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Abstract: The design of a flotation circuit based on optimization techniques requires a superstructure
for representing a set of alternatives, a mathematical model for modeling the alternatives, and an
optimization technique for solving the problem. The optimization techniques are classified into exact
and approximate methods. The first has been widely used. However, the probability of finding
an optimal solution decreases when the problem size increases. Genetic algorithms have been the
approximate method used for designing flotation circuits when the studied problems were small. The
Tabu-search algorithm (TSA) is an approximate method used for solving combinatorial optimization
problems. This algorithm is an adaptive procedure that has the ability to employ many other methods.
The TSA uses short-term memory to prevent the algorithm from being trapped in cycles. The TSA has
many practical advantages but has not been used for designing flotation circuits. We propose using
the TSA for solving the flotation circuit design problem. The TSA implemented in this work applies
diversification and intensification strategies: diversification is used for exploring new regions, and
intensification for exploring regions close to a good solution. Four cases were analyzed to demonstrate
the applicability of the algorithm: different objective function, different mathematical models, and
a benchmarking between TSA and Baron solver. The results indicate that the developed algorithm
presents the ability to converge to a solution optimal or near optimal for a complex combination of
requirements and constraints, whereas other methods do not. TSA and the Baron solver provide
similar designs, but TSA is faster. We conclude that the developed TSA could be useful in the design
of full-scale concentration circuits.

Keywords: design; flotation circuits; Tabu-search algorithm; multispecies

1. Introduction

Froth flotation is a process used in mining, based on the different surface properties of ore, for
separating the valuable mineral from gangue. This process is performed in an aerated tank where
the ore is mixed with water and reagents to render the valuable mineral hydrophobic [1]. Due to the
complexity of the process in practice, multiple interconnected stages are used to form a flotation circuit.

The design of flotation circuits using optimization techniques has been widely studied in the
literature [2,3]. The design requires three elements: (1) defining superstructures for representing a
set of alternatives for design; (2) a mathematical model for modeling the different alternatives of the
design, here considered goals and constraints, and determining the objectives to be optimized; and
(3) an optimization technique for solving the problem.
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The optimization techniques can be broadly classified into exact and approximate methods [4].
Exact methods obtain optimal solutions and guarantee their optimality. These methods use the
analytical properties of the problem for generating a sequence of points converging to a global optimal
solution [5]. This category includes methods such as the branch and bound algorithm, branch and
cut algorithm, dynamic programming, Bayesian search algorithms, and successive approximation
methods. Approximate methods are aimed at providing a good quality solution in a reasonable
amount of time, but finding a global optimal solution is not guaranteed. Approximate methods can
be classified into approximation algorithms and heuristic methods. The latter may be divided into
two families: specific heuristics and metaheuristics. Specific heuristics are tailored and designed for
solving a specific problem. Metaheuristics are general-purpose algorithms that can be applied to solve
almost any optimization problem [4].

The term metaheuristics was introduced in 1986 by Glover [6], and is defined as an iterative
generation process guiding a subordinate heuristic by combining intelligently different concepts for
exploring and exploiting the search space; learning strategies are used to structure information in
order to efficiently find the near-optimal solution [7]. Some of the proposed metaheuristics algorithms
in the literature are: differential evolution [8], genetic algorithm (GA) [9], memetics algorithm [10],
artificial immune system [11], simulated annealing [12], ant colony optimisation [13], particle swarm
optimisation [14], and Tabu-search [15].

The Tabu-search algorithm (TSA) is a local search methodology used for solving combinatorial
optimization problems [6]. The TSA is an adaptive procedure with the ability to apply other methods,
such as linear and nonlinear programming algorithms [16]. The TSA uses the information gathered during
the iterations to create a more efficient search process. TSA uses short-term memory to prevent previously
visited solutions from being accepted. This memory prevents the algorithm from being trapped in cycles.

The literature shows that TSA has been used and compared to other optimization techniques in
different disciplines. Han et al. [17] used TSA for training neural networks for wind power prediction.
They reported that, compared with the backpropagation algorithm, TSA can improve prediction
precision as well as convergence rate. Ting et al. [18] hybridized TSA and GA; this strategy was called
the Tabu genetic algorithm (TGA). TGA integrates TSA into GA’s selection. GA and TSA structures are
not modified in these approaches. The classic traveling salesman problem was used for validating
the proposed algorithm. Along this line, Soto et al. [19] hybridized TSA with multiple neighborhood
searches for addressing multi-depot open vehicle routing. The proposed hybrid system provided good
results, which was attributed to the successful exploration of neighborhoods. This allowed the search
to achieve a good balance between intensification and diversification. Lin and Miller [20] applied TSA
to chemical engineering problems. When TSA was compared with simulated annealing, TSA provided
superior performance; this was attributed to the use of short-term memory, which enables it to escape
from local optima [20]. Konak et al. [21] demonstrated that TSA is more efficient than GA because TSA
does not require objective function gradient information. Kis [22] solved job-shop scheduling problems
using TSA and GA. Kis reported that TSA was superior to GA both in terms of solution quality and
computation time. Pan et al. [23] proposed a particle swarm optimization (PSO) algorithm for a no-wait
flow shop scheduling problem. They compared PSO and TSA. The results indicated that the TSA and
their hybrids generate better results than PSO. Mandami and Camarda [24] proposed a multi-objective
optimization technique for plant design using TSA. They used a bounding technique for increasing the
efficacy of the algorithm. They evaluated the effectiveness of the algorithm using a nonlinear model of
10 variables. The authors concluded that it is feasible to generate a Pareto-optimality curve for plant
design problems using multi-objectives.

As stated by Cisternas et al. [2], the exact methods only guarantee finding the global solution
when the design problem is small. This observation was corroborated by the works of Mehrotra
and Kapur [25], Reuter et al. [26,27], Schena et al. [28,29], Mendez et al. [3], Maldonado et al. [30],
Cisternas et al. [31,32], Calisaya et al. [33], and Acosta-Flores et al. [34]. Similar to exact methods,
the probability of finding the global solution using approximate methods decreases as the problem
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size increases [5]. In this context, according to Acosta-Flores et al. [34] and Cisternas et al. [2], the
genetic algorithms are the only metaheuristic algorithms that have been used for designing flotation
circuits [1,35–38]. However, GA has been used only for small problems because its convergence is slow.

The methodologies proposed in the literature considered different assumptions for simplifying
the design problem. For example, many of these methodologies considered a maximum of six
flotation banks and a maximum of eight cells; however, these studies usually considered only two
species in the fed ore to the flotation circuit. The exceptions are the works of Calisaya et al. [33] and
Acosta-Flores et al. [34]. These authors examined several species in the fed ore, but their works were
based on the fact that there are few structures that are optimal for a given problem [39]. These few
structures were identified before applying the optimization search, which reduces the size of the
optimization problem. Therefore, the studied problem is complex and difficult to solve when obtaining
a global solution.

In this study, we propose using the TSA for designing flotation circuits. The developed algorithm
incorporates diversification and intensification, the first of which is used for exploring new regions,
and the second, for exploring regions close to a good solution. The algorithm was implemented for
designing circuits that process several species. The superstructure implemented involves five flotation
banks and each bank could use 3–15 cells, and the objective functions are economical. Four case studies
were developed for illustrating the applicability of the algorithm.

2. Background

2.1. Superstructure

The proposed superstructures in the literature usually correspond to an equipment superstructure,
which allows the streams of concentrate and tail of one equipment to be sent to any other equipment.
The superstructures are important because they define the alternatives and the size of the problem [2].
According to Sepúlveda et al. [40], the circuits generally use between three and five flotation stages. Then,
the equipment superstructure (Figure 1) used in this work considers the following stages: rougher stage
(R), cleaner stage (C1), re-cleaner stage (C2), scavenger stage (S1), and re-scavenger stage (S2).Minerals 2019, 9, x FOR PEER REVIEW 4 of 24 
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Figure 1. Equipment superstructure. R: rougher stage, C1: cleaner stage, C2: re-cleaner stage, S1: 
scavenger stage, S2: re-scavenger stage, M: stream mixer, D: stream splitter, 𝛼 ∈ 0,1  decision 
variables indicating the destination of the concentrate stream from stage 𝑖 , 𝛽 ∈ 0,1  decision 
variables indicating the destination of the tail stream from stage 𝑖. 

2.2. Mathematical Model 

The model includes mass balances in flotation stages, splitters, and mixers, and goals, 
constraints, and objective function are considered. The mass balance in flotation stages is determined 
with:  𝐶 = 𝑅 ∙ 𝐹 , 𝐶 =  𝐶  

(1) 

𝑇 = (1 − 𝑅 ) ∙ 𝐹 , 𝑇 = 𝑇  
(2) 

where 𝐹  is the mass flow of the species 𝑘 fed to the flotation stage 𝑖, 𝐶  is the mass flow of the 
species 𝑘 in the concentrate stream 𝐶  of the flotation stage 𝑖, 𝑇  is the mass flow of the species 𝑘 
in the tail stream 𝑇  of the flotation stage 𝑖, and 𝑅  is the recovery of the species 𝑘  in the flotation 
stage 𝑖, where 𝑘 = 1,2, . . , 𝑚, 𝑖 𝜖 𝐼, and 𝑚  is the number of species. The flotation model used for 
representing the recovery in the flotation stages was proposed by Yianatos and Henríquez [41]: 𝑅 = 𝑅 , , ∙ 1 − 1 − (1 + 𝑘 , , ∙ 𝜏 )(𝑁 − 1) ∙ 𝑘 , , ∙ 𝜏  (3) 

where 𝑅  is the recovery of the species 𝑘 in the flotation stage 𝑖 , 𝑘 , ,  is the maximum rate 
constant of the species 𝑘 in the flotation stage 𝑖, 𝜏  is the cell residence time in the flotation stage 𝑖, 𝑁  is the number of flotation cells used in the flotation stage 𝑖, and 𝑅 , ,  is the maximum recovery 
at the infinite time of the species 𝑘 in the flotation stage 𝑖.  

Figure 1. Equipment superstructure. R: rougher stage, C1: cleaner stage, C2: re-cleaner stage, S1:
scavenger stage, S2: re-scavenger stage, M: stream mixer, D: stream splitter, αij ∈ {0, 1} decision
variables indicating the destination of the concentrate stream from stage i, βij ∈ {0, 1} decision
variables indicating the destination of the tail stream from stage i.
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Many of the proposed superstructures in the literature considered nonsensical alternatives and/or
presented degeneracy, i.e., alternatives that are equivalent [2]. All the design alternatives shown in
Figure 1 have sense and do not present degeneracy. In Figure 1, the triangles with label M represent
mixers of the feed that arrive at stage i, where i ∈ {1, 2, 3, 4, 5} = I. Note that the numbers 1, 2, 3, 4,
and 5 are related to R, C1, C2, S1, and S2, respectively. The triangles with label D represent splitters that
allow sending the concentrate and tail streams from stage i to the other stages of the superstructure.

2.2. Mathematical Model

The model includes mass balances in flotation stages, splitters, and mixers, and goals, constraints,
and objective function are considered. The mass balance in flotation stages is determined with:

Cik = Rik·Fik, Ci =
m

∑
k=1

Cik (1)

Tik = (1− Rik)·Fik, Ti =
m

∑
k=1

Tik (2)

where Fik is the mass flow of the species k fed to the flotation stage i, Cik is the mass flow of the species
k in the concentrate stream Ci of the flotation stage i, Tik is the mass flow of the species k in the tail
stream Ti of the flotation stage i, and Rik is the recovery of the species k in the flotation stage i, where
k = 1, 2, . . . , m, i ∈ I, and m is the number of species. The flotation model used for representing the
recovery in the flotation stages was proposed by Yianatos and Henríquez [41]:

Rik = Rmax,i,k·
(

1−
1− (1 + kmax,i,k·τi)

1−Ni

(Ni − 1)·kmax,i,k·τi

)
(3)

where Rik is the recovery of the species k in the flotation stage i, kmax,i,k is the maximum rate constant of
the species k in the flotation stage i, τi is the cell residence time in the flotation stage i, Ni is the number
of flotation cells used in the flotation stage i, and Rmax,i,k is the maximum recovery at the infinite time
of the species k in the flotation stage i.

In practice, the flotation circuits do not use stream branching because a large number of pumps
and junction boxes are necessary for carrying out the concentration process [37]. Then, the mass
balances in the splitters of the concentrate streams are expressed as:

Cik = ∑
j∈I

αij·Cijk, ∑
j∈I

αij = 1, i ∈ I (4)

where αij ∈ {0, 1} are decision variables indicating the destination of the concentrate stream (Figure 1),
Cijk is the mass flow of species k in the concentrate stream from stage i to stage j, and Cik is the mass
flow of species k in the concentrate stream of stage i. Similarly, for the tail streams:

Tik = ∑
j∈I

βij·Tijk, ∑
j∈I

βij = 1, i ∈ I (5)

where βij ∈ {0, 1} are decision variables indicating the destination of the tail stream (Figure 1), Tijk is
the mass flow of species k in the tail stream from stage i to stage j, and Tik is the mass flow of species k
in the tail stream of stage i. The mass balances in mixers are expressed as:

Fjk =


M1k + ∑

i∈I
αij·Cijk + ∑

i∈I
βij·Tijk, j = 1

∑
i∈I

αij·Cijk + ∑
i∈I

βij·Tijk, j 6= 1
(6)
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where M1k is the mass flow of the species k fed to the flotation circuit. Note that mass balance for
each species k processed in the circuit can be rewritten as a matrix system. These systems are solved
numerically for Cik and Tik using a linear programming algorithm. The TSA has the ability to make
use of this type of algorithm.

The market for copper concentrate establishes a minimum grade (gLO); then, the following
equation is included in the mathematical model:

gradeCu =
∑k C5Pk·gk,cu

∑k C5Pk
≥ gLO (7)

where gk,cu is the copper grade of the species k, and gradeCu is the copper grade in the final concentrate
of flotation circuit. In this work, the value of gLO is 0.25.

Several objective functions have been used in the literature. Mehrotra and Kapur [25], Green [42],
and Pirouzan et al. [38] implemented technical expressions for designing flotation circuits. The
technical functions are difficult to define. For example, if the recovery is maximized, it is necessary to
restrict the concentration grade to a value that is not known a priori. This difficulty was overcome
by some authors using a multi-objective function; however, it is difficult to define the relative weight
of each objective. Schena et al. [29] and Cisternas et al. [32,39,43] implemented economic expressions
for designing circuits. These expressions highlight the maximization of revenues, maximization of
profits, and the maximization of the net present worth. These last two expressions require estimating
both the equipment costs and the operating costs. Cisternas et al. [43] found that the objective function
has a significant effect on both the solution and circuit structure obtained. In this work, we used the
maximization of revenues and maximization of the net present worth as the objective functions.

The revenue can be calculated using different models depending on the type of product and its
market. In the case of copper concentrate, the net-smelter-return formula can be used [32,43]:

Revenue = ∑
k

CFk

[
p

(
∑
k

CFk·gk,cu − µ

)
(q− R f c)− Trc

]
H (8)

where p is the fraction of metal paid, µ is the grade deduction, Trc is the treatment charge, q is the
metal price, R f c is the refinery charge, CFk is the mass flow of the species k in the final concentrate,
and gk,cu is the copper grade of the species k.

For determining net present worth, the capital costs and total costs of the process must first be
estimated. The capital cost considers the fixed capital and working capital. The first is estimated with
the following equation:

IF = FL·∑
i∈I

IF,i·Ni (9)

where [44]:
IF(i) = 105.7 + 10.72·Vi − 149.1V2

i (10)

with

Vi =
Fi·τi·Eg

ρp
(11)

where Vi is the cell volume (m3) of flotation stage i, Fi is the feed stream to stage i, Eg is the gas factor,
ρp is the pulp density, IF,i is the fixed capital cost to stage i, IF is the fixed capital cost of circuit, and
FL is the Lang factor [45]. Equation (10) is valid for volume between 5 m3 and 200 m3. The working
capital costs are estimated with the following equation:

Iw = FLw ∑
i∈I

IF,i·Ni (12)
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where FLw is the Lang factor for working capital and is assumed to be 0.9. The total costs of the process
are estimated with the following equation:

Total costs = ∑
i∈I

Cop,i + MCM ∑
k∈K

Fk (13)

with
Cop,i = H·Ni·Vi·Pk·Eg (14)

where Cop,i is the operating cost of flotation stage i, Pk is the kilowatt-hours cost, Eg is the gas factor,
and MCM are the costs of mine-crushing-grinding per ton of fed ore to the flotation plant. The profits
generated by the project are estimated with:

Pro f its(PB) = Revenue− total costs− D (15)

The annual cash flows are estimated using the following expression:

Fc = PA + D (16)

with
PA = (1− rt)PB (17)

D =
IF
n

(18)

where PB are the profits before taxes, rt is the tax rate, D is the annual depreciation, and n is the life
time of the project (the value of n used here is 15). The net present worth is calculated using:

WNP = −Icap +
n

∑
i=1

Fc,i

(1 + rd)
i (19)

where WNP is the net present worth, Icap = IF + Iw, and rd is the discount rate. It is assumed that cash
flows are equal in all years of the project, so Equation (19) is simplified:

WNP = −Icap + FC
(1 + rd)

n − 1
rd(1 + rd)

n − γ (20)

with
γ = ∑

i
vi (21)

where γ denotes the penalty parameter [46]. For each violation of the constraints of the mathematical
model, a value vi > 0 is considered, defined by the user. This penalty parameter must also be
considered when the objective function is the maximization of revenues.

2.3. Optimization Technique: Tabu-Search Algorithm

TSA is a local search methodology that was proposed by Glover and Laguna in 1998 [15]. TSA
is a strategy for solving combinatorial optimization problems ranging from graph theory to mixed
integer programming problems. It is an adaptive procedure with the ability to making use of other
methods, such as linear programming algorithms, which help to overcome the limitations of local
optimality [16]. Gogna and Tayal [47] stated that the TSA uses the information gathered during the
iterations to produce a more efficient search process. Here, the search space is simply the space of all
possible solutions that can be considered during the search. For example, in vehicle routing problems,
the search space considers both binary and continuous variables [48]. The TSA accepts non-improving
solutions to the global solution to move out of local optima. The distinguishing feature of the TSA is
the use of memory structures.
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The main memory structure used by the TSA is the Tabu list (TL) short-term memory, which has a
record of previously visited solutions. This key idea can be linked to artificial intelligence concepts [48].
The TL should be carefully formulated for an effective search while minimizing the computation time
and the memory requirements. Medium- and long-term memories can be used for improving the
intensification and diversification of the TSA [4].

Usually, the TSA starts with an initial solution, randomly selected, which is entered to TL. Then
the algorithm uses a local search procedure or neighborhoods to move iteratively from a potential
solution x to an improved solution x′, also called the best neighbor, in the neighborhood of x (N(x)).
Local search procedures often become stuck in local optima. In order to avoid these pitfalls and to
explore regions of search space that would be left unexplored by other local search procedures, TSA
carefully explores the neighborhood of each solution as the search progresses [47]. The solutions
admitted to the new neighborhood are determined through the use of memory structures. The best
neighbor (xbest) of N(x) is accepted as a global solution if xbest /∈ TL and if it maximizes the objective
function. If the best neighbor xbest ∈ TL, then the next best neighbor of N(x) is the new postulant to
enter into TL. This procedure is repeated until xbest is entered into T. Next, the new neighborhood of
the best neighbor is generated, and the procedure described earlier is repeated until some stopping
criterion is satisfied [49].

The search space of the design problem studied in this work considers binary, discrete, and
continuous variables, which are related to circuit structure, the number of cells in flotation stages, and
the operating conditions in flotation stages, respectively. The developed TSA implements short-term
and long-term memories: the TL and the frequency matrix (FM), respectively. The latter was proposed
by De los Cobos [50], which allows the exploration of new regions of the search space.

In our case, the algorithm starts with an initial solution (x = (
(
αij, βij

)
i,j, (Nt, τt)t)), which is

entered into TL. Here, the variables
(
αij, βij

)
i,j are associated with the circuit structure, and (Nt, τt)t

are associated with number of equipment and operating conditions of circuit. Then, the neighborhood
N(x) of the initial solution x is generated to create natural permutations of the structural variables, i.e.,
a set of structures is generated. Subsequently, the operating conditions and equipment number are
assigned to each structure through a uniform distribution function. The uniform distribution function
is defined using the operating conditions and the equipment number of the initial solution. This
method of generating neighborhoods is based on the structure being more influential on the objective
function than the operating conditions and equipment number [43]. Subsequently, the equipment
size, copper grade of the concentrate, and profitability parameters of each flotation circuit, neighbor
of N(x), are determined via mass balances. If the constraints of the mathematical model are violated
for some neighbor of N(x), then its objective function ( f ) is penalized (γ). Then, the best neighbor
(xbest) of N(x) is determined, i.e., the neighbor maximizing the objective function. The best solution
(xbest) is accepted as a global solution if xbest /∈ TL and f

(
xglobal

)
< f (xbest). If xbest ∈ TL, the next

best neighbor of N(x) is taken as xbest. This step is repeated until xbest is entered to TL. The structural
variables of xbest are entered into FM. Subsequently, the neighborhood of xbest is generated and the
search procedure described earlier is repeated Iterationmax times. Notably, TL has a determined
number of rows (nr), i.e., once TL is full, the update of its information is carried out at each iteration of
the algorithm. Next, we explain how diversification and intensification strategies are included in the
search procedure. Each time that xglobal does not improve before Dmax iterations of algorithm, then the
diversification in the search procedure is incorporated. The diversification allows the generation of a
new best neighbor, whose structural variables are obtained from the gathered information in FM, and
operating conditions and equipment number are assigned through a uniform distribution function.
Note that FM records all the structural variables of xbest from the first iteration of algorithm. This
information allows us to determine the structures more often visited (high frequency in FM) by the
algorithm. A structure not visited, or rarely visited (low frequency in FM), is assigned to the new best
neighbor. The intensification is incorporated in the search procedure each time passing Imax iterations
of the algorithm. The intensification allows the exploration of regions close to a good solution. In this
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work, this is carried out using the gathered information in TL. The new best neighbor is aleatorily
selected among the better neighbors recorded in TL. The full procedure is shown in Figure 2.
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Figure 2. Block diagram of Tabu-search algorithm. ITE: iteration of algorithm, TL: Tabu list,
FM: frequency matrix, D: iteration related to diversification, I: iteration related to intensification,(

αij, βij

)
i,j

: circuit structure, (Nt, τt)t: number of equipment and operating conditions of circuit, N(x):

neighborhood of the solution x, xbest: best neighbor of N(x), f : objective function, Dmax : number
of iteration related to the implementation of diversification, Imax : number of iteration related to the
implementation of intensification.
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3. Applications

Four case studies were developed for illustrating the proposed algorithm. The first and second
cases involve designing a copper ore concentrator plant considering the maximization of revenues
and maximization of the net present worth as the objective function, respectively. The third case
analyses a benchmarking between the Tabu-search algorithm and the Baron solver. Finally, the
fourth case provides the comparison between our approach and the methodology proposed by
Acosta-Flores et al. [34].

The feed is composed of seven species: k = 1 (chalcopyrite fast), k = 2 (chalcopyrite slow), k = 3
(chalcocite fast), k = 4 (chalcocite slow), k = 5 (pyrite), k = 6 (silica), and k = 7 (gangue). The mass
flows of the fed species are shown in Table 1. The values of the constants in Equation (3) are shown
in Table 2. The values for the constants in Equation (8) are: p = 0.975, µ = 0.015, Trc = 300 US$/ton,
q = 4000 US$/ton, R f c = 200 US$/ton, and H = 7200 h/year. The TSA could assign between 3 and
15 cells, and between three and five minutes of residence time to flotation stages.

Table 1. Species in feed to process.

Species Copper Grade wt % Feed (t/h)

Chalcopyrite fast (Cpf) 0.35 15
Chalcopyrite slow (Cpy) 0.25 8

Chalcocite fast (Cf) 0.1 5
Chalcocite slow (Cs) 0.07 3

Pyrite (P) 0.0 4
Silica (S) 0.0 200

Gangue (G) 0.0 300

Table 2. Values of kmax,i,k and Rmax,i,k for each stage and species in Equation (3).

kmax,i,k Rmax,i,k

Stage\Species Cpf Cpy Cf Cs P S G Cpg Cpy Cf Cs P S F

R 1.85 1.50 1.00 0.70 0.80 0.60 0.30 0.90 0.85 0.85 0.75 0.80 0.60 0.20
C1 1.30 1.00 0.80 0.40 0.70 0.30 0.20 0.75 0.70 0.70 0.60 0.60 0.50 0.15
C2 1.30 1.00 0.80 0.40 0.70 0.30 0.20 0.70 0.65 0.65 0.50 0.60 0.50 0.15
S1 1.85 1.50 1.00 0.70 0.80 0.60 0.30 0.90 0.85 0.85 0.75 0.80 0.60 0.20
S2 1.85 1.50 1.00 0.70 0.80 0.60 0.30 0.90 0.85 0.85 0.75 0.80 0.60 0.20

3.1. Maximization of Revenues

The equipment superstructure, the mathematical model, included maximization of revenues
as the objective function, and the TSA were used for solving the design problem. The developed
algorithm was capable of solving the design problem despite the number of species processed, and the
requirements and constraints established in the design procedure. The obtained structure is shown
in Figure 3, and the revenue, the net present worth, profit before taxes, total capital investment, and
total costs of the circuit were USD $130,960,079/year, USD $595,475,455, USD $91,716,855/year, USD
$53,265,087, and USD $36,358,032/year, respectively. The τR, τC1, τC2, τS1, τS2, NR, NC1, NC2, NS1, NS2,
VR, VC1, VC2, VS1, and VS2 were 5 min, 3 min, 3 min, 5 min, 5 min, 15 cells, 3 cells, 3 cells, 15 cells, 15
cells, 197.60 m3, 22.63 m3, 9.98 m3, 167.59 m3, and 155.91 m3, respectively. The final concentrate of the
circuit was 14.962 ton/h of chalcopyrite fast, 7.916 ton/h of chalcopyrite slow, 4.938 ton/h of chalcocite
fast, 2.633 ton/h of chalcocite slow, 0.008 ton/h of pyrite, 0.017 ton/h of silica, and 0.001 ton/hr of
gangue, and its copper grade was 25.70%.

The number of cells and residence time in rougher, scavenger, and re-scavenger are the maxima
available. These results are logical because the metallurgical aim of these stages is increasing the
recovery of the valuable ore. Also, the objective function does not consider either the equipment
costs or the operating costs. The number of cells and residence time in the cleaner and recleaner
stages are the minima available. Again, these results are logical because the aim of these stages is
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increasing the copper grade in the concentrate. These results were obtained by previously evaluating
different combinations of the algorithm parameters. In this case, the TSA used 170 neighbors in
each neighborhood, 2000 iterations, diversification was applied each time the global solution did
not improve after 30 iterations, the intensification was applied each time passing 50 iterations of the
algorithm, and the number of rows of the TL was 50. The runtime of the TSA was 601.63 s.Minerals 2019, 9, x FOR PEER REVIEW 11 of 24 
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3.2. Maximization of the Net Present Worth

The equipment superstructure and mathematical model included maximization of the net present
worth as the objective function, and the TSA was used for solving the design problem. Again,
the developed algorithm was capable of solving the design problem despite the number of species
processed, and the requirements and constraints established in the design procedure. The obtained
structure is shown in Figure 4, and the net present worth, revenue, profit before taxes, total capital
investment, and total costs of the circuit were USD $724,828,320, USD $129,830,340/year, USD
$107,977,400/year, USD $ 8,386,189, and USD $21,398,690/year, respectively. The values of τR, τC1, τC2,
τS1, τS2, NR, NC1, NC2, NS1, NS2, VR, VC1, VC2, VS1, and VS2 were 3 min, 3 min, 3 min, 3 min, 3 min, 3
cells, 4 cells, 3 cells, 3 cells, 3 cells, 106.84 m3, 19.84 m3, 9.60 m3, 95.72 m3, and 91.41 m3, respectively.
The final concentrate of circuit contained 14.846 ton/h of chalcopyrite fast, 7.757 ton/h of chalcopyrite
slow, 4.739 ton/h of chalcocite fast, 2.164 ton/h of chalcocite slow, 0.009 ton/h of pyrite, 0.019 ton/h of
silica, and 0.001 ton/h of gangue, with a copper grade of 26.07%.Minerals 2019, 9, x FOR PEER REVIEW 12 of 24 
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The number of cells and residence time used in the circuit and shown in Figure 4 are lower
compared with the obtained in the case outlined in Section 3.1. These results are logical because the
net present worth considers both the equipment costs and the operating costs. The obtained designs in
the cases in Sections 3.1 and 3.2 are different, corroborating the results reported by Cisternas et al. [43],
i.e., the objective function affects the design of concentration plants. The TSA used 170 neighbors at
each neighborhood, 2000 iterations, the diversification was applied each time that the global solution
was not improved after 30 iterations, the intensification was applied each time passing 50 iterations of
the algorithm, and the number of rows of the TL was 50. The runtime of the algorithm was 527.61 s.

3.3. Benchmarking between the Tabu-Search Algorithm and the Baron Solver

Many authors have used the Baron solver to solve design problems. As such, we completed
benchmarking between the TSA and the Baron solver. The mathematical model for the Baron solver
appears in Appendix A. Note that the Baron solver is based on the branch and cut algorithm, i.e.,
belongs to the family of exact methods.

Initially, we completed benchmarking using the maximization of the revenues as the objective
function; the results are shown in Table 3 and Figures 3–5. Then, we performed benchmarking using
the maximization of the net present worth as the objective function, and the results are shown in
Table 4 and Figures 3–5. Many authors only used the revenues for designing the circuit, i.e., they
included neither equipment design nor operational costs in the mathematical model [1,31,32,34,51].
Thus, we performed benchmarking using a simplified mathematical model, and the results are shown
in Table 5 and Figures 3–5. Note that the superstructure of Figure 1 represents a total of 144 flotation
circuit configurations and that only 11 configurations were selected in all the analyzed cases. These
structures correspond to 4 for the case maximization of the revenues as the objective function, 4 for the
case the maximization of the net present worth as the objective, and 3 when a simplified mathematical
model is used. The structures of Figures 3 and 4 were the most frequently selected circuits.

Table 3 shows the benchmarking between the TSA and the Baron solver when the maximization
of revenues was the objective function. This table depicts five cases. The first considered the species
Cpf, Cps, S, and G; the second considered the species Cpf, Cps, P, S, and G; the third considered the
species Cpf, Cps, Cf, P, S, and G; the fourth considered the species Cpf, Cps, Cf, Cs, P, S, and G; and the
fifth considered the species Cpf, Cps, Cf, Cs, Bof (bornite fast), P, S, and G. In each case, the following
output variables were considered: the revenues, net present worth, profit before taxes, total capital
investment, total annual cost, equipment size, operating conditions, number of equipment, copper
grade in concentrate, circuit structure, runtime of algorithm, number of iterations of TSA, neighborhood
size, number of iterations of each diversification, number of iterations of each intensification, and
number of rows of TL. Table 3 shows that TSA is capable to converge independently of the number of
species processed in the flotation circuit. The results provided by the TSA and the Baron solver were
similar in all analysed cases, except in the fifth case. In this last case, both optimization techniques
provided similar revenue; however, the other output variables were different. This result could be
related to the simultaneous imposition of all goals and constraints of the mathematical model. Perhaps
a relaxation of constraints could help with the exploration of regions, offering a better quality solution.
The runtime of TLA in the first, second, third, fourth, and fifth cases was 21.3, 183.4, 287.7, 344.7, and
386.2 s, respectively. The runtime for the Baron solver in the first, second, third, fourth, and fifth cases
was 233.0, 423.0, 9026.2, 14,640.0, and 10,257.0 s, respectively. The TSA provided results faster than the
Baron solver, but only provides a good quality solution.
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Table 3. Benchmarking between the Tabu-search algorithm and the Baron Solver (revenues, Bof = bornite fast).

Case 1 2 3 4 5

Algorithm Tabu Baron Tabu Baron Tabu Baron Tabu Baron Tabu search Baron

Species Cpf, Cps, S, G Cpf, Cps, P, S, G Cpf, Cps, Cf, P, S, G Cpf, Cps, Cf, Cs, P, S, G Cpf, Cps, Cf, Cs, Bof, P, S, G

Revenue, USD/year 132,318,860 132,323,459 132,852,410 132,854,057 130,981,546 130,981,549 130,960,079 130,958,748 129,185,242 130,335,529
Net present worth, USD 612,961,580 612,702,132 618,316,980 617,392,845 598,070,573 598,081,544 595,475,455 599,377,620 671,113,149 692,374,613

Profit before taxes, USD/year 94,235,451 94,208,659 94,972,404 94,849,038 92,078,958 92,080,433 91,716,855 92,213,521 101,068,398 103,931,519
Total capital investment, USD 52,137,292 52,317,036 51,261,610 51,471,333 52,917,663 52,915,338 53,265,087 52,005,813 24,608,590 20,166,465
Total annual cost, USD/year 35,259,307 35,280,960 35,103,337 35,216,989 36,036,215 36,034,869 36,358,032 35,928,246 26,783,878 25,311,660

VR, m3 182.822 182.54 181.825 185.596 195.500 195.46 197.704 197.60 119.350 111.037
VC1, m3 21.222 20.31 22.805 22.872 22.442 22.44 22.712 22.63 25.841 20.083
VC2, m3 7.761 7.15 8.973 8.800 9.964 9.96 9.984 9.98 14.138 10.287
VS1, m3 163.211 163.17 163.697 163.700 165.782 165.78 167.565 167.59 159.679 101.602
VS2, m3 153.893 153.88 153.971 153.972 154.464 154.46 155.908 155.91 151.817 155.590
τR, min 5.000 5.000 4.900 5.000 5.000 5.000 5.000 5.000 3.300 3.000
τC1, min 3.130 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.300 3.000
τC2, min 3.320 3.000 3.070 3.000 3.000 3.000 3.000 3.000 4.400 3.000
τS1, min 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 4.400 3.000
τS2, min 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 4.800 4.920

NR 15.000 15.000 14.000 14.000 15.000 15.000 15.000 14.000 3.000 3.000
NC1 4.000 5.000 5.000 5.000 3.000 3.000 3.000 3.000 3.000 3.000
NC2 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
NS1 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 9.000 3.000
NS2 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 10.000 13.000

Grade Cu 0.3123 0.312 0.274 0.274 0.257 0.257 0.257 0.257 0.250 0.250
Circuit structure Figure 4 Figure 4 Figure 4 Figure 4 Figure 3 Figure 3 Figure 3 Figure 3 Figure 5d Figure 5c

Time, s 46.610 233.000 176.580 423.030 287.670 9026.190 601.630 14,640.00 433.930 10,257.020
Iterations of algorithm 1000 - 1000 - 1500 - 2000 - 3000 -

Neighborhood size 40 - 130 - 150 - 170 - 60 -
Iterations of diversification 50 - 20 - 30 - 30 - 20 -
Iteration of intensification 10 - 40 - 40 - 50 - 50 -

No. rows of Tabu list 100 - 50 - 50 - 50 - 50 -



Minerals 2019, 9, 181 13 of 22

Table 4. Benchmarking between the Tabu-search algorithm and the Baron solver (net present worth; Bof = bornite fast, Bos = bornite slow).

Case 1 2 3 4 5 6

Algorithm Tabu Baron Tabu Baron Tabu Baron Tabu Baron Tabu Baron Tabu Baron

Species Cpf, Cps, S, G Cpf, Cps, P, S, G Cpf, Cps, Cf, P, S, G Cpf, Cps, Cf, Cs, P, S, G Cpf, Cps, Cf, Cs, Bof, P, S, G Cpf, Cps, Cf, Cs, Bof, Bos, P, S, G

Net present worth, USD 735,935,440 735,938,754 737,697,720 737,697,912 726,139,400 726,139,411 724,828,320 724,828,404 723,842,180 723,842,865 719,710,450 719,712,493
Revenue, USD/year 130,918,800 130,920,451 131,435,920 131,433,456 129,853,889 129,853,889 129,830,340 129,830,357 129,839,150 129,840,240 129,548,420 129,551,233
Profit before taxes,

USD/year 109,609,160 109,606,145 109,882,230 109,881,842 108,168,025 108,168,032 107,977,400 107,977,414 107,833,120 107,833,404 107,267,450 107,268,177

Total capital inv., USD 8,162,377 8,108,261 8,345,130 8,338,775 8,329,184 8,329,184 8,386,189 8,386,191 8,415,244 8,418,023 9,135,362 9,141,936
Total annual cost,

USD/year 20,867,504 20,875,109 21,101,667 21,099,930 21,234,694 21,234,694 21,398,690 21,398,690 21,550,197 21,550,859 21,786,145 21,787,868

VR, m3 101.244 101.240 103.058 103.070 105.819 105.820 106.847 106.850 111.845 111.807 111.390 111.325
VC1, m3 15.985 17.190 18.905 18.700 19.595 19.600 19.847 19.840 25.510 25.520 21.292 21.620
VC2, m3 6.619 8.390 8.112 8.110 9.578 9.580 9.600 9.600 10.266 10.412 10.252 10.260
VS1, m3 93.280 93.280 93.795 93.800 94.817 94.820 95.722 95.720 97.236 97.225 99.287 99.265
VS2, m3 90.073 90.070 90.219 90.220 90.615 90.620 91.412 91.410 91.901 91.898 92.295 92.322
τR, min 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
τC1, min 3.000 3.200 3.080 3.040 3.000 3.000 3.000 3.000 3.960 3.973 3.200 3.256
τC2, min 3.000 3.730 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.051 3.000 3.000
τS1, min 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
τS2, min 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.001

NR 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
NC1 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 3.000 3.000 3.000 3.000
NC2 4.000 3.000 4.000 4.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
NS1 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 4.000 4.000
NS2 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

Grade Cu 0.3125 0.3130 0.276 0.276 0.2608 0.261 0.2607 0.261 0.250 0.250 0.250 0.250
Circuit structure Figure 5a Figure 5a Figure 5a Figure 5a Figure 4 Figure 4 Figure 4 Figure 4 Figure 3 Figure 3 Figure 5c Figure 5c

Time, s 106.260 94.200 424.720 294.920 464.990 533.400 527.610 355.200 710.040 1082.640 875.980 4299.860
No. rows Tabu list 50 - 50 - 50 - 50 - 50 - 50 -
No. iterations of

algorithm 2000 - 2000 - 2000 - 2000 - 2000 - 2000 -

Iteration of diversification 30 - 30 - 30 - 30 - 30 - 30 -
Iteration of intensification 50 - 40 - 40 - 50 - 50 - 50 -

Neighborhood size 70 - 130 - 150 - 170 - 190 - 210 -
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Table 5. Benchmarking between the Tabu algorithm and the Baron solver (revenues; reduced mathematical model; Pf = pyrite fast, Ps = pyrite slow).

Case 1 2 3 4 5 6

Algorithm Tabu Baron Tabu Baron Tabu Baron Tabu Baron Tabu Baron Tabu Baron

Species Cpf, S, G Cpf, Cps, S, G Cpf, Cps, Pf, S, G Cpf, Cps, Pf, Ps, S, G Cpf, Cps, Cf, Pf, Ps, S, G Cpf, Cps, Cf, Cs, Pf, Ps, S, G

Revenue, USD/year 26,455,569 26,455,571 38,755,316

did not
converge

after 5
days

38,568,418

did not
converge

after 5
days

38,567,734
did not

converge
after 5 days

36,714,037
did not

converge
after 5 days

There is no
solution

There is no
solution

τR, min 5.000 5.000 5.000 - 5.000 - 5000 - 3.260 - - -
τC1, min 3.000 3.000 3.090 - 3.000 - 3000 - 3.000 - - -
τC2, min 3.000 3.000 3.000 - 3.000 - 3000 - 3.000 - - -
τS1, min 5.000 5.000 5.000 - 5.000 - 5000 - 5.000 - - -
τS2, min 5.000 5.000 5.000 - 5.000 - 5000 - 3.800 - - -

NR 15.000 15.000 15.000 - 15.000 - 15,000 - 5.000 - - -
NC1 5.000 5.000 3.000 - 4.000 - 4000 - 3.000 - - -
NC2 3.000 3.000 3.000 - 3.000 - 3000 - 3.000 - - -
NS1 15.000 15.000 15.000 - 15.000 - 15,000 - 6.000 - - -
NS2 15.000 15.000 15.000 - 15.000 - 15,000 - 6.000 - - -

Grade Cu 0.345 0.345 0.304 - 0.303 - 0.303 - 0.250 - - -
Circuit structure Figure 3 Figure 3 Figure 3 - Figure 4 - Figure 4 - Figure 5i - - -

Time, s 54.900 1961.830 120.040 - 165.340 - 216.390 - 472.720 - - -
No. rows Tabu list 100 - 50 - 50 - 100 - 50 - - -
No. iterations of

algorithm 1000 - 1000 - 1000 - 1000 - 1000 - - -

Iteration of diversification 30 - 20 - 20 - 20 - 20 - - -
Iteration of intensification 100 - 40 - 40 - 40 - 40 - - -

Neighborhood size 90 - 110 - 130 - 150 - 170 - - -
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Figure 5. Structures of circuits obtained by maximization of net present worth (a,c) or revenues (c,d,i)
in the case 3.3. Structures (a,b,e–h) are obtained by maximization revenues in the case 3.4.

Table 4 shows the benchmarking between TSA and the Baron solver when the maximization of the
net present worth was the objective function. This table demonstrates six cases. The first considered the
species Cpf, Cps, S, and G; the second considered the species Cpf, Cps, P, S, and G; the third considered
the species Cpf, Cps, Cf, P, S, and G; the fourth considered the species Cpf, Cps, Cf, Cs, P, S, and G;
the fifth considered the species Cpf, Cps, Cf, Cs, Bof, P, S, and G; and the sixth considered the species
Cpf, Cps, Cf, Cs, Bof, Bos (bornite slow), P, S, and G. In each case, the following output variables were
considered: net present worth, revenues, profit before taxes, total capital investment, total annual
cost, equipment size, operating conditions, number of equipment, copper grade in concentrate, circuit
structure, runtime of algorithm, number of iterations of TSA, neighborhood size, number of iterations
of each diversification, number of iterations of each intensification, and number of rows of TL. Table 4
shows that TSA is capable to converge independently of the number of species processed in the
flotation circuit and objective function used. The results provided by both optimization techniques
were similar in all analysed cases. The runtime of TLA in the first, second, third, fourth, fifth, and
sixth cases was 106.260 secs, 424.72, 464.99, 527.61, 710.04, and 875.98 s, respectively. The runtime
for the Baron solver in the first, second, third, fourth, fifth, and sixth cases was 94.2, 294.92, 533.40,
355.20, 1082.64, and 4299.86 s, respectively. In the first, second, and fourth cases, the Baron solver
provided results before the TSA. In the third, fifth, and sixth cases, the TSA provided results before the
Baron solver.
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Table 5 shows the benchmarking between the TSA and the Baron solver when the mathematical
model is simplified. This table demonstrates six cases. The first considered the species Cpf, S and
G; the second considered the species Cpf, Cps, S, and G; the third considered the species Cpf, Cps,
Pf (pyrite fast), S, and G; the fourth considered the species Cpf, Cps, Pf, Ps (pyrite slow), S, and G;
the fifth considered the species Cpf, Cps, Cf, Pf, Ps, S, and G; and the sixth considered the species
Cpf, Cps, Cf, Cs, Pf, Ps, S, and G. In each case, are the following output variables were considered:
revenue, operating conditions, number of equipment, copper grade in concentrate, circuit structure,
runtime of algorithm, number of iterations of TSA, neighborhood size, number of iterations of each
diversification, number of iterations of each intensification, and number of rows of TL. The runtime of
TLA in the first, second, third, fourth, and fifth cases was 162.36, 344.06, 368.83, 480.36, and 1098.57 s,
respectively. The runtime for the Baron solver in the first case was 1961.8 s, and in the second to fifth
cases, the Baron solver did not converge after five days. Both optimization techniques do not provide a
solution for the sixth case because the minimal copper grade constraint in the final concentrate cannot
be satisfied. Note, the results provided by the TSA could be used for reducing the runtime of the Baron
solver. When we delimited the search space of the Baron solver in the fifth case in Table 5, based on the
TSA results, runtime of the Baron solver was 101.22 s, and the output variables of mathematical model
were similar to those provided by the TSA.

3.4. Comparison with Another Approach

Section 3.3 showed that the Baron solver could converge after a long time period depending on
the mathematical model and number of species used in the design procedure. Maybe, due to these
results, Acosta-Flores et al. [34] proposed a design methodology based on two phases. In the first
phase, they identified a set of optimal structures using discrete values for the flotation stages, then, in
the second phase, they determined the optimal design of each structure obtained in the previous phase.
Note that they used a superstructure of six flotation stages. However, the optimal structures only used
five stages (R, C1, C2, S1, and S2). These authors modeled the flotation stages using the expressions
proposed by Yianatos et al. [41]. When all parameters used by Acosta-Flores et al. [34] were included
in the proposed methodology, the design shown in Table 6 was obtained. Considering that versions
of the Baron solver in the General Algebraic Modeling System (GAMS) environment improve over
time, we determined the final design of the structures proposed by Acosta-Flores et al. [34] using our
version of GAMS. The results are shown in Table 6.

Table 6. Comparison between approaches.

Algorithm Tabu Search Baron

Revenue, USD
$1000/year 49,792 49,306 49,783 49,543 49,792

τR, min 6.000 6.000 6.000 6.000 6.000
τC1, min 3.020 6.000 2.349 6.000 2.978
τC2, min 0.500 0.500 0.500 0.500 0.500
τS1, min 6.000 2.424 6.000 1.816 6.000
τS2, min 6.000 2.424 6.000 6.000 6.000

NR 15.000 15.000 15.000 15,000 15.000
NC1 8.000 8.000 8.000 8.000 8.000
NC2 5.000 2.000 6.000 2.000 5.000
NS1 15.000 15.000 15.000 15.000 15.000
NS2 15.000 15.000 15.000 10.000 15.000

Grade Cu 0.222 0.220 0.222 0.222 0.222
Circuit

structure Figure 4 Figure 5g
(circuit 1) *

Figure 5a
(circuit 2) *

Figure 5f
(circuit 3) *

Figure 4
(circuit 4) *

Time, s 798.06 605,789.65 628,906.07 630,906.7 80,193.67

* number of circuits in Acosta-Flores et al. [34].
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Table 6 shows that TSA is capable of converging despite changing the parameters in the
methodology proposed. The best design provided by both approaches was similar. However, our
method required fewer computational resources. The TSA used 320 neighbors at each neighborhood,
1500 iterations, the diversification was applied each time that the global solution was not improved
after 20 iterations; the intensification was applied each time passing 40 iterations of the algorithm,
and the number of rows of the TL was 70. Note that the TSA provided secondary designs (Table 7).
However, neither approach guarantees finding a global solution.

Table 7. Best design and secondary designs provided by the Tabu-search algorithm.

Algorithm Best Design Secondary Designs

Revenue,
USD/year 49,792,2192 49,698,998 49,670,988 49,575,119

τR, min 6.000 4.190 4.780 3.200
τC1, min 3.020 5.160 5.680 5.700
τC2, min 0.500 5.390 4.260 6.000
τS1, min 6.000 5.850 5.640 5.950
τS2, min 6.000 6.000 5.200 5.210

NR 15.000 15.000 15.000 9.000
NC1 8.000 4.000 3.000 2.000
NC2 5.000 2.000 2.000 3.000
NS1 15.000 15.000 15.000 7.000
NS2 15.000 15.000 15.000 11.000

Grade Cu 0.222 0.222 0.222 0.222
Circuit structure Figure 4 Figure 5b Figure 5h Figure 5e

In general, Tables 3–6 show that the TSA converges faster than the Baron solver, and, the TSA
always provided a solution in a reasonable amount of time when the mathematical model was
well-defined. Notably, the TSA parameters must be adjusted. Evidently, this procedure took time.
For example, Lin et al. [52] proposed determining the neighborhood size using the number of free
variables of a mathematical model. A similar strategy was applied in this work; however, in general,
the TSA did not provide good results. This behavior could be related to the considered multispecies in
the design procedure. Then, the neighborhood size was tuned by trial and error.

Cisternas et al. [2] and Lin et al. [5] mentioned that both exact and approximate methods have a
low probability of finding the global solution in a reasonable amount of time for large. However, our
results contradict these observations. Tables 3 and 4 show that both optimization techniques converge
and provided similar designs despite the design procedure considering several species, operating
costs, capital costs, size of equipment, number of equipment, and metallurgical parameters, among
other variables. In the case of the TSA, these results could be explained by a minimally dynamic
and noncomplex superstructure, which did reduce the number of alternatives to 144. In the case
of the Baron solver, these results could be explained by the delimitation of the search space due to
large number of equations used by the mathematical model, which helped the solver to converge in a
reasonable amount of time. This finding is corroborated by the results shown in Table 5. In this case,
the mathematical model included neither equipment design nor operational cost, and generally, the
solver did not converge.

The results indicate that the diversification and neighborhood have a strong influence on the
results of TSA. When the diversification was not incorporated into the search procedure, the results
of the TSA were distinct compared to the results provided by the Baron solver. Although a large
neighborhood did not help with obtaining good solutions, better solutions were obtained using
small neighborhoods and many iterations of the TSA, i.e., achieving a gradual improvement in the
best neighbor.

The TSA developed in this work is flexible, i.e., would allow including into the design procedure
grinding models, cell models, or the geological uncertainty (non-linear algorithm). The latter is
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related to the variation of copper grade that occurs during real operation of the circuit. Initially, the
consideration of geological uncertainty or degree of liberation of valuable minerals (grinding) drives
optimization under uncertainty. There are several approaches for addressing this type of problem such
as stochastic optimization [53]. A possible strategy for solving the stochastic optimization problem is
scenario trees based on stochastic parameters of the model. The solution of each scenario would be
determined via TSA. A summary of the advantages and disadvantages of the optimization techniques
used in this work is shown in Table 8.

Table 8. Comparison between the Tabu-search algorithm and the Baron solver.

Algorithm Tabu Search Baron Solver

Advantages

The convergence is fast.
The algorithm always provides a solution when the
mathematical model is well defined.
The algorithm is flexible, i.e., it allows the use of other
methods, such as linear programming algorithms.
The algorithm provides good quality solutions.
The algorithm provides secondary designs.

The solver provides a global optimal
design when converged.
The solver does not need to adjust
parameters for providing a solution.
The obtained designs do not change if the
solver is run again.

Disadvantages

Some algorithm parameters, such as neighborhood size
and number of iterations of the algorithm, among others,
must be adjusted for finding a good quality solution.
Penalty parameters must be used for satisfying the
constraints of the mathematical model.
The obtained designs could change if the algorithm is
run again.
The algorithm must incorporate diversification and
intensification for finding a good quality solution.

Depending on the mathematical model
and the number of species, the
convergence is slow or the algorithm does
not converge.
The variables of the model must be
bounded for guaranteeing the finding of
global optimal design, i.e., experience in
circuit design is required.
The solver provides a single design.
The obtained designs depend on the
version of the solver.

4. Discussion and Conclusions

An algorithm based on Tabu-search was developed and used for designing flotation circuits
for several species. The algorithm incorporates diversification for exploring new regions and
intensification for exploring regions close to a good solution. The circuits designed using the
Tabu-search algorithm were logical and allowed incorporating the influence of the objective function
into the design of concentration plants. A comparison between the Tabu-search algorithm and the
Baron solver in the GAMS environment was performed. In general, the solutions provided by both
optimization techniques were similar. The Tabu-search algorithm always quickly provided a solution
when the mathematical model was well-defined, whereas the Baron solver, in some cases, converged
slowly or did not converge at all. Finally, we compared our approach and the methodology proposed
by Acosta-Flores et al. [34]. The results indicated the best design provided by both proposals was
similar. Both approaches provided secondary designs, but our proposal required fewer computational
resources. Thus, the developed algorithm can converge to an optimal solution or near optimal for a
complex combination of requirements and constraints in a design problem, whereas other methods do
not. The developed algorithm represents progress in the design of flotation circuits, which could be
useful in the design of full-scale mineral concentration circuits.

In future work, we will seek to include geological uncertainty, operating uncertainty, and
grinding in the design procedure. Furthermore, we will analyze the hybridization between TSA
and genetic algorithms.
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Nomenclature

C1 Cleaner stage
C2 Re-cleaner stage
Ci Concentrate stream of the flotation stage i
Cik Mass flow of species k in concentrate Ci
Cijk Mass flow of species k in the concentrate stream from stage j to stage i
Cop,i Operating cost of flotation stage i
D Annual depreciation
Eg Gas factor
FC Annual cash flows
FL Lang factor
FLw Lang factor for working capital
FM Frequency matrix
g Grade
H Number of hours per year of plant operation
Icap Capital cost
IF Fixed capital cost
Iw Working capital cost
Fik Mass flow of species k in feed streams of stage i
kmax,i,k Maximum rate constant of the species k in flotation stage i
M1k Mass flow of species k fed to the flotation circuit
Ni Number of flotation cell in stage i
N(x) Neighborhood of x
n Life time of the project
nr Number of rows of Tabu list
P Final concentrate
PB Profits before taxes
Pk Kilowatt-hours cost
p Fraction of metal paid
R Rougher stage
Rik Recovery of stage i for species k
Rmax,i,k Maximum recovery at infinite time of stage i for species k
R f c Refinery charge
rt Tax rate
S1 Scavenger stage
S2 Re-scavenger stage
Ti Tail stream of the flotation stage i
Tik Mass flow of the species k in tail Ti
Tijk Mass flow of species k in the tail stream from stage j to stage i
TL Tabu list
Trc Treatment charge
Vi Cell volumen in stage i
W Final tail
WNP Net present worth
xbest Best neighbor of N(x)
Greek symbols
αij Decision variables
βij Decision variables
γ Penalty parameter
ρp Pulp density
µ Grade deduction
τi Cell residence time in stage i
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Appendix A

Mathematical model in the GAMS environment.
Note that GAMS implements sets for defining the mathematical model. The main sets are:

M1 = {r/r is F, R, C1, C2, S1, S2, W, P}

M2 = {r/r is R, C1, C2, S1, S2}

L = {(r, s)/(r, s) is a stream from stage r to stage s, r, s ∈ M1}

K1 = {k1/k1 is a species}

LC = {(r, s)/(r, s) is a concentrate stream, (r, s) ∈ M1}

LT = {(r, s)/(r, s) is a tail stream, (r, s) ∈ M1}

For the mass balance in splitters, the following equations are considered:

CC(r, k1) = ∑
s

Fc(r, s, k1), (r, s) ∈ LC, k1 ∈ K1, r ∈ M2

CT(r, k1) = ∑
s

Fw(r, s, k1), (r, s) ∈ LT, k1 ∈ K1, r ∈ M2

where Fc(r, s, k1) is the concentrate flows of species k1 in the stream from r to s, Fw(r, s, k1) is tail flow of species k1
from r to s, CC(r, k1) and CT(r, k1) are the mass flow of species k1 in the concentrate and tail streams of stage r,
respectively. Stream branching is not allowed, so the following equations are included:

∑
s

Fc(r, s, k1) ≤ FUP
c yc

rs, ∑
s

yc
rs = 1, (r, s) ∈ LC

∑
s

Fw(r, s, k1) ≤ FUP
w yw

rs, ∑
s

yw
rs = 1, (r, s) ∈ LT

where yc
rs and yw

rs are binary variables indicating the choice of the destination of the concentrate and tail streams,
respectively; FUP

c and FUP
w correspond to the lower and upper bounds of mass flow of species k1 in the concentrate

and tail, respectively. For the mass balance in the mixer, the following equations are considered:

FS(s, k1) = ∑
is.t. (r,s)∈LC

Fc(r, s, k1) + ∑
is.t. (r,s)∈LT

Fw(r, s, k1), k1 ∈ K1, s ∈ M2

where FS(s, k1) is the mass flow of species k1 in feed streams to stage s. The final concentrate of the flotation
circuits is calculated using:

CF(k1) = ∑
r

Fc(r, P, k1), (r, P) ∈ LC, k1 ∈ K1

where CF(k1) is the mass flow of species k1 in final concentrate. The mass balance in the flotation stages is
determined using:

CC(r, k1) = T(r, k1)·FS(s, k1), k1 ∈ K1, r ∈ M2

CT(r, k1) = (1− T(r, k1))·FS(s, k1), k1 ∈ K1, r ∈ M2

where T(r, k1) is the flotation model proposed by Yianatos and Henríquez [41]. The objective function is defined
using the Equations (8)–(20), without considering the penalty parameter.
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