.272, respectively.

4.2. Zircon U–Pb Ages

Most zircon grains separated from four granite samples are euhedral and prismatic with aspect
ratios of 1:1–1:2 and lengths of 50–150 µm. They are transparent and light yellow under an optical
microscope. Ubiquitous simple internal oscillatory zoning and little inherited cores are observed by
Cathodoluminescence (CL) images (Figure 8). Such characteristics indicate they are magmatic zircon
in origin [61]. A few zircon crystals exhibit complex secular zonings (Figure 8).

LA-ICP-MS zircon U–Pb isotopic data for these granitoids are shown in Table S3. The zircon
U–Pb concordia and weighted mean diagrams are illustrated in Figure 9. These zircons have varied U
(154–6771 ppm) and Th (70–4505 ppm) contents, with Th/U ratios ranging from 0.3 to 0.8 (Table S3),
indicating that they are magmatic in origin [62]. Thirteen analyses fall on the Concordia in a single
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group from the sample ZK57, yielding a Concordia age of 152.8 ± 0.6 Ma (MSWD = 0.2, n = 13).
The remaining three analyses have a 206Pb/238U age of 148.3 ± 1.5 Ma and 147.1 ± 1.8 Ma (Figure 9a).
Fifteen spot analyses of zircons from sample ZK65 yield a single 206Pb/238U age population of
105–156 Ma with Concordia age of 152.7 ± 2.0 Ma (MSWD = 2.9, n = 9) (Figure 9b and Table S3).
The two Concordia ages may represent the crystallization age of the granites.Minerals 2019, 9, x FOR PEER REVIEW 8 of 19 
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4.3. Zircon Hf Isotopes

The Lu–Hf isotopic compositions of zircon crystals separated from the two granite samples from
the Xianghualing area in South China are listed in Table S4. The plots of εHf(t) vs. 206Pb/238U age is
illustrated in Figure 7b.
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The zircons have 176Lu/177Hf ratios from 0.000776 to 0.003445 and 176Hf/177Hf ratios from
0.282514 to 0.282628 (Table S4). Most of 176Lu/177Hf ratios of zircon from ZK57 are below 0.002, and
therefore the accumulation of radiogenic Hf after the formation of zircons can be ignored. 176Lu/177Hf
ratios of zircon from ZK65 are a little large than 0.002 except for two analyses (ZK65-1, ZK65-5),
indicating a minor radiogenic production of 176Hf. The εHf(t) values for analyses of zircon from the
samples ZK57 and ZK65 vary from −6.1 to −2.1 (Figure 7b) and yield crustal model ages (TDMC) for
the zircon crystals from the samples that have a spectrum from 1336 Ma to 1588 Ma. The εHf(t) values
of ZK57 are close and smaller than those of ZK56 (Table S4).

5. Discussion

5.1. Origin of Granitic Rocks: An A2-Type Affinity

The later Jurassic granitic rocks from the Xianghualing area exhibit features of high silica
(74.1–78.0 wt.%) and weak peraluminosity (A/CNK ratios = 1.0–1.1). They have high K2O contents
(K2O/Na2O ratios = 1.4–4.3) and low CaO, Ba, and Sr contents. They are enriched in Nb, and Ta,
and HFSE contents (Zr + Nb + Ce + Y = 430–646 ppm) (Figure 6b). They have HFSE contents higher
than those of A-type granites (350 ppm) [59]. Chondrite-normalized REE plots show relatively flat
patterns with large negative Eu anomalies. These features are consistent with those of A-type granites
rather than S and I-types [63–66]. They are characterized by extremely low P2O5 abundances and
limited phosphate minerals, compared with S-type granites.

Strontium contents have been acknowledged as a discriminating parameter to classify granites of
A-type granites [63]. The granitic rocks from the Xianghualing area have extremely lower Sr contents
(<10 ppm) than typical calc-alkaline I-type granites. Zhang et al. demonstrated that A-type granites in
South China are characterized by low Sr and high Yb, using a Sr–Yb diagram with obvious V-type REE
patterns [67]. The much lower Sr contents therefore suggest that the granites from the Xianghualing
area belong to A-type granites. Biotite and hornblendes commonly exist as interstitial clots or grains
(Figure 10a). Moreover, micrographic intergrowths of quartz and myrmekite usually develop in or
around the alkali feldspar (Figure 10). These features are consistent with those of typical A-type
granites [59,68]. In the 10,000×Ga/Al and (K2O + Na2O)/CaO vs. Zr + Nb + Ce + Y (ppm) diagrams,
as well as the SiO2 vs. Na2O + K2O − CaO diagrams, they plot within A-type granites field (Figures 4a
and 6a,b). All the samples fall into the A2-type granites field in the plot of Ce/Nb versus Y/Nb and
Nb-Y-3Ga discrimination diagrams (Figure 11a,b), and this is also evident in the plot of the R1-R2
diagram [69] (Figure 11c).
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5.2. Petrogenesis

The petrogenesis of A-type granites are still debated, and several petrogenetic schemes have
been proposed [64,69–75]. The Xianghualing granites have low A/CNK values and no aluminous
minerals, which is inconsistent with the metasedimentary-melting petrogenetic model [76]. The rocks
exhibit flat heavy REE patterns and high Y contents (116–235 ppm) indicating that garnet was absent
from the source reservoir during the partial melting process [73]. The rocks from Xianghualing show
weakly peraluminous affinities, which are consistent with crustal magmas produced by partial melting
and heated by the underplating of mantle-derived magma [77–79]. This is evident by the obviously
different Nd–Hf isotopic compositions between the samples and the coeval mafic rocks (Figures 7a
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and 12). Figures 7a and 12 also indicate that the extensive fractional crystallization from coeval mafic
magmas for the origin of the A2-type granites can be ruled out.

The granites exclusively display negative zircon εHf(t) values, ranging from −6.1 to −2.1, with a
corresponding crustal model age of 1.34 to 1.59 Ga (Figure 7b and Table S4). The whole rock Nd model
age is 1.47 Ga–1.70 Ga, consistent with the Hf model age. These suggest that the sources of materials
had a relatively simple recycling process. The relatively young Nd model ages are a little younger than
or similar to that of Mesoproterozoic sediments in South China Block (Figure 7a; TDM = 1.8 Ga) [80].
This indicates a dominated ancient crust material in South China contributed during the magmatic
process. The εHf(t) vs. εNd(t) plots display that the range of granites from Xianghualiang area is
similar to the Shi-Hang zone [29–31,33,54,81,82], and the range falls into the field of superimposed
areas between global lower crust and global sediments (Figure 12). It suggests the lower crust and/or
sediments could be involved during the magmatic process. The lead isotopic values of the four samples
from the Xianghualing area display limited variations near the upper crust curve in Figure 13, which
is similar to the crust materials in the Shi-Hang zone and the western Pacific subducted sediments
at trenches, suggesting that the nature source rocks could be dominated by crustal materials [83].
The high radiogenic lead isotopic compositions in the granites from the Xianghualing area support
that the magmas for these granites are predominately derived from crustal materials.
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As shown in Table S1 and Figure 11a, the low Gd/Yb ratios and fairly high Y/Nb ratios
indicate that the granites formed in the extensional setting [63,84–86]. This is consistent with the
support formative processes of A2-type granites, which are considered to crystallize at a high
temperature [72,74,75]. The presence of micrographic texture in these A2-type granites is also indicative
of a high-level emplacement and provides evidence for an extensional regime (Figure 10) [69,72] and
that the magmas formed near the earth surface [68]. A normal geothermal gradient, however, cannot
produce high-temperature A-type granites by crustal melting; therefore, an exotic heat source from
mantle is a prerequisite. In conclusion, a reasonable explanation for the granites with the signatures of
high temperature from the Xianghualing area was generated by partial melting of the crustal materials
with minor subducted sediments, and further caused by upwelling of asthenosphere in an extension
tectonic setting. The presence of coeval basaltic rocks near the Chenzhou-Lingwu fault supports that a
lithospheric extension event could occur during the Early Jurassic Era, such as the Ningyuan alkaline
basalts (175 Ma) and the Daoxian basalt (150 Ma) [87–89]. These upwelling mantle materials might
provide heat energy for the melting of the crustal materials and subducted sediments.
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5.3. Tectonic Implications

The A2-type granite has been generally considered to be derived from the crust in the subduction
zone or the continent–continent collision zone [15]. Various models for the formation of A-type
granites in South China are proposed in terms of tectonic setting, and these have been correlated
with the subduction of the Pale-Pacific Plate for the petrogenesis of the late Mesozoic magma
zone [15,24,28,90–94]. Zircon U-Pb dating on granites in the Xianghualing area demonstrate that
the granites were emplaced at ~153 Ma. The age is close to those of A-types granites in the Shi-Hang
zone, such as Xihuashan (150–153 Ma, [43,44]), Jiufeng (154 ± 1 Ma, [39,40]), Xitian (152 ± 1 Ma, [15]),
Qianlishan (152 ± 2 Ma, [18]), Qitianling (155 ± 1 Ma, [36]), Xishan (156 ± 2 Ma, [33]), Jinjiling
(156 ± 2 Ma, [19,33]), Huashan (162 ± 2 Ma, [30,31]), and Guposhan (162 ± 2 Ma, [19,32]). These
granites formed a north east trending A-type granite belt in the Shi-Hang zone.

We thus propose that these A2-type granites could be formed in an extensional setting (Figure 1d).
The Paleo-Pacific Plate subducted underneath the SE China Block at a very low angle, beginning in
the Late Triassic Era and reaching southern Hunan at ca. 174 Ma (Figure 14a) [24,94,95]. The low
angle subduction could have caused crustal thickening in the coastal area. Due to the temperature and
pressure increases, the ferroan (A-type) granitoids were emplaced in the orogenic thermal relaxation
regime [24]. From ca. 174 to 164 Ma, the slab dip angle increased and subsequently caused the
subducting slab to dehydrate and release fluids. The slab-released fluids triggered partial melting
of mantle wedge and generated basaltic magmas. Around or above the melt zone, the Middle
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Jurassic I- and S-type magmas formed in the region, such as in Tongshanling (~164 Ma) in Southern
Hunan (Figures 1d and 14b) [19]. The rollback of the Paleo-Pacific plate led to a regional extension
during the late Jurassic Era (163–150 Ma) (Figure 14c) [18,19,61,92,93,96]. The extension caused the
crust and lithospheric mantle to become thinner, with an accompanying asthenosphere upwelling.
The upwelling of the basaltic magmas might have provided heat energy and triggered a partial melting
of the thinned crust rocks and subducted sediments to form the ca. 163–150 Ma A2-type granites along
the Shi-Hang zone.Minerals 2019, 9, x FOR PEER REVIEW 13 of 19 
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Figure 14. Schematic illustrations showing the generation of the late Jurassic A-type granites in South
China. (a) Low angle subduction before ~174 Ma, forming the middle Jurassic S-type granites such as
the Xiepu granite; (b) High-angle subduction during 174 to 164 Ma, forming S-type granites and basalt
such as the Tongshanling S-type granite and the Daoxian basalt; (c) During the late Jurassic Era, slab
rollback and slab breakoff formed the A-type granite such as the Xianghualing granite.

5.4. Implication for the Generation of Tin Mineralization

Yuan et al. [12] gave a cassiterite U–Pb weighted average age of 156 ± 4 Ma. The ore-forming
age coincidesdwith the other W–Sn–Pb–Zn deposits in the Shi-Hang zone, such as the Shizhuyuan W
deposit (Re–Os, 151 ± 4 Ma, [97]; Sm–Nd, 161 ± 2 Ma, [98]; Sm–Nd, 149 ± 2 Ma, [41]), the Furong
tin ore field (40Ar–39Ar, 160–150 Ma, [50]), the Yaoganxian tungsten deposit (Re–Os, 150 ± 3 Ma, [99]),
the Huangshaping Pb–Zn–W–Sn–Ag deposit (Re–Os, 155 ± 2 Ma, [38]), the Yuanzhuding Cu–Mo
deposit (Re–Os, 157 ± 4 Ma, [47]), and the Xitian W–Sn deposit (40Ar–39Ar, 157–150 Ma and Cassiterite
U–Pb, 154–157 Ma [100–102]). These ages indicate that a globally significant W-Sn polymetallic
mineralization has a close relationship with the A-type granites in the Shi-Hang zone. It is further
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supported by the fact that the Sn, W, Pb, and Zn contents of the Mesozoic granites are more than
ten times their Clark values, respectively. For examples, the Sn, W, Pb, and Zn contents of the
A-type granites in the study area are 8.7–39.7 ppm, 34.4–66.7 ppm, 48.2–66.1 ppm, and 15.0–44.9 ppm,
respectively (Table S1). It suggests that they could provide ore-forming materials for mineralization.
Moreover, the later Jurassic A-type granites are characterized by high Si (74.1 wt.% to 78.0 wt.%) and
Rb (1606 ppm to 2351 ppm) contents, low Ti, P, Sr, and Ba contents, extremely high Rb/Sr ration
and flat heavy REE (HREE) with strong negative Eu anomalies. These features imply that an intense
fluid–magma interaction is favorable to the formation of the Sn–W-polymetallic mineralization [103,
104]. In the Xianghualing deposit, skarn rocks containing fluorite markedly developed around the
granite porphyry, indicating the involvement of an F-rich fluid. The dramatic negative Eu anomaly may
indicate that the ore-forming fluids were developed in oxidizing conditions [12]. All of these indicate
that there is huge W–Sn prospecting potential related to the granites in the Xianghualing deposit.

6. Conclusions

(1) The low Sr and high Yb A2-type granites from the Xianghualing Sn polymetallic deposit were
emplaced in the later Jurassic Era (~153 Ma) with a typical enrichment in SiO2, REEs (except Eu),
HFSE, and Yb, and a depletion in Al2O3, CaO, MgO, and Sr.

(2) The geochemical data and isotopic composition (Sr–Nd–Pb–Hf) suggest that the granites from the
Xianghualing deposit were derived from predominantly crustal materials (Mesoproterozoic
basement rocks in South China Block and subducted sediments) and some minor
subducted sediments.

(3) Crustal partial melting in the extensional tectonic setting was induced by subduction of the
Paleo-Pacific Plate, accompanied by the decompression melting in the localized mantle wedge and
a rollback of the Paleo-Pacific Plate. These would be the likely accepted combined mechanisms
for the petrogenesis of A2-type granites.
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